JPS6356639A - Magnification distribution measuring method for copy image - Google Patents

Magnification distribution measuring method for copy image

Info

Publication number
JPS6356639A
JPS6356639A JP20085286A JP20085286A JPS6356639A JP S6356639 A JPS6356639 A JP S6356639A JP 20085286 A JP20085286 A JP 20085286A JP 20085286 A JP20085286 A JP 20085286A JP S6356639 A JPS6356639 A JP S6356639A
Authority
JP
Japan
Prior art keywords
magnification
sample
measuring
image
magnification distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20085286A
Other languages
Japanese (ja)
Inventor
Masanori Ishitani
石谷 優典
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Mita Industrial Co Ltd
Original Assignee
Mita Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mita Industrial Co Ltd filed Critical Mita Industrial Co Ltd
Priority to JP20085286A priority Critical patent/JPS6356639A/en
Publication of JPS6356639A publication Critical patent/JPS6356639A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exposure Or Original Feeding In Electrophotography (AREA)
  • Variable Magnification In Projection-Type Copying Machines (AREA)

Abstract

PURPOSE:To easily find a magnification distribution by measuring edge intervals which are different between forward and backward scans plural times at both ends in both longitudinal and lateral directions and at center positions in a step wherein the intervals of respective lines of a sample are measured while scanning positions are made different. CONSTITUTION:The edge intervals which are different between forward and backward scans are measured at six positions, i.e., both ends R-R, L-L, U-U, and D-D in the (x) and (y) directions and at center positions V-V and H-H. Further, the measurement is performed three times at each position while scanning positions are made different and mean values data are calculated and parts where no measurement is taken are decided and only effective data are left. Then measurement data of a used original are read out and compared with the measurement data on the sample to find the magnification distribution of each part. Thus, the magnification is accurately measured while the whole image is fractionized finely and the magnification distribution of the image is easily and speedily found without using any complex measuring instrument.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は電子写真複写機などで得られる複写画像の倍率
を測定する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for measuring the magnification of a copied image obtained by an electrophotographic copying machine or the like.

(従来技術) 従来から、かかる複写画像が全画面−様の倍率で形成さ
れいるかどうかを測定し、その結果から、複写機などの
光学系や駆動系の精度を調べ評価することが行なわれて
いる。
(Prior Art) Conventionally, it has been carried out to measure whether such a copied image is formed at a full-screen magnification, and to examine and evaluate the accuracy of the optical system and drive system of a copying machine or the like based on the results. There is.

この従来の測定方法としては、次のものが知ら・れてい
る。
The following methods are known as this conventional measurement method.

■JIS1級程度のスケールを原稿として複写し、原稿
としたスケールで画像の両端を計り、倍率を求める。こ
れを縦、横2方向について行なう。
■ Copy a manuscript with a scale of JIS grade 1, measure both ends of the image using the original scale, and find the magnification. This is done in both the vertical and horizontal directions.

■テストチャートに、予め、“+″や゛マ″等のマーク
を入れておぎ、複写画像中のマーク間の距離を計り、テ
ストチャートのマーク間の距離から倍率を求める。
- Put marks such as "+" or "ma" on the test chart in advance, measure the distance between the marks in the copied image, and calculate the magnification from the distance between the marks on the test chart.

ところが、このような従来の方法では、複写画像の前端
と後端の間を計っており、いわば部分的な画像の平均値
としての倍率しか求められない。
However, in such a conventional method, the distance between the front edge and the rear edge of the copied image is measured, and the magnification can only be calculated as an average value of a partial image.

このため、メカニカルに倍率が決定される画像の−様性
、さらには駆動部の安定性を画像面から測定、評価する
ことは不可能であった。ここに、複写の進行方向と直交
方向は光学系のレンズの歪などにより決まり、進行方向
は駆動系の立上がり特性などにより決まる。また、駆動
系の安定性は電気的に測定することは可能であるが、手
間がかかり手軽に行なうことはできない。
For this reason, it has been impossible to measure and evaluate the appearance of an image whose magnification is mechanically determined, as well as the stability of the drive unit, from the image plane. Here, the direction orthogonal to the traveling direction of copying is determined by the distortion of the lens of the optical system, and the traveling direction is determined by the start-up characteristics of the drive system. Further, although it is possible to measure the stability of the drive system electrically, it is time-consuming and cannot be easily performed.

(発明の目的) 本発明は、従来の技術的課題に対処するもので、複雑な
測定機などを用いることなく、特定の画像を用い、複写
画像全体の倍率分布を求め、画像の評価、駆動系の評価
を簡単に行なうことができる複写画像の倍率分布測定法
を提供することを目的とする。
(Objective of the Invention) The present invention addresses the conventional technical problems, and uses a specific image to determine the magnification distribution of the entire copied image without using a complicated measuring device, and evaluates and drives the image. It is an object of the present invention to provide a method for measuring the magnification distribution of copied images that allows easy evaluation of the system.

