JPS6356810B2 - - Google Patents

Info

Publication number
JPS6356810B2
JPS6356810B2 JP1906183A JP1906183A JPS6356810B2 JP S6356810 B2 JPS6356810 B2 JP S6356810B2 JP 1906183 A JP1906183 A JP 1906183A JP 1906183 A JP1906183 A JP 1906183A JP S6356810 B2 JPS6356810 B2 JP S6356810B2
Authority
JP
Japan
Prior art keywords
melting point
layer
filter element
fiber
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1906183A
Other languages
Japanese (ja)
Other versions
JPS59145013A (en
Inventor
Hisayuki Takigawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP1906183A priority Critical patent/JPS59145013A/en
Publication of JPS59145013A publication Critical patent/JPS59145013A/en
Publication of JPS6356810B2 publication Critical patent/JPS6356810B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はフイルターエレメント構成素材として
用いる合成繊維をエレクトレツト化することによ
り、低い圧力損失で高い除塵率を得ることができ
るエレクトレツトカーフイルターエレメントの構
成に関するものである。 従来のカーフイルターエレメントは繊維デニー
ルを厚み方向で変化させた繊維層と樹脂付着量と
を変化させて密度勾配を付与したものが主流とな
つている。この種のカーフイルターエレメントは
カード機によるウエブ形成時の紡出限界により、
現状では1デニール以下の繊維が紡出できない
為、プレスにより密度上限を計つてもポアサイズ
はせいぜい50ミクロンより下がらず、湿式タイプ
のものに比べ除塵率が劣る。また湿式タイプや
紙フイルターエレメントは密度勾配や気孔を粗く
することができず、除塵率は良好であつても粉塵
保持容量が乾式不織布フイルターエレメントに比
べて大巾に劣るという欠点がある。 本発明は上記相反する問題点を解消する新規な
るカーフイルターエレメントを提供するものであ
る。即ち繊維間間隙に形成される気孔径を小さく
出来ない乾式不織布カーフイルターエレメント
を、エレクトレツト化することにより、電気的な
凝集力を付加し、従来の湿式によるフイルターエ
レメントや紙フイルターエレメント以上の除塵
率を圧力損失を高めずに向上せしめてエレクトレ
ツトカーフイルターエレメントを構成するもので
ある。 次に本発明の構成にかかる合成繊維よりなる不
繊布フイルターエレメントのエレクトレツト化に
ついて説明すると、上流層から下流層側に向つて
エレクトレツト化し易い低融点ポリエステル繊維
の混率を順次高めた合成繊維層又はこれに予め機
械的結合処理を施した不織布繊維層を150〜180℃
に加熱し、その状態で間隙5mm以内、電圧
10KV、時間約5分間処理を行う。間隙が小さい
程、又時間が長い程、或は不織布繊維層の湿度が
高い程エレクトレツト化され易い。合成樹脂や合
成繊維の場合その融点が低い程分子間が活性化し
易くエレクトレツト化し易い傾向にある。 本発明は上記合成繊維の特性を有効に利用し、
上流層から下流層に向つてエレクトレツト化し易
い低融点ポリエステル繊維の混率を高めると共に
熱加圧による上記低融点ポリエステル繊維の圧着
に伴う密度の上昇と更に繊度を小さくすることに
よる間隙減少の組合せにより、圧力損失は従来と
同等以上で、除塵率は湿式不織布或は紙以上の
カーフイルターエレメントを形成することができ
た。 また内燃機関は水分を非常にきらい、従来、か
かる用途に用いられるフイルターには製造に際し
吸水性のレーヨンを使用している関係上、撥水処
理、油含浸処理等何らかの後処理がされている
が、本発明では構成繊維が吸湿性に乏しいポリエ
ステル系合成繊維で形成されており、接着剤を含
有しない為、含水率が非常に少なく、また撥水処
理を必要としないカーフイルターエレメントとし
て理想的なものとなる。 次に本発明の1実施例を図面に従つて詳細に説
明する。 上流層としてm.p.=250〜260℃の高融点ポリエ
ステル繊維13de′×51mm80%、m.p.=200〜230℃
のポリエステル繊維23de′×51mm10%、m.p.=
150〜180℃の低融点ポリエステル繊維33de′×51
mm10%との混合繊維を用いて目付80g/m2のカー
ドウエブを形成し、同じく中間層としてm.p.=
250〜260℃の高融点ポリエステル繊維12de′×51
mm40%、m.p.=200〜230℃のポリエステル繊維2
2de′×51mm40%、m.p.=150〜180℃の低融点ポリ
エステル繊維33de′×51mm20%との混合繊維を用
いて目付100g/m2のカードウエブを形成する。
更に下流層としてm.p.=250〜260℃の高融点ポリ
エステル繊維10.5de′×51mm10%、m.p.=200〜
230℃のポリエステル繊維20.5de′×51mm60%、
m.p.=150〜180℃の低融点ポリエステル繊維3
3de′×51mm30%との混合繊維を用いて目付100
g/m2のカードウエブを形成する。 第1図はこの様にして形成されたカードウエブ
の1部拡大図を示し、1は融点250〜260℃の高融
点ポリエステル繊維、2は融点200〜230℃のポリ
エステル繊維、3は融点が150〜180℃の低融点ポ
リエステル繊維である。 次に上記各配合のカードウエブを積層し、下流
層側より打込数40p/cm2、打込深さ12mmの条件に
てニードルパンチ加工を施した後、上、下のパン
チング板にて厚さが制御できる温度150℃に調整
された乾燥機にて熱処理を行ない、m.p.が150〜
180℃の低融点ポリエステル繊維3表面を溶融し、
構成繊維間相互を接合、固着すると共にパンチン
グ板にて厚さを2mmに加圧する。 次に間隙3mm、電圧10KV、で5分間エレクト
レツト処理してエレクトレツトカーフイルターエ
レメントを形成する。 尚、上記本発明のエレクトレツトカーフイルタ
ーエレメントの厚さは0.5〜3mmの厚さの範囲で
調節することができる。また構成繊維としてはポ
リエステル系合成繊維を用い、エレクトレツト化
繊維として用いる低融点ポリエステル繊維Bの上
流層、中流層、下流層間の各配合割合は1:1:
2〜1:8:12の範囲で配合することが好まし
い。また下流層は配合割合を高め溶融樹脂化する
ことでエレクトレツト化を高めることができる。
またエレクトレツト化繊維としてはこの他ポリプ
ロピレン、ポリ塩化ビニル系ポリエチレン等の繊
維を単独又は混合して用いることも可能であり、
クロスウエブの他、ランダムウエブで形成しても
よい。 本発明は上記の様に構成されており、その実用
テストに際しては、供給された粉塵は先ず、上流
層で篩い分け法により大きな粉塵が捕集され、次
に中間層にて上流層で捕集されない小さな粉塵が
篩い分け法とエレクトレツト化された静電気的凝
集力により捕集され、従来乾式不織布製カーフイ
ルターエレメントでは捕集されなかつた微細塵
を、下流層のエレクトレツト化された静電気的凝
集力と緻密化により完全捕集が行われる。上記の
如く上流層から下流層にかけて段階的にポリエス
テル合成繊維を物理的、化学的変化させ、各層に
於て均一に粉塵を捕集し、カーフイルターにとつ
て除塵率の次に重要な特性である粉塵保持容量を
大巾に向上させ10万Kmメンテナンスフリーの画期
的なカーフイルターエレメントを完成することが
できた。 次に従来のカーフイルターエレメントとの性能
比較テストを行ない得られた結果を第2図に示
す。図中aは本発明によるエレクトレツトカーフ
イルターエレメント、bは乾式不織布製カーフイ
ルターエレメント、cは紙製カーフイルターエ
レメント、dは紙製カーフイルターエレメント
に撥水剤兼用吸着剤を含浸させたカーフイルター
エレメントである。上記各々のフイルター材の初
期圧力損失を1m/sec時40mmH2O前後に統一
(油含浸タイプは含浸前のもの)した後、ジグザ
グ状に有効過面積が2500cm2になる様に成形加工
し、フイルター面風速0.5m/sec、粉塵として
JIS第8種粉体、粉塵濃度300mg/m2供給し、粉塵
20g供給後の除塵率を初期除塵率、圧力損失が
200mmH2Oまで増加した値をフルライフ除塵率、
圧力損失が200mmH2Oまで増加した時の有効過
面積部が捕集した粉塵量を単位m2換算した粉塵保
持容量の3点で性能比較を行つた結果を次表に示
す。
