JPS6356919B2 - - Google Patents

Info

Publication number
JPS6356919B2
JPS6356919B2 JP1337282A JP1337282A JPS6356919B2 JP S6356919 B2 JPS6356919 B2 JP S6356919B2 JP 1337282 A JP1337282 A JP 1337282A JP 1337282 A JP1337282 A JP 1337282A JP S6356919 B2 JPS6356919 B2 JP S6356919B2
Authority
JP
Japan
Prior art keywords
heat storage
sodium
salt
cycles
storage material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1337282A
Other languages
Japanese (ja)
Other versions
JPS58132075A (en
Inventor
Yasuo Yamamoto
Hiroo Iwata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toagosei Co Ltd
Original Assignee
Toagosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toagosei Co Ltd filed Critical Toagosei Co Ltd
Priority to JP1337282A priority Critical patent/JPS58132075A/en
Publication of JPS58132075A publication Critical patent/JPS58132075A/en
Publication of JPS6356919B2 publication Critical patent/JPS6356919B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は潜熱型蓄熱材に関するものであり、特
に、耐久性の優れた蓄熱材組成物に関するもので
ある。 近年、エネルギー問題が広く認識されるに至
り、石油の代替エネルギーが各種検討されている
が、その一つに太陽エネルギーの熱源としての利
用がある。しかるに、この太陽エネルギーは昼
間、それも晴天時にしか利用できないため、何ら
かの蓄熱器を利用しない限り、安定した熱源とし
て利用することができない。従来、考えられてき
た蓄熱器は、断熱容器内に熱水や高温の岩石を充
填する、いわゆる顕熱型がほとんどであつたが、
最近、潜熱を利用した蓄熱が注目を集めるように
なつた。この潜熱型蓄熱材としては、種々のもの
が考えられ、例えば、Na2SO4・10H2O,
Na2S2O3・5H2O,AlK(SO42・12H2Oなどの無
機水和塩、n―パラフイン、ステアリン酸、ポリ
エチレン、ナフタリン等が検討されてきた。これ
らの中でも最も有望視され、よく検討されている
のは、経済性、安全性の面に優れた無機水和塩で
ある。特にNa2SO4・10H2Oは、入手の容易さ、
安価さ、安全性故に注目されている。 しかるに、このNa2SO4・10H2Oを蓄熱材とし
て利用するには、過冷却と相分離の2つの問題を
解決しなければならなかつた。本発明者等は、こ
のNa2SO4・10H2Oに代表される無機水和塩の過
冷却、相分離の2つを解決して、蓄熱材としての
機能を持たさせる方法について、鋭意検討し、先
願発明(特願昭55―158224号)を完成するに至つ
た。即ち、無機水和塩に種結晶及び水不溶性樹脂
を加えることにより、溶融状態における系を全体
が均一なゲル状分散系を形成させてなる潜熱型蓄
熱材である。この蓄熱材における種結晶は、系が
溶融状態に於いてもゲル状である為、底に落下す
ることがなく、全体に均一に分散させる事がで
き、したがつて凝固過程に於ける結晶の発生、成
長を系全体に均一に起こすことができる。このよ
うに本発明者等の先願発明により、無機水和塩を
蓄熱材として利用する際の最大の問題を解決する
ことができた。 本発明者等は、この先願発明に基づき、
Na2SO4・10H2O系の蓄熱材を実用化すべく更に
検討を進めた。即ち、Na2SO4・10H2Oに種結晶
として、Na2B4O7・10H2Oを添加し、これに水
不溶性高吸水性樹脂を加え、系全体をゲル化させ
た材を作り、その実用化について検討した。 蓄熱材に要求される機能は、当然の事ながら長
期の融解・凝固の繰り返しサイクルに互つて、安
定に一定量の熱を、一定温度で放熱および吸熱す
ることである。一般に蓄熱材の耐久性は最低でも
1000サイクルは必要と言われている。本発明者等
は、先願発明に基づく先のNa2SO4・10H2O系の
蓄熱材について、融解:凝固サイクル試験を行な
つたが、その結果、後記比較例1に明らかなよう
に、100サイクルまでは融点30℃で一定時間、一
定の熱を放出し、良好な蓄、放熱機能を保持して
いるが、200サイクルになると劣化が起こり、融
点も28〜26℃に低下し、かつ一定温度を保持でき
なくなつた。また、潜熱蓄熱量も元来50cal/g
を有していたものが、36cal/gと28%も低下し
た。この劣化した材を融解時に取り出し調べてみ
ると、径の大きな無水Na2SO4の結晶が数多く観
察された。 この材の劣化の原因は要因が多く複雑で、明ら
かでないが、その原因の一端としては、
Na2SO4/H2O系の相平衡が単純でなく、水和塩
がNa2SO4・10H2Oのみならず、準安定な
Na2SO4・7H2Oも存在し得る事、及び融点が包
晶反応点であり、融解すると約15%の無水
Na2SO4を生じるが、これを固化時に包晶反応が
十分完了しない結果、サイクルをくり返すことに
より序々に肥大化し、蓄熱能力が低下してゆく
事、熱の授受が、常に材の充填されている容器壁
面を通して行なわれることによる、材の壁面部と
中心部の組成の変化等々があげられる。これらが
複雑に重なり合つて、材の劣化が起こつているも
のと考えられる。 本発明者等は、このような先願発明によつて開
示された技術の限界を、突破し、長期のくり返し
サイクルに耐えるNa2SO4・10H2O系蓄熱材を見
出すべく鋭意検討を重ねた結果・本発明を見出す
に至つた。 即ち、本発明は硫酸ナトリウム10水塩、四ホウ
酸ナトリウム10水塩、水不溶性高吸水性樹脂、及
び有機スルホン酸またはその塩若しくは硫酸エス
テル又はその塩からなる蓄熱材組成物である。 本発明者等は、蓄熱材の耐久性を向上させる為
には、蓄熱材の凝固及び融解過程に何らかの影響
を与える物質の添加が有効ではないかと考え、検
討した結果、有機スルホン酸または若しくは硫酸
エステル又はその塩添加が、蓄熱材の耐久性を著
しく向上させることを見出し、前記本発明を完成
した。本発明によれば、例えば実施例1から明ら
かなように、ドデシルベンゼンスルフオン酸ナト
リウムをNa2SO4・10H2Oに対して0.5%添加した
蓄熱材は、200サイクルはもとより、1000サイク
ルの凝固、融解過程の繰り返し後に於いても融点
30℃を維持し、かつ蓄熱量も48.5cal/gと、ほ
とんど能力低下をきたさなかつた。 この驚くべき効果は、各実施例からも明らかな
ように、有機スルホン酸またはその塩を添加した
場合に特異的に起こるものであり、これがカルボ
キシ基を有する化合物の場合、あるいは無機化合
物の場合、例えばオレイン酸ナトリウム、安息香
酸、スルフアミン酸、硫酸アンモニウム、などで
は効果がない。 このように本発明者等はNa2SO4・10H2Oに対
し、前記3種類の添加物を加える事により、蓄熱
材として、耐久性に優れた実用的な組成物を得る
ことに成功した。すなわち、種結晶としての四ホ
ウ酸ナトリウム10水塩、凝固・融解を系全体に均
一にかつ安定に生起せしめる為の水不溶性高吸水
性樹脂、そして耐久性向上剤としての有機スルホ
ン酸またはその塩の3種類の添加物を添加してな
る蓄熱材組成物である。これらのいづれが欠けて
も、蓄熱材としての機能を満足に果たすことはで
きない。 一方、Na2SO4・10H2Oの融点は大体30℃付近
にあるが、これにNaCl等の塩を混合することに
より、融点を30℃から10℃付近に低下させること
が可能であることが以前から知られており、この
ような混合塩系を蓄冷材として使用する試みもな
されてきたが、この場合には更に、耐久性が劣
り、せいぜい数10サイクルの凝固・融解を繰り返
すと、相変化が円滑に起らなくなり、機能が低下
する為実用化は困難であつた。本発明は、この混
合系に適用した場合にも有効で、大巾に耐久性を
向上させることができ、蓄熱材の実用化にも道を
開くものである。 次に本発明を更に詳細に説明する。 本発明に言う有機スルホン酸またはその塩若し
くは硫酸エステル又はその塩としては、広範囲の
各種化合物が使用できるが、好ましいものとして
は、例えば第1にアニオン性界面活性剤があげら
れる。具体的化合物としては、ラウリル酸ナトリ
ウム、セチル硫酸ナトリウム、ドデシルベンゼン
スルホン酸ナトリウム、アルキルナフタレンスル
ホン酸ナトリウム、ジアルキルスルホコハク酸ナ
トリウム、ポリオキシエチレンアルキルエーテル
硫酸ナトリウム、ポリオキシエチレンアルキルフ
エノールエーテル硫酸ナトリウム、高級アルコー
ル硫酸ナトリウム、等々を挙げることができる。
第2に、いわゆる酸性染料と呼ばれるものも分子
中にスルホン基を有し、有効であり、好ましい。
例えばシルクスカーレツト、ソーラーオレンジ、
アマランス、アミニールブラウン、カヤノールレ
ツドBL等々、多数ある。その他の化合物として
はスチレンスルホン酸ナトリウム、アクリルアミ
ドプロパンスルホン酸ナトリウム等のビニルモノ
マーも有効であり、好ましい。本発明の有機スル
ホン酸またはその塩若しくは硫酸エステル又はそ
の塩は以上に限定されるものではない。また、ナ
トリウム塩の形態を必ずしも採る必要はなく、カ
リウム塩、アンモニウム塩、でも良く、酸の形態
でも良い。 本発明に言う水不溶性高吸水性樹脂は、水ない
し水性液体と接触すると短時間で多量の液を吸収
し、多少の圧力下に於いても液を吸収状態に保持
する能力を有する為、農園芸用の保水剤あるいは
生理用品、紙おむつなどの吸液使い捨て製品、な
どに使用されつつあるものである。本発明は、こ
の樹脂の特徴ある性質を溶融状態にあるNa2SO4
飽和水溶液の吸収、ゲル化剤として巧みに利用し
たものであり、無機水和塩の凝固の際に起る過冷
却、相分離の防止に著しい効果を奏するものであ
る。水不溶性高吸水性樹脂には種々の構造のもの
が知られており、例えば、架橋ポリアクリル酸
塩、澱粉のグラフト重合物、セルロースのグラフ
ト重合物、酢酸ビニル―アクリル酸エステル共重
