JPS6356653B2 - - Google Patents

Info

Publication number
JPS6356653B2
JPS6356653B2 JP13254081A JP13254081A JPS6356653B2 JP S6356653 B2 JPS6356653 B2 JP S6356653B2 JP 13254081 A JP13254081 A JP 13254081A JP 13254081 A JP13254081 A JP 13254081A JP S6356653 B2 JPS6356653 B2 JP S6356653B2
Authority
JP
Japan
Prior art keywords
resin
wire
peek
coating
insulated wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13254081A
Other languages
Japanese (ja)
Other versions
JPS5834512A (en
Inventor
Sueji Chahata
Keiji Nakano
Gunzo Koyama
Michio Koike
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Cable Works Ltd
Original Assignee
Fujikura Cable Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Cable Works Ltd filed Critical Fujikura Cable Works Ltd
Priority to JP13254081A priority Critical patent/JPS5834512A/en
Publication of JPS5834512A publication Critical patent/JPS5834512A/en
Publication of JPS6356653B2 publication Critical patent/JPS6356653B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Organic Insulating Materials (AREA)
  • Processes Specially Adapted For Manufacturing Cables (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は溶剤を使用することなしに押出法に
よつて電気機器に使用される巻線用絶縁電線を得
るための新規な製造方法に係るものである。 従来の通常の絶縁電線を製造する方法はホルマ
ール樹脂、ポリエステル樹脂、ポリエステルイミ
ド樹脂、ポリアミドイミド樹脂、ポリイミド樹
脂、ポリアミド樹脂等をベース樹脂とし、これに
フエノール樹脂、メラミン樹脂、イソシアネート
樹脂、アニリン樹脂、等の硬化剤を配合して有機
溶剤の如き揮発性の分散剤に溶解せしめて絶縁ワ
ニスとなし、これを導体上に5〜10回塗布焼付け
て製造している。 この方法では塗膜を形成するための樹脂として
溶剤に溶解するものなら如何ようなものでも使用
することができ、又、数種類の樹脂を混合して使
用する場合も共通溶剤によつて、均一に分散でき
ることと、マグネツトワイヤーの如き比較的薄い
皮膜を導体上に形成することができるので長くこ
の方法が実施されている。 しかしこの方法は製造工程中にワニスの溶剤が
蒸発により塗膜から除去されるので、溶剤の損失
が極めて大きく、近時は大気汚染による公害問題
も提起されるようになつてきた。 更に、ワニス中に含有している塗膜形成の有効
成分たる樹脂の含有量は少量であるため1回の塗
装により形成される皮膜厚は極めて薄く、所定の
膜厚を得るためには多数回の塗装を繰り返す必要
があることと、この工程中の塗膜の焼付けに際
し、内部に塗装されたワニスの固化乾燥が完全で
なくワニスが残存している状態でその表面にワニ
スの塗装焼付けが行なわれるので、内部塗膜の中
に残存する溶剤又は分散剤が蒸発して、表面側の
塗膜にピンホールや気泡を発生し易い欠点があつ
た。 一方押出機により高融点の合成樹脂を導体上に
押出被覆し、マグネツトワイヤとする方法は、上
記したような従来のエナメル焼付方法固有の問題
をほぼ改善することができるが、熱可塑性樹脂を
被覆材料として使用するために、従来のエナメル
焼付電線の中でも、耐熱性のあるポリエステルイ
ミド線、ポリアミドイミド線と比較すると、化学
的架橋点がないために熱軟化温度がやや劣るなど
の欠点があつた。 しかし最近では分子構造的に対象性が良く、モ
ノマー単位に豊富なベンゼン核を持つた耐熱性熱
可塑性樹脂としてポリエーテルエーテルケトン
(英国、ICI社製、以下PEEKという)が開発さ
れ、これを導体上に皮膜厚45μのエナメル線とし
て押出被覆したエナメル線皮膜の熱軟化温度を測
定したところ、ポリエステルイミド線、ポリアミ
ドイミド線とポリイミド線との中間位の比較的高
い熱軟化温度を有することが確認された。しか
し、このPEEKは、現在のところ工業製品として
実用化するには価格も高くかつ押出加工性が悪い
という短所があり、他方エンジニアリングプラス
チツクの中では押出加工性が良好で、かつ湿熱特
性の良好な樹脂としてポリエーテルサルフオン
(以下PESという)があり、これはPEEKに比較
すると価格も安く、かつ押出加工性が良いが、エ
ナメル線とした場合には、PEEKよりも大分熱軟
化温度が低い欠点がある。 この発明は以上の諸点を考えて、PEEKの長
所、短所及びPESの長所、短所を綜合して新しい
絶縁電線を生み出したもので、ポリエーテルサル
フオンに、構造式 で示されるポリエーテルエーテルケトンを添加し
た混和物を導体上に押出被覆する絶縁電線の製造
方法である。 なお本発明の実施に当つては前記ポリエーテル
サルフオンとポリエーテルエーテルケトンとを重
量比で60:40〜40:60の範囲で混合したものが押
出し加工性及び耐熱性の点で好ましい。即ちこの
範囲を外れてポリエーテルサルフオンが少なけれ
ば押出し加工性が悪くなり逆に多過ぎれば、耐熱
性が低くなる。 次に実施例について述べる。 例 1 直径1.0mmの導体上にPESとPEEKとを重量比
で50:50の割合で混和した混和物を、45mm押出被
覆機を用い、押出機のヘツドの温度430℃線速200
m/minで41μの被覆厚を押出被覆してこの発明
の絶縁電線を製造した。 例 2 PESとPEEKとを重量比で60:40の割合で混和
した混合物を用い実施例1と同様な条件でこの発
明の絶縁電線を得た。 例 3 PESとPEEKとを重量比で40:60の割合で混和
した混和物を用い実施例1と同様な条件でこの発
明の絶縁電線を得た。 比較例 1 PESのみを用いて実施例1と同様な条件で絶縁
電線を製造した。 比較例 2 PEEKのみを用いて実施例1と同様な条件で絶
縁電線を製造した。 このような実施例及び比較例の絶縁電線につい
て比較すれば次表の通りである。
This invention relates to a new manufacturing method for obtaining insulated wire for winding used in electrical equipment by extrusion without using a solvent. The conventional method for manufacturing insulated wires uses formal resin, polyester resin, polyesterimide resin, polyamideimide resin, polyimide resin, polyamide resin, etc. as a base resin, and then adds phenol resin, melamine resin, isocyanate resin, aniline resin, etc. The insulating varnish is prepared by blending a hardening agent such as the above and dissolving it in a volatile dispersant such as an organic solvent, and then coating and baking the insulating varnish 5 to 10 times on the conductor. In this method, any resin that dissolves in a solvent can be used as the resin for forming the coating film, and even when several types of resin are mixed, they can be uniformly coated using a common solvent. This method has been practiced for a long time because of its ability to be dispersed and the ability to form relatively thin films on conductors, such as magnet