(発明の構成) 本発明は、所定の線幅で、かつ所定開隔で格子状に画か
れた原稿と、この原稿の複写画像でなるナンブルとの画
像読取りを行ない複写画像の倍率分布を測定する方法で
あって、サンプル作成条件の入力、サンプルのセット状
態と傾きと位置ずれの測定、サンプルの複写倍率の概略
測定、サンプルの各線の間隔の測定、原稿とサンプルの
測定データの比較による倍率分布を求める処理、および
倍率分布の出力表示の各ステップを順次有し、上記サン
プルの各線の間隔を測定するステップでは縦、横両方向
の両端、中央の各箇所において、往復で異なるエツジ間
隔を走査位釘を異ならせて複数回、測定することにある
(Structure of the Invention) The present invention reads an image of an original drawn in a grid pattern with a predetermined line width and a predetermined spacing, and a number consisting of a copied image of this original, and measures the magnification distribution of the copied image. The method includes inputting sample creation conditions, measuring the set state of the sample, its inclination and positional deviation, roughly measuring the copying magnification of the sample, measuring the distance between each line of the sample, and comparing the measured data of the original and the sample to determine the magnification. The process of calculating the distribution and the output display of the magnification distribution are sequentially performed, and the step of measuring the interval between each line of the sample involves scanning different edge intervals in a round trip at both ends and in the center in both the vertical and horizontal directions. It consists in measuring multiple times using different positions.

この測定方法により、画像全体を細かく区分した状態で
倍率を測定することができ、その分布を知ることができ
る。
With this measurement method, it is possible to measure the magnification while dividing the entire image into fine sections, and its distribution can be known.

(実施例) 第1図は本発明の測定方法に使用する原稿(テストチャ
ート)の−例を示す。すなわち、WL槁Aは例えばA4
サイズの大きさの用紙に幅1jlIlの線Bを10M間
隔で格子状に画いたもので、後述するように、本発明で
はこの原稿および、この原稿の複写画II!(サンプル
)の各線の間隔を縦方向の両端(R−R,L−L)おヨ
ヒ中央(V−V)。
(Example) FIG. 1 shows an example of a manuscript (test chart) used in the measuring method of the present invention. In other words, WL A is A4, for example.
Lines B with a width of 1jlIl are drawn in a grid pattern at intervals of 10M on a sheet of paper of the same size.As will be described later, in the present invention, this manuscript and a copy of this manuscript II! (Sample) The distance between each line in the vertical direction is at both ends (R-R, L-L) and at the center (V-V).

横方向の両端(U−U、D−D)および中央(H−H)
の計6箇所について光学走査による画像読取りによる座
標測定を行ない、これに基づぎ画像の倍率分布を求める
Lateral ends (U-U, D-D) and center (H-H)
The coordinates of a total of six locations are measured by image reading using optical scanning, and the magnification distribution of the image is determined based on this.

第2図は座1測定による倍率分布の測定フローを、第3
図は測定のフ〇−を、第4図は処理のフローを示す。以
下、これらに基づいて説明すると、第2図において、ス
テップS1では座標測定装置(図示せず)に対してサン
プル作成条件の入力を行なう。すなわち、使用した原1
(テストチャート)の種別(登録番号など)、原稿サイ
ズ、サンプルサイズ、コピー倍率(指定倍率)、コピ一
方向などを入力する。次に、ステップS5にてサンプル
のセット状態のチェックを行なう。このチェックは入力
された条件により最初の走査座標、つまり第5図に示す
ごとく測定装置の座標軸x−yから最外線までの距離を
2〜30箇所(d1〜d3)にて測定し、サンプルの傾
き、およびX、y方向の位置ずれを測定する。
Figure 2 shows the measurement flow of the magnification distribution by the 1st measurement.
The figure shows the measurement flow, and FIG. 4 shows the processing flow. Hereinafter, an explanation will be given based on these. In FIG. 2, in step S1, sample preparation conditions are input to a coordinate measuring device (not shown). In other words, the original 1 used
(test chart) type (registration number, etc.), original size, sample size, copy magnification (specified magnification), copy direction, etc. Next, in step S5, the sample set state is checked. This check measures the distance from the first scanning coordinate, that is, the coordinate axis x-y of the measuring device to the outermost line as shown in Figure 5, at 2 to 30 locations (d1 to d3) according to the input conditions, Measure the tilt and positional deviation in the X and y directions.

次に、ステップS3にて事前測定としてコピー倍率の測
定を行なう。すなわち、サンプルの右上の10個の部分
の長さをX方向に走査し、累積距離から大まかな座標計
算用倍率(コピー倍率)を求める。ここで求めた結果を
用いて以後の座標計算を行なう。
Next, in step S3, the copy magnification is measured as a preliminary measurement. That is, the length of the ten upper right portions of the sample is scanned in the X direction, and a rough coordinate calculation magnification (copy magnification) is determined from the cumulative distance. Subsequent coordinate calculations are performed using the results obtained here.