合体の部分ケン化物、架橋ポリビニルアルコー
ル、架橋ポリエチレンオキサイド等があげられ
る。本発明においては、これらのいづれをも使用
できるが、中でも比較的高温に於ける凝固・融解
サイクルの繰り返しに耐えて劣化が少なく、しか
も使用量が少なくて済む点において、架橋ポリア
クリル酸塩、架橋ポリビニルアルコールが特に好
ましい。 次に、種結晶として添加される四ホウ酸ナトリ
ウムは別名、ホウ砂あるいはボラツクスとも呼ば
れ、Na2SO4・10H2Oの結晶化促進剤として有効
なものである。Na2SO4・10H2Oとこれら3種の
添加物の配合割合は使用する有機スルホン酸、高
吸水性樹脂の種類によつて異なるが、概ね、高吸
水性樹脂の量は、Na2SO4・10H2Oに対して0.1〜
20wt%、好ましくは2〜10wt%である。最適添
加量は、溶融状態に於けるゲル状分散系が、わず
かに流動性を有する限界付近になるように決める
のが好ましい。有機スルホン酸またはその塩の添
加量はNa2SO4・10H2Oに対して概ね0.1〜10wt
%、好ましくは0.5〜5wt%であり、四ホウ酸ナト
リウムの添加量はNa2SO4・10H2Oに対して概ね
1〜30wt%好ましくは5〜10wt%である。 以上のような配合割合により得られる、蓄熱材
組成物は融点約30℃で凝固、溶解が起き、吸熱・
放熱のくり返しを行なうが、先に述べたように、
これに更にハロゲン化アルカリ金属塩、又はハロ
ゲン化アンモニウム塩を添加することにより、融
点をある程度任意に低下させることができる。添
加量を増加するにしたがつて、最低7℃にまで融
点を低下させることが可能である。この添加物の
例としては、塩化ナトリウム、塩化カリウム、塩
化リチウム、塩化アンモニウム等を挙げることが
できる。添加量はNa2SO4・10H2Oに対して1wt
%以上が必要であり、上限は40wt%である。こ
れ以上添加しても融点は低下せず、単位蓄熱材当
りの蓄熱量が低下するのみであり、意味がない。 本発明の蓄熱材組成物の調製に際しては各成分
を固相状態(粉末)において混合するだけでも良
いが、その融点以上に加熱し、溶融状態で高吸水
性樹脂以外の各成分を混合し、溶解、分散させた
状態で高吸水性樹脂を序々に添加し、系全体をゲ
ル化させた方が均一な分散系が得られ、したがつ
て蓄熱量も大きく、より耐久性に優れた材が得ら
れるので好ましい。Na2SO4・10H2Oは、それ自
体を用いてもちろん良いが、無水Na2SO4及び
H2Oを配合して用いても良く、むしろ後者の方
がより実際的である。この場合のH2Oの量は厳
密に化学的理論量であることを必要とせず、多少
の過不足は許容される。 以上詳細に説明してきたように、本発明による
蓄熱材組成物は、Na2SO4・10H2Oを蓄熱材とし
て使用する際の種々の技術的困難が克服され1000
サイクル以上の凝固・融解の繰り返しに充分耐え
る性能を有し、太陽エネルギーを利用する場合は
もちろん、夜間電力や工場廃熱のような種々のエ
ネルギーに対しても、熱の発生時期とその消費時
期とを調整する目的に利用することができ、工業
的に極めて有用である。 以下、参考例、実施例および比較例により本発
明を更に具体的に説明する。 参考例 1 アクリル酸ナトリウムの36wt%、水溶液836
g、アクリル酸100g、メチレンビスアクリルア
ミド0.4g、及び蒸留水208gを2のセパラブル
フラスコに仕込んだ。温度を20℃に調整したの
ち、窒素を吹き込み、系内の酸素を除去した。こ
れに過硫酸アンモニウム0.2g及び亜硫酸ナトリ
ウム0.2gを加えた。40分後に重合が始まり、更
に3時間後にピーク温度95℃になつて重合が終了
した。生成ゲルを取り出しエクストルーダーで径
5mmのひも状に成形したのち、120℃で熱風乾燥
した。得られたポリマーを粉砕して60〜100mesh
の白色粉末を得た。この粉末の蒸留水、1規定
NaCl液の吸水量を測定したところ各々580倍及び
40倍であつた。 実施例 1 Na2SO4176g,Na2B4O7・10H2O14g、蒸留
水224g及びドデシルベンゼンスルホン酸Na2.0
gを40℃の温度で混合した。これを40℃に保ちつ
つ急速撹拌しながら、参考例1で合成した架橋ポ
リアクリル酸ナトリウムの60〜100mesh粉末12g
を少しずつ添加した。混合物は序々に増粘し、最
終的には、かゆ状の含水ゲル分散系に転化した。
この溶融状態の材を内径3cm、長さ8cmの塩化ビ
ニール管に充填したのち、両端を密封して5本の
充填された蓄熱材を作つた。このうち4本を取り
50℃の温水槽及び10℃の冷水槽に各々30minずつ
交互に浸漬して融解、凝固のサイクルを繰り返さ
せた。長期の繰り返しサイクルを行ない100,
200,500,1000サイクル経過毎に材を1本ずつ取
り出し、次の要領で材の蓄熱能力を測定し、試験
前の材との比較を行なつた。 〈相変化持続時間、温度の測定〉 被検蓄熱材の中心部に熱電対を差し込み、50℃
恒温水槽に浸漬する。内温が50℃に到達したら、
材を別の20℃恒温水槽に浸漬し、経時的に材中心
温度を測定し、相変化温度、時間を記録する。 〈蓄熱容量の測定〉 相変化温度、時間の測定が終了したのち、容器
から材を取り出し、その一部を密閉型アルミニウ
ム製試料パンに入れ、パーキン・エルマーDSC
―IB型示差走査熱量測定装置を用いて、潜熱蓄
熱容量を測定する。 得られた結果を表1に示した。表1からわかる
ように1000サイクル経過後に於いてもほとんど性
能は変化していない。
The present invention relates to a latent heat type heat storage material, and particularly to a heat storage material composition with excellent durability. In recent years, energy problems have become widely recognized, and various alternative energies to oil are being considered, one of which is the use of solar energy as a heat source. However, since this solar energy can only be used during the daytime, especially when the weather is clear, it cannot be used as a stable heat source unless some kind of heat storage device is used. Most conventional heat storage devices have been of the so-called sensible heat type, in which hot water or high-temperature rocks are filled in an insulated container.
Recently, heat storage using latent heat has been attracting attention. Various types of latent heat storage materials can be considered, such as Na 2 SO 4 10H 2 O,
Inorganic hydrated salts such as Na 2 S 2 O 3 ·5H 2 O, AlK(SO 4 ) 2 ·12H 2 O, n-paraffin, stearic acid, polyethylene, naphthalene, etc. have been investigated. Among these, inorganic hydrated salts are considered to be the most promising and have been extensively studied because of their excellent economic efficiency and safety. In particular, Na 2 SO 4・10H 2 O is easy to obtain,
It is attracting attention because of its low price and safety. However, in order to utilize this Na 2 SO 4 .10H 2 O as a heat storage material, two problems had to be solved: supercooling and phase separation. The present inventors have conducted extensive studies on methods for solving the two problems of supercooling and phase separation of inorganic hydrated salts, such as Na 2 SO 4 10H 2 O, and making them function as heat storage materials. As a result, the invention of the prior application (Japanese Patent Application No. 158224-1982) was completed. That is, it is a latent heat type heat storage material in which a seed crystal and a water-insoluble resin are added to an inorganic hydrated salt to form a uniform gel-like dispersion system in the molten state as a whole. The seed crystals in this heat storage material are gel-like even when the system is in a molten state, so they do not fall to the bottom and can be uniformly dispersed throughout. Generation and growth can occur uniformly throughout the system. As described above, the prior invention of the present inventors has solved the biggest problem when using an inorganic hydrated salt as a heat storage material. Based on this prior invention, the present inventors have