The present invention relates to the construction of an electret filter element that can obtain a high dust removal rate with low pressure loss by converting the synthetic fiber used as the filter element's constituent material into an electret. The mainstream of conventional car filter elements is a fiber layer in which the fiber denier is varied in the thickness direction and a density gradient is imparted by varying the amount of resin deposited. This type of car filter element is due to the spinning limit when forming a web using a card machine.
Currently, it is not possible to spin fibers of less than 1 denier, so even if the upper limit of density is determined by pressing, the pore size will not fall below 50 microns at most, and the dust removal rate is inferior to that of the wet type. In addition, wet type and paper filter elements cannot make the density gradient or pores coarse, and even if the dust removal rate is good, they have the disadvantage that the dust retention capacity is significantly inferior to that of dry type nonwoven filter elements. The present invention provides a new car filter element that solves the above contradictory problems. In other words, by converting the dry non-woven car filter element, which cannot reduce the pore size formed between the fibers, to an electret, electrical cohesive force is added, and the dust removal is better than that of the conventional wet filter element or paper filter element. This is an electret filter element that improves the efficiency without increasing pressure loss. Next, to explain the electrification of the nonwoven filter element made of synthetic fibers according to the structure of the present invention, the synthetic fiber layers have a blending ratio of low melting point polyester fibers that are easily electrified from the upstream layer to the downstream layer. Or add a nonwoven fiber layer that has been mechanically bonded in advance to 150 to 180℃.
In that state, the gap is within 5 mm, and the voltage is
Process at 10KV for approximately 5 minutes. The smaller the gap, the longer the time, or the higher the humidity of the nonwoven fiber layer, the easier it is to become electret. In the case of synthetic resins and synthetic fibers, the lower the melting point, the more easily intermolecular activation occurs and the easier it is to become electret. The present invention effectively utilizes the characteristics of the synthetic fibers mentioned above,
By increasing the blending ratio of low melting point polyester fibers that are easy to electret from the upstream layer to the downstream layer, increasing the density due to the compression of the low melting point polyester fibers by heat pressurization, and reducing the gap by further reducing the fineness. It was possible to form a car filter element with a pressure loss equal to or higher than that of conventional products and a dust removal rate higher than that of wet nonwoven fabric or paper. In addition, internal combustion engines are extremely sensitive to moisture, and conventionally, filters used for such purposes have been subjected to some kind of post-treatment such as water-repellent treatment or oil-impregnating treatment because water-absorbing rayon is used in their manufacture. In the present invention, the constituent fibers are made of polyester synthetic fibers with poor hygroscopicity, and since they do not contain adhesives, the water content is extremely low, making them ideal as car filter elements that do not require water repellent treatment. Become something. Next, one embodiment of the present invention will be described in detail with reference to the drawings. High melting point polyester fiber 13de'×51mm80% with mp=250~260℃ as upper layer, mp=200~230℃
polyester fiber 23de′×51mm10%, mp=
150~180℃ low melting point polyester fiber 33de'×51
A card web with a basis weight of 80 g/m 2 was formed using fibers mixed with mm10%, and mp =
250~260℃ high melting point polyester fiber 12de'×51
mm40%, mp=200~230℃ polyester fiber 2
A carded web with a basis weight of 100 g/m 2 was formed using a fiber mixture of 40% of 2de'×51mm and 20% of low melting point polyester fibers of 33de'×51mm and mp=150 to 180°C.