wires. However, in this method, the solvent of the varnish is removed from the coating film by evaporation during the manufacturing process, resulting in extremely large losses of the solvent, and recently pollution problems due to air pollution have also been raised. Furthermore, since the content of resin, which is an active ingredient in coating film formation, contained in the varnish is small, the coating thickness formed by one coating is extremely thin, and it takes many coats to obtain the desired coating thickness. It is necessary to repeat the painting process, and when baking the paint film during this process, the varnish painted on the inside is not completely solidified and dried, and the varnish is baked on the surface with the varnish remaining. As a result, the solvent or dispersant remaining in the internal coating film evaporates, resulting in the formation of pinholes and bubbles in the coating film on the surface side. On the other hand, the method of extruding a high melting point synthetic resin onto a conductor using an extruder to form a magnet wire can almost eliminate the problems inherent in the conventional enamel baking method as described above. Compared to the heat-resistant polyester-imide wire and polyamide-imide wire, it has disadvantages such as a slightly lower heat softening temperature due to the lack of chemical cross-linking points, because it is used as a coating material. Ta. However, recently, polyether ether ketone (manufactured by ICI, UK, hereinafter referred to as PEEK) has been developed as a heat-resistant thermoplastic resin with good molecular structure symmetry and abundant benzene nuclei in the monomer unit, and it is used as a conductor. When we measured the heat softening temperature of the enameled wire coating extruded as an enameled wire with a coating thickness of 45μ, we confirmed that it had a relatively high heat softening temperature between polyesterimide wire, polyamideimide wire, and polyimide wire. It was done. However, PEEK currently has the drawbacks of being too expensive and having poor extrusion processability for practical use as an industrial product; Polyether sulfon (hereinafter referred to as PES) is used as a resin, and it is cheaper than PEEK and has good extrusion processability, but when used as an enameled wire, it has the disadvantage of a much lower thermal softening temperature than PEEK. There is. Considering the above points, this invention created a new insulated wire by combining the advantages and disadvantages of PEEK and PES. This is a method for manufacturing an insulated wire, in which a conductor is extruded and coated with a polyetheretherketone-added mixture shown in the following. In carrying out the present invention, a mixture of the polyether sulfone and polyether ether ketone in a weight ratio of 60:40 to 40:60 is preferred in terms of extrusion processability and heat resistance. That is, if the amount of polyether sulfon is less than this range, the extrusion processability will be poor, and if it is too much, the heat resistance will be low. Next, examples will be described. Example 1 A mixture of PES and PEEK mixed at a weight ratio of 50:50 was coated on a conductor with a diameter of 1.0 mm using a 45 mm extrusion coating machine, at a temperature of 430 °C and a linear speed of 200 °C at the head of the extruder.
The insulated wire of this invention was manufactured by extrusion coating to a coating thickness of 41 μm at m/min. Example 2 An insulated wire of the present invention was obtained under the same conditions as in Example 1 using a mixture of PES and PEEK in a weight ratio of 60:40. Example 3 An insulated wire of the present invention was obtained under the same conditions as in Example 1 using a mixture of PES and PEEK in a weight ratio of 40:60. Comparative Example 1 An insulated wire was manufactured under the same conditions as in Example 1 using only PES. Comparative Example 2 An insulated wire was manufactured under the same conditions as in Example 1 using only PEEK. A comparison of the insulated wires of the example and comparative example is shown in the following table.