Further studies were carried out to put Na 2 SO 4 10H 2 O-based heat storage materials into practical use. That is, Na 2 B 4 O 7・10H 2 O is added as a seed crystal to Na 2 SO 4・10H 2 O, and a water-insoluble super absorbent resin is added to this to create a material in which the entire system is gelled. , we discussed its practical application. The function required of a heat storage material is, of course, to stably radiate and absorb a certain amount of heat at a constant temperature during repeated cycles of melting and solidification over a long period of time. In general, the durability of heat storage materials is at least
It is said that 1000 cycles are required. The present inventors conducted a melting/solidification cycle test on the earlier Na 2 SO 4 10H 2 O based heat storage material based on the earlier invention, and as a result, as is clear from Comparative Example 1 below. Up to 100 cycles, it releases a certain amount of heat for a certain period of time with a melting point of 30℃, maintaining good storage and heat dissipation functions, but after 200 cycles, deterioration occurs and the melting point drops to 28-26℃. And it became impossible to maintain a constant temperature. In addition, the amount of latent heat storage is originally 50 cal/g.
This decreased by 28% to 36 cal/g. When this deteriorated material was removed from the melt and examined, many large-diameter anhydrous Na 2 SO 4 crystals were observed. The cause of the deterioration of this material is complex and has many factors, and is not clear, but one of the causes is:
The phase equilibrium of the Na 2 SO 4 /H 2 O system is not simple, and the hydrated salt is not only Na 2 SO 4・10H 2 O but also metastable.
Na 2 SO 4・7H 2 O may also exist, and the melting point is the peritectic reaction point, and when melted, about 15% anhydride
Na 2 SO 4 is produced, but as a result of the peritectic reaction not being fully completed during solidification, it gradually enlarges as the cycle is repeated, and the heat storage capacity decreases. Examples include changes in the composition of the wall and center of the material due to penetration through the wall of the container. It is thought that the deterioration of the material is caused by a complex combination of these factors. The present inventors have made extensive studies in order to overcome the limitations of the technology disclosed in the prior invention and find a Na 2 SO 4 .10H 2 O-based heat storage material that can withstand repeated cycles over a long period of time. As a result, the present invention was discovered. That is, the present invention is a heat storage material composition comprising sodium sulfate decahydrate, sodium tetraborate decahydrate, a water-insoluble superabsorbent resin, and an organic sulfonic acid or a salt thereof, or a sulfuric ester or a salt thereof. The present inventors thought that in order to improve the durability of heat storage materials, it would be effective to add a substance that has some influence on the solidification and melting process of heat storage materials, and as a result of their investigation, they found that organic sulfonic acid or sulfuric acid The present invention was completed based on the discovery that the addition of ester or its salt significantly improves the durability of the heat storage material. According to the present invention, for example, as is clear from Example 1, a heat storage material containing 0.5% sodium dodecylbenzenesulfonate to Na 2 SO 4 10H 2 O can be used not only for 200 cycles but also for 1000 cycles. The melting point remains unchanged even after repeated solidification and melting processes.
The temperature was maintained at 30°C, and the amount of heat storage was 48.5 cal/g, with little loss of performance. As is clear from each example, this surprising effect occurs specifically when an organic sulfonic acid or its salt is added, and when this is a compound having a carboxy group or an inorganic compound, For example, sodium oleate, benzoic acid, sulfamic acid, ammonium sulfate, etc. are ineffective. As described above, the present inventors succeeded in obtaining a practical composition with excellent durability as a heat storage material by adding the above three types of additives to Na 2 SO 4 .10H 2 O. . In other words, sodium tetraborate decahydrate as a seed crystal, a water-insoluble super absorbent resin to cause solidification and melting to occur uniformly and stably throughout the system, and an organic sulfonic acid or its salt as a durability improver. This is a heat storage material