Furthermore, as a downstream layer, high melting point polyester fiber 10.5 de' x 51 mm 10% with mp = 250 ~ 260 °C, mp = 200 ~
230℃ polyester fiber 20.5de′×51mm60%,
mp=150~180℃ low melting point polyester fiber 3
Fabric weight: 100 using mixed fiber with 3de′×51mm30%
A card web of g/m 2 is formed. Figure 1 shows an enlarged view of a part of the carded web formed in this way, 1 is a high melting point polyester fiber with a melting point of 250 to 260°C, 2 is a polyester fiber with a melting point of 200 to 230°C, and 3 is a polyester fiber with a melting point of 150°C. It is a low melting point polyester fiber of ~180℃. Next, the card webs with each of the above compositions were laminated and needle punched from the downstream side at a number of punches of 40 p/cm 2 and a punch depth of 12 mm. Heat treatment is performed in a dryer adjusted to a temperature of 150℃ that can control the temperature, and the MP is 150~150℃.
Melt 3 surfaces of low melting point polyester fibers at 180℃,
The constituent fibers are bonded and fixed together and pressed to a thickness of 2 mm using a punching plate. Next, an electret treatment is performed for 5 minutes at a gap of 3 mm and a voltage of 10 KV to form an electret filter element. The thickness of the electric car filter element of the present invention can be adjusted within the range of 0.5 to 3 mm. In addition, polyester synthetic fibers are used as the constituent fibers, and the blending ratio between the upstream layer, middle layer, and downstream layer of the low melting point polyester fiber B used as the electrified fiber is 1:1:
It is preferable to mix in the range of 2 to 1:8:12. Furthermore, the downstream layer can be made more electrified by increasing the blending ratio and turning it into a molten resin.
In addition, as the electrified fiber, it is also possible to use other fibers such as polypropylene, polyvinyl chloride polyethylene, etc. alone or in combination.
In addition to the cross web, a random web may be used. The present invention is constructed as described above, and in its practical test, the supplied dust is first collected by a sieving method in the upstream layer, and then is collected in the intermediate layer and the upstream layer. The fine dust that was not collected by conventional dry non-woven car filter elements is collected by the sieving method and the electretted electrostatic cohesive force in the downstream layer. Complete collection is achieved through force and densification. As mentioned above, the polyester synthetic fiber is changed physically and chemically in stages from the upstream layer to the downstream layer, and dust is collected uniformly in each layer, making it the most important property for car filters after dust removal rate. We were able to complete a revolutionary car filter element that significantly increases the dust retention capacity and is maintenance-free for 100,000 km. Next, a performance comparison test with a conventional car filter element was conducted, and the results obtained are shown in FIG. In the figure, a shows an electret car filter element according to the present invention, b shows a dry non-woven fabric car filter element, c shows a paper car filter element, and d shows a paper car filter element impregnated with a water repellent and adsorbent. It is an element. After standardizing the initial pressure loss of each of the above filter materials to around 40 mmH 2 O at 1 m/sec (the oil-impregnated type is the one before impregnation), they were molded in a zigzag shape so that the effective overarea was 2500 cm 2 . Filter surface wind speed 0.5m/sec, as dust
JIS Class 8 powder, dust concentration 300mg/ m2 supplied, dust
The dust removal rate after supplying 20g is the initial dust removal rate and the pressure loss is
Full life dust removal rate with increased value up to 200mmH 2 O,
The following table shows the results of a performance comparison at three points: dust retention capacity, which is the amount of dust collected by the effective over-area section converted to m 2 when the pressure drop increases to 200 mmH 2 O.