【表】 (注) ◎優 ○良 △可 ×難
上記表でわかるようにこの発明の実施例の各絶
縁電線は成線作業性がよくしかも殆んどPEEKに
近い性能を発揮し得るものである。
[Table] (Note) ◎ Excellent ○ Good △ Fair × Difficult As can be seen from the table above, each insulated wire of the embodiments of this invention has good wire forming workability and can exhibit performance almost similar to PEEK. be.

Claims (1)

【特許請求の範囲】 1 ポリエーテルサルフオンに、構造式 で示されるポリエーテルエーテルケトンを添加し
た混和物を導体上に押出被覆することを特徴とす
る絶縁電線の製造方法。
[Claims] 1 Polyether sulfone has the structural formula 1. A method for producing an insulated wire, which comprises extruding and coating a conductor with a polyetheretherketone-added mixture represented by the formula.
JP13254081A 1981-08-24 1981-08-24 Method of producing insulated wire Granted JPS5834512A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13254081A JPS5834512A (en) 1981-08-24 1981-08-24 Method of producing insulated wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13254081A JPS5834512A (en) 1981-08-24 1981-08-24 Method of producing insulated wire

Publications (2)

Publication Number Publication Date
JPS5834512A JPS5834512A (en) 1983-03-01
JPS6356653B2 true JPS6356653B2 (en) 1988-11-09

Family

ID=15083662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13254081A Granted JPS5834512A (en) 1981-08-24 1981-08-24 Method of producing insulated wire

Country Status (1)

Country Link
JP (1) JPS5834512A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59202256A (en) * 1983-04-28 1984-11-16 Sumitomo Chem Co Ltd Resin composition
CA1276740C (en) * 1984-09-28 1990-11-20 Lloyd Mahlon Robeson Blends of a biphenyl containing poly(aryl ether sulfone) and a poly(aryl ether ketone)
JPS62129347A (en) * 1985-11-29 1987-06-11 Sumitomo Chem Co Ltd Thermoplastic resin composition with improved chemical resistance
JPS62292853A (en) * 1986-06-12 1987-12-19 Mitsui Toatsu Chem Inc Novel polyether sulfone film
JP4830729B2 (en) * 2006-09-04 2011-12-07 富士電機株式会社 Drawer-type power distribution equipment unit

Also Published As

Publication number Publication date
JPS5834512A (en) 1983-03-01

Similar Documents

Publication Publication Date Title
KR102545341B1 (en) Electrodeposition liquid and method for producing a conductor with an insulating coating using the same
US3100136A (en) Method of making polyethylene-insulated power cables
JPS6356653B2 (en)
US3953649A (en) Self-bonding magnet wire and process of manufacturing same
US2935427A (en) Friction magnet wire
US6136434A (en) High temperature resistant colored enamel wires
US4563369A (en) Titanium chelate modified nylon magnet wire insulation coating
DE1795638A1 (en) Polyimides
JPS633069A (en) Varnish for enameled wire
WO2016153071A1 (en) Insulating film
US3442703A (en) Plural coated electrical conductor
US4588784A (en) Aromatic titanate modified nylon magnet wire insulation coating
US2531169A (en) Method of making insulated electrical conductors
US3497468A (en) Benzonitrile/n-methyl pyrrolidone solvent system for polyamide-imide
JPS5810804B2 (en) Magnet wire
DE1494457A1 (en) Process for the production of insulating coatings on electrical conductors
US2687385A (en) Wire coating composition
JPS59163709A (en) Magnet wire
US855081A (en) Electrically insulating wire and other electrical conductors.
US3544504A (en) Insulating amide-imide polymeric magnetic wire coating composition
US4087578A (en) Heat sealable sheet materials
US4670523A (en) Titanium chelate modified nylon magnet wire insulation coating
JPH0426427Y2 (en)
CN118374224A (en) High-heat-conductivity voltage-resistant insulating paint, preparation method and application
JPH0620528A (en) Thin thickness insulated electric wire