composition containing three types of additives. Even if any of these is lacking, the function as a heat storage material cannot be fulfilled satisfactorily. On the other hand, the melting point of Na 2 SO 4 10H 2 O is approximately around 30°C, but by mixing a salt such as NaCl with it, it is possible to lower the melting point from 30°C to around 10°C. has been known for a long time, and attempts have been made to use such a mixed salt system as a cold storage material, but in this case, the durability is even worse, and after repeated solidification and melting cycles of several dozen times, It has been difficult to put it into practical use because the phase change does not occur smoothly and the functionality deteriorates. The present invention is also effective when applied to this mixed system, and can greatly improve durability, opening the way to practical use of heat storage materials. Next, the present invention will be explained in more detail. As the organic sulfonic acid or its salt or sulfuric ester or its salt referred to in the present invention, a wide variety of compounds can be used, but preferred examples include firstly anionic surfactants. Specific compounds include sodium laurate, sodium cetyl sulfate, sodium dodecylbenzene sulfonate, sodium alkylnaphthalene sulfonate, sodium dialkyl sulfosuccinate, sodium polyoxyethylene alkyl ether sulfate, sodium polyoxyethylene alkyl phenol ether sulfate, and higher alcohols. Sodium sulfate, etc. may be mentioned.
Secondly, so-called acid dyes also have a sulfone group in their molecules and are effective and preferred.
For example, silk scarlet, solar orange,
There are many such as Amaranth, Aminil Brown, Kayanol Red BL, etc. As other compounds, vinyl monomers such as sodium styrene sulfonate and sodium acrylamide propane sulfonate are also effective and preferred. The organic sulfonic acid or salt thereof, sulfuric acid ester, or salt thereof of the present invention is not limited to the above. Further, it is not necessarily necessary to take the form of a sodium salt, but a potassium salt, an ammonium salt, or an acid form may be used. The water-insoluble superabsorbent resin referred to in the present invention absorbs a large amount of liquid in a short time when it comes into contact with water or an aqueous liquid, and has the ability to maintain the liquid absorption state even under some pressure. It is increasingly being used in water-retaining agents for gardening, sanitary products, disposable diapers, and other liquid-absorbing products. The present invention exploits the characteristic properties of this resin by converting it into Na 2 SO 4 in the molten state.
It is skillfully used as an absorbing and gelling agent for saturated aqueous solutions, and is extremely effective in preventing supercooling and phase separation that occur during solidification of inorganic hydrated salts. Water-insoluble superabsorbent resins are known to have various structures, such as crosslinked polyacrylates, starch graft polymers, cellulose graft polymers, and vinyl acetate-acrylic acid ester copolymer parts. Examples include saponified products, crosslinked polyvinyl alcohol, and crosslinked polyethylene oxide. In the present invention, any of these can be used, but among them, crosslinked polyacrylates are preferred because they can withstand repeated solidification and melting cycles at relatively high temperatures, have little deterioration, and can be used in small amounts. Particularly preferred is crosslinked polyvinyl alcohol. Next, sodium tetraborate added as a seed crystal is also called borax or borax, and is effective as a crystallization accelerator for Na 2 SO 4 .10H 2 O. The blending ratio of Na 2 SO 4・10H 2 O and these three additives varies depending on the organic sulfonic acid used and the type of super absorbent resin, but in general, the amount of super absorbent resin is Na 2 SO 0.1~ for 410H2O
20wt%, preferably 2 to 10wt%. The optimum amount to be added is preferably determined so that the gel-like dispersion in the molten state has a slight fluidity near the limit. The amount of organic sulfonic acid or its salt added is approximately 0.1 to 10wt to Na 2 SO 4・10H 2 O
%, preferably 0.5 to 5 wt%, and the amount of sodium tetraborate added is approximately 1 to 30 wt%, preferably 5 to 10 wt %, based on Na2SO4.10H2O . The heat storage material composition obtained with the above blending ratio solidifies and dissolves at a melting point of approximately 30°C, and exhibits endothermic and
Heat dissipation is repeated, but as mentioned earlier,