【表】 上表の如く本発明のエレクトレツトカーフイル
ターエレメントは除塵率、粉塵保持容量に於て特
にすぐれ、自動車等内燃機関のメンテナンスフリ
ーに寄与するところ大で燃比を向上させると共に
保全工数が低減される等すぐれた効果を有する発
明である。
[Table] As shown in the table above, the electrified car filter element of the present invention is particularly excellent in dust removal rate and dust retention capacity, and greatly contributes to maintenance-free internal combustion engines such as automobiles, improving the fuel ratio and reducing maintenance man-hours. This invention has excellent effects such as:

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に用いる繊維層の一部拡大図、
第2図は本発明のエレクトレツトカーフイルター
エレメント及び従来カーフイルターエレメントの
性能比較曲線図である。 1……融点250〜260℃の高融点ポリエステル繊
維、2……融点200〜230℃のポリエステル繊維、
3……融点150〜180℃の低融点ポリエステル繊
維。
FIG. 1 is a partially enlarged view of the fiber layer used in the present invention;
FIG. 2 is a performance comparison curve diagram of the electret car filter element of the present invention and the conventional car filter element. 1... High melting point polyester fiber with a melting point of 250 to 260°C, 2... Polyester fiber with a melting point of 200 to 230°C,
3...Low melting point polyester fiber with a melting point of 150 to 180°C.