By further adding a halogenated alkali metal salt or a halogenated ammonium salt to this, the melting point can be arbitrarily lowered to some extent. As the amount added increases, it is possible to lower the melting point to a minimum of 7°C. Examples of this additive include sodium chloride, potassium chloride, lithium chloride, ammonium chloride, and the like. Addition amount is 1wt for Na 2 SO 4・10H 2 O
% or more is required, and the upper limit is 40wt%. Adding more than this does not lower the melting point and only lowers the amount of heat storage per unit heat storage material, which is meaningless. When preparing the heat storage material composition of the present invention, it is possible to simply mix each component in a solid state (powder), but by heating it above its melting point and mixing each component other than the super absorbent resin in a molten state, By gradually adding superabsorbent resin in a dissolved and dispersed state and gelling the entire system, a more uniform dispersion system can be obtained, which results in a more durable material with a larger amount of heat storage. It is preferable because it can be obtained. Of course, Na 2 SO 4・10H 2 O can be used by itself, but anhydrous Na 2 SO 4 and
It may be used in combination with H 2 O, and the latter is rather more practical. The amount of H 2 O in this case does not need to be strictly the chemically theoretical amount, and some excess or deficiency is allowed. As explained in detail above, the heat storage material composition according to the present invention overcomes various technical difficulties when using Na 2 SO 4 .10H 2 O as a heat storage material.
It has the ability to withstand repeated solidification and melting cycles, and can be used not only when using solar energy, but also when using various types of energy such as nighttime electricity and factory waste heat. It can be used for the purpose of adjusting and is extremely useful industrially. Hereinafter, the present invention will be explained in more detail with reference to Reference Examples, Examples, and Comparative Examples. Reference example 1 36wt% of sodium acrylate, aqueous solution 836
g, 100 g of acrylic acid, 0.4 g of methylenebisacrylamide, and 208 g of distilled water were charged into a separable flask (No. 2). After adjusting the temperature to 20°C, nitrogen was blown into the system to remove oxygen from the system. To this were added 0.2 g of ammonium persulfate and 0.2 g of sodium sulfite. Polymerization started after 40 minutes, and after another 3 hours, the peak temperature reached 95°C and the polymerization was completed. The resulting gel was taken out and formed into a string with a diameter of 5 mm using an extruder, and then dried with hot air at 120°C. Grind the obtained polymer to 60-100mesh
A white powder was obtained. Distilled water of this powder, 1N
The water absorption of NaCl solution was measured and was 580 times and
It was 40 times hotter. Example 1 176 g of Na 2 SO 4 , 14 g of Na 2 B 4 O 7 10H 2 O, 224 g of distilled water and 2.0 Na dodecylbenzenesulfonate
g were mixed at a temperature of 40°C. While keeping this at 40℃ and stirring rapidly, 12g of 60-100mesh powder of cross-linked sodium polyacrylate synthesized in Reference Example 1 was prepared.
was added little by little. The mixture gradually thickened and finally converted to a mushy hydrogel dispersion.
This molten material was filled into vinyl chloride pipes with an inner diameter of 3 cm and a length of 8 cm, and both ends were sealed to produce five filled heat storage materials. Take 4 of these
The samples were alternately immersed in a 50°C hot water tank and a 10°C cold water tank for 30 minutes each to repeat the cycle of melting and solidification. Perform a long repeated cycle 100,
After each cycle of 200, 500, and 1000 cycles, one piece of wood was taken out, and the heat storage capacity of the wood was measured in the following manner and compared with the wood before the test. <Measurement of phase change duration and temperature> Insert a thermocouple into the center of the heat storage material to be tested and
Immerse in a constant temperature water bath. When the internal temperature reaches 50℃,
The material is immersed in a separate 20°C constant temperature water bath, the temperature at the center of the material is measured over time, and the phase change temperature and time are recorded. <Measurement of heat storage capacity> After completing the phase change temperature and time measurements, remove the material from the container, place a portion of it in a sealed aluminum sample pan, and place it in a Perkin-Elmer DSC.
-Measure the latent heat storage capacity using a type IB differential scanning calorimeter. The results obtained are shown in Table 1. As can be seen from Table 1, there is almost no change in performance even after 1000 cycles.

【表】 比較例 1 実施例1に於いて、ドデシルベンゼンスルホン
酸Naを添加しない材について、同様の耐久性試
験を行なつた。材のサンプリングは100,200,
1000サイクル経過後に行なつた。結果を表2に示
す。
[Table] Comparative Example 1 In Example 1, a similar durability test was conducted on a material to which Na dodecylbenzenesulfonate was not added. Material sampling is 100, 200,
This was done after 1000 cycles. The results are shown in Table 2.

【表】 表2からわかるように100サイクルでは安定で
あつたが、200サイクルになると大巾に劣化した。 実施例 2〜6 実施例1に於いて、ドデシルベンゼンスルホン
酸Naの替りに、ラウリル硫酸、ラウリル硫酸
Na、ジアルキルスルホコハク酸Na(商品名ペレ
ツクスCS、花王アトラス(株)製)、ソーラーオレン
ジ(住友化学(製)酸性染料)、スチレンスルホ
ン酸Naを各々2.0gずつ添加した材を作り、同様
の耐久性試験を行なつた。 その結果を表3に示す。 比較例 2〜5 実施例1に於いて、ドデシルベンゼンスルホン
酸Naの替りにオレイン酸Na、安息香酸、スルフ
アミンNa、硫酸アンモニウムを各々2.0gずつ添
加した材を作り、同様の耐久性試験を行なつた。 その結果を表3に示す。
[Table] As can be seen from Table 2, it was stable after 100 cycles, but deteriorated significantly after 200 cycles. Examples 2 to 6 In Example 1, lauryl sulfate and lauryl sulfate were used instead of sodium dodecylbenzenesulfonate.
We created materials to which 2.0g each of Na, sodium dialkyl sulfosuccinate (product name Perex CS, manufactured by Kao Atlas Co., Ltd.), Solar Orange (acid dye manufactured by Sumitomo Chemical Co., Ltd.), and sodium styrene sulfonate were added to achieve similar durability. A sex test was conducted. The results are shown in Table 3. Comparative Examples 2 to 5 In Example 1, materials were prepared in which 2.0 g each of sodium oleate, benzoic acid, sodium sulfamine, and ammonium sulfate were added instead of sodium dodecylbenzenesulfonate, and the same durability test was conducted. Ta. The results are shown in Table 3.