Claims (1)

【特許請求の範囲】[Claims] 1 上流層、中間層、下流層を夫々融点が250〜
260℃の高融点ポリエステル繊維を主体として、
それよりも低い融点200〜230℃のポリエステル繊
維、融点150〜180℃の低融点ポリエステル繊維と
の混合繊維を用いて形成した繊維層の積層体から
なり、かつ上記各繊維層間の低融点ポリエステル
繊維の配合比が上流層から下流層にかけて1:
1:2〜1:8:12となし、熱加圧により一体に
固着し、エレクトレツト加工してなることを特徴
とするエレクトレツトカーフイルターエレメン
ト。
1 The upper layer, middle layer, and lower layer each have a melting point of 250~
Mainly made of polyester fiber with a high melting point of 260℃,
Consisting of a laminate of fiber layers formed using polyester fibers with a lower melting point of 200 to 230°C and mixed fibers with low melting point polyester fibers with a melting point of 150 to 180°C, and the low melting point polyester fibers between each of the above fiber layers. The blending ratio is 1: from the upstream layer to the downstream layer.
An electret car filter element characterized by having a ratio of 1:2 to 1:8:12, fixed together by heat and pressure, and subjected to electret processing.
JP1906183A 1983-02-07 1983-02-07 Electret car filter element Granted JPS59145013A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1906183A JPS59145013A (en) 1983-02-07 1983-02-07 Electret car filter element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1906183A JPS59145013A (en) 1983-02-07 1983-02-07 Electret car filter element

Publications (2)

Publication Number Publication Date
JPS59145013A JPS59145013A (en) 1984-08-20
JPS6356810B2 true JPS6356810B2 (en) 1988-11-09

Family

ID=11988913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1906183A Granted JPS59145013A (en) 1983-02-07 1983-02-07 Electret car filter element

Country Status (1)

Country Link
JP (1) JPS59145013A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61181510A (en) * 1985-02-06 1986-08-14 Toray Ind Inc Adsorbent
JPS61230711A (en) * 1985-05-15 1986-10-15 Toray Ind Inc High performance filter element
JPH0675659B2 (en) * 1985-07-05 1994-09-28 株式会社日立製作所 Manufacturing method of molded body for air purifying function filter
USRE35206E (en) * 1992-03-26 1996-04-16 The University Of Tennessee Research Corporation Post-treatment of nonwoven webs
US5443606A (en) * 1992-03-26 1995-08-22 The University Of Tennessee Reserch Corporation Post-treatment of laminated nonwoven cellulosic fiber webs
US5244482A (en) * 1992-03-26 1993-09-14 The University Of Tennessee Research Corporation Post-treatment of nonwoven webs
US5441550A (en) * 1992-03-26 1995-08-15 The University Of Tennessee Research Corporation Post-treatment of laminated nonwoven cellulosic fiber webs

Also Published As

Publication number Publication date
JPS59145013A (en) 1984-08-20

Similar Documents

Publication Publication Date Title
CA2282856C (en) Air filter
US4961974A (en) Laminated filters
US4093437A (en) Air filter material
DE10221694B4 (en) Multi-layer filter construction, use of such a multi-layer filter assembly, dust filter bag, bag filter bag, pleated filter, surface exhaust filter and air filter for motor vehicles
EP1208900B1 (en) Process of manufacturing a triboelectrically charged nonwoven
CN103537142A (en) Needling static filter cotton and preparation method thereof
CN210264989U (en) Filter element assembly of fuel filter
CN110205749B (en) Production process of nanofiber composite filter paper
JPS6356810B2 (en)
JP3138016B2 (en) Filter media
US4904523A (en) Polyester heat bonded product
JP6006476B2 (en) High efficiency non-woven filter media for large particle size dust
JP3445372B2 (en) Charged filter
EP3781286B1 (en) High burst strength wet-laid nonwoven filtration media and its use
CN203507682U (en) Needle-punched static filtering cotton
CN111741803A (en) Filter medium
DE19804940B4 (en) Layered textile composite and process for its production
JPH0363406B2 (en)
CN213725293U (en) Filter material substrate and ultra-clean high-flux filter material
CN112973281B (en) Multilayer superfine fiber filtering material and preparation method thereof
JPS61281454A (en) Separator for battery
KR20150092506A (en) Filter media for fuel-water separation and manufacturing method thereof
JPH0779933B2 (en) Air filter
JP3573861B2 (en) Filter material for air cleaner and method for producing the same
JPH0326902Y2 (en)