【表】 蓄熱量をまとめたものである。
実施例 7 実施例1に於いて、架橋ポリアクリルNaに替
えて架橋ポリビニルアルコール系高吸水性樹脂
KIゲル―201(クラレイソプレンケミカル(株)製、
20メツシユパス粉末、蒸留水吸水量約200倍)14
gを添加した。実施例1と同様のかゆ状の含水ゲ
ル分散系を得た。以下、同様の方法で耐久性試験
を行なつた。 1000サイクル後の蓄熱量は47.0cal/gであり、
また相変化温度は30℃と、試験前と比べてほとん
ど変化はなく、耐久性に優れていた。 実施例 8 Na2SO4176g,Na2B4O7・10H2O14g,
NaCl62g、蒸留水224g及びドデシルベンゼンス
ルホン酸Na2.0gを40℃の温度で混合した。以下
実施例1と同様に架橋ポリアクリル酸Na12gを
加え、かゆ状の含水ゲル分散系を得、更に塩化ビ
ニール管に充填した材を得た。 この材の相変化温度、潜熱蓄熱量を測定したと
ころ、それぞれ11℃,38cal/gであり、蓄冷材
として有効であることが判つた。 次にこの材の耐久性を調べる為に、30℃恒温水
槽、及び2〜3℃にコントロールされた冷水槽に
各々60minずつ交互に浸漬して、融解、凝固のサ
イクルを繰り返した。200サイクル経過後、取り
出して相変化温度、潜熱蓄熱量を測定したところ
各々11℃,34cal/gであり、試験前とほとんど
変わらず、耐久性に優れていた。 比較例 6 実施例8に於いて、ドデシルベンゼンスルホン
酸Naを添加しない材について同様の耐久性試験
を行なつた。50サイクル経過後の材を取り出し相
変化温度を測定したが、相変化が起こらず、測定
不能であつた。
[Table] This is a summary of the amount of heat storage.
Example 7 In Example 1, cross-linked polyvinyl alcohol-based super absorbent resin was used instead of cross-linked polyacrylic Na.
KI Gel-201 (manufactured by Clarei Soprene Chemical Co., Ltd.)
20 Metsuyupas powder, distilled water absorption capacity approximately 200 times) 14
g was added. A porridge-like hydrogel dispersion system similar to that in Example 1 was obtained. Durability tests were conducted in the same manner below. The amount of heat storage after 1000 cycles is 47.0 cal/g,
In addition, the phase change temperature was 30°C, which was almost unchanged compared to before the test, indicating excellent durability. Example 8 Na 2 SO 4 176g, Na 2 B 4 O 7・10H 2 O 14g,
62 g of NaCl, 224 g of distilled water and 2.0 g of Na dodecylbenzenesulfonate were mixed at a temperature of 40°C. Thereafter, 12 g of crosslinked polyacrylic acid Na was added in the same manner as in Example 1 to obtain a porridge-like hydrogel dispersion system, and a material filled in a vinyl chloride pipe was obtained. When the phase change temperature and latent heat storage amount of this material were measured, they were 11°C and 38 cal/g, respectively, and it was found that it is effective as a cold storage material. Next, in order to examine the durability of this material, it was alternately immersed in a 30°C constant temperature water bath and a cold water bath controlled at 2 to 3°C for 60 minutes each to repeat the cycle of melting and solidification. After 200 cycles, it was taken out and the phase change temperature and amount of latent heat storage were measured, and they were 11°C and 34 cal/g, respectively, which were almost the same as before the test, indicating excellent durability. Comparative Example 6 In Example 8, a similar durability test was conducted on a material to which Na dodecylbenzenesulfonate was not added. After 50 cycles, the material was taken out and the phase change temperature was measured, but no phase change occurred and measurement was impossible.

Claims (1)

【特許請求の範囲】[Claims] 1 硫酸ナトリウム10水塩、四ホウ酸ナトリウム
10水塩、水不溶性高吸水性樹脂および有機スルホ
ン酸またはその塩若しくは硫酸エステル又はその
塩からなる蓄熱材組成物。
1 Sodium sulfate decahydrate, sodium tetraborate
A heat storage material composition comprising a 10-hydrate salt, a water-insoluble superabsorbent resin, and an organic sulfonic acid or its salt or a sulfuric acid ester or its salt.
JP1337282A 1982-02-01 1982-02-01 Thermal energy storage material composition Granted JPS58132075A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1337282A JPS58132075A (en) 1982-02-01 1982-02-01 Thermal energy storage material composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1337282A JPS58132075A (en) 1982-02-01 1982-02-01 Thermal energy storage material composition

Publications (2)

Publication Number Publication Date
JPS58132075A JPS58132075A (en) 1983-08-06
JPS6356919B2 true JPS6356919B2 (en) 1988-11-09

Family

ID=11831252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1337282A Granted JPS58132075A (en) 1982-02-01 1982-02-01 Thermal energy storage material composition

Country Status (1)

Country Link
JP (1) JPS58132075A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3479109B2 (en) * 1993-02-12 2003-12-15 住化プラステック株式会社 Thermal storage material composition and method for producing the same
JP2006225474A (en) * 2005-02-16 2006-08-31 Sk Science Kk Heat storage material

Also Published As

Publication number Publication date
JPS58132075A (en) 1983-08-06

Similar Documents

Publication Publication Date Title
FI64808C (en) MATERIAL FOER LAGRING AV VAERMEENERGI
CN104817998A (en) Solid-solid phase change energy storage hydrogel with stable shape and preparation method thereof
CN110114436A (en) Cold crystallization material and the method that cold crystallization is utilized in heat storage
Li et al. Preparation, characterization, and modification of sodium acetate trihydrate-urea binary eutectic mixtures as phase change material
Guo et al. Synthesis and thermal energy storage properties of a calcium-based room temperature phase change material for energy storage
CN106318330A (en) Preparation method of phase-change energy storage material and phase-change energy storage material
US4272392A (en) Hydrated Mg(NO3)2 /MgCl2 reversible phase change compositions
JPS5929998A (en) Heat accumulating material and heat exchange method with the material
US4272390A (en) Hydrated CaCl2 reversible phase change compositions with nucleating additives
JPS6356919B2 (en)
US4272391A (en) Hydrated Mg(NO3)2 reversible phase change compositions
US4273666A (en) Hydrated Mg(NO3)2 reversible phase change compositions
JPS5947287A (en) Magnesium nitrate-magnesium chloride hydration reversible phase changing composition
JP2000273446A (en) Gelling agent for cold reserving material, gel and gel- like cold reserving material
Wang et al. Preparation and characterization of a form-stable phase change hydrogel for heat-protective clothing
JP2013116947A (en) Powder mixture for coolant, and coolant
JPS5947239B2 (en) Latent heat storage material
Ding et al. Study of magnesium nitrate hexahydrate and magnesium chloride hexahydrate mixture as phase change material
KR0150063B1 (en) Heat storage material
US4271029A (en) Hydrated Mg(NO3)2 reversible phase change compositions
JPS6043388B2 (en) heat storage material
CN103881661B (en) Phase-change energy storage medium and preparation method thereof
JPS604583A (en) Latent thermal energy storage material
Sahu et al. A Review on Thermal Properties of Building Material Containing PCMs
JPS588712B2 (en) Heat storage agent composition