次いで、ステップS4にて測定を行なう。これは、第1
図に示すこと<x、y両方向の両端、中央の6箇所につ
いて、第6図に示すごとく往復で異なるエツジ間隔U1
.Q2.・、ml、m2゜・・・を測定する。さらに、
各箇所において走査位置を異ならせて3回測定し、デー
タの平均値を計り、また、線のとぎれなどで測定できな
かった部分を判定し有効なデータのみを残す。なお、こ
のステップS4の詳細フローは後述する。
Next, measurement is performed in step S4. This is the first
What is shown in the figure < Edge spacing U1 that differs in the round trip as shown in Figure 6 at both ends and in the center in both x and y directions
.. Q2.・, ml, m2゜... are measured. moreover,
Measurements are made three times at different scanning positions at each location, the average value of the data is calculated, and areas that could not be measured due to breaks in lines are determined and only valid data is retained. Note that the detailed flow of this step S4 will be described later.

次に、ステップS5にて処理を行なう。これは使用した
原稿の測定データを読み出し、サンプルの測定データと
比較し、各部分毎の倍率分布を求める。このステップS
5の詳細フローは後述する。
Next, processing is performed in step S5. This reads the measurement data of the document used, compares it with the measurement data of the sample, and calculates the magnification distribution for each part. This step S
The detailed flow of step 5 will be described later.

続いてステップS6にて求めた倍率分布を出力、すなわ
ちディスプレイ、プリンタなどの外部端末機器に表示、
印刷し、またディスクなどの記憶装置に記録し、測定を
終了する。
Next, the magnification distribution obtained in step S6 is output, that is, displayed on an external terminal device such as a display or printer.
The measurement is completed by printing and recording on a storage device such as a disk.

第3図は上記ステップS4の測定のフローを示す。これ
を説明すると、ステップS11にて最初の線の検出を行
ない、ステップS12にて線を通り抜けたエツジを基点
に距離をカウントし、ステップSt3にて次の線の検出
を行ない、ステップS14にてカウントした距離をピッ
チMIN(最小1ll)と比較する。このピッチMIN
は、0.8X (1桝のスパン)X(指定倍率)とする
。カウントした距離がピッチMINよりも大きければ、
ステップS15に移り、ピッチMAX (最大値)と比
較する。
FIG. 3 shows the flow of the measurement in step S4. To explain this, the first line is detected in step S11, the distance is counted based on the edge passing through the line in step S12, the next line is detected in step St3, and the next line is detected in step S14. Compare the counted distance with the pitch MIN (minimum 1ll). This pitch MIN
is 0.8X (span of 1 square)X (designated magnification). If the counted distance is greater than the pitch MIN,
Proceeding to step S15, the pitch is compared with pitch MAX (maximum value).

このピッチMAXは、1.2X (1桝のスパン)×(
指定倍率)とする。カウントした距離がピッチMAXよ
りも小さければ、ステップS16に移り、配列にデータ
を書き込む。
This pitch MAX is 1.2X (span of 1 square) x (
specified magnification). If the counted distance is smaller than the pitch MAX, the process moves to step S16 and data is written in the array.

ステップS%での比較結果が、NOであれば、ステップ
St+へ戻る。また、ステップS15での比較結果がN
oであればステップSvにて配列にダミーのデータO(
零)を書き込む。これは、線が検出できなかったことを
意味する。
If the comparison result at step S% is NO, the process returns to step St+. Also, the comparison result in step S15 is N
If o, dummy data O(
0). This means that the line could not be detected.

その後、ステップ818にて距離カウンタをリレットし
、データNαを1だけ減算更新する。このデータNαと
は測定する桝の数である。続いてステップS19にてデ
ータNα−(零)かどうか調べ、判定が否(No)であ
れば、ステップS13に戻って同様にステップを繰り返
し、判定がYESとなれば終了する。
Thereafter, in step 818, the distance counter is reset and the data Nα is updated by subtracting 1. This data Nα is the number of squares to be measured. Subsequently, in step S19, it is checked whether the data is Nα-(zero), and if the determination is negative (No), the process returns to step S13 and the steps are repeated in the same manner, and if the determination is YES, the process ends.

第4図は上記ステップS5の処理のフローを示す。これ
を説明すると、ステップ$21にて各ラインにつき僅か
に位置をずらせて3回の測定をし、その3個のデータの
平均を求めて、そのラインの測定データとする。次に、
ステップ322にて3回分のデータ中、1〜2回のデー
タがO(”りつまり、線の検出ができなかった場合の補
正を行なう。
FIG. 4 shows the flow of the process in step S5. To explain this, in step $21, each line is measured three times with a slightly shifted position, and the average of the three pieces of data is calculated and used as the measured data for that line. next,
In step 322, correction is performed in the case where one or two data out of the three data are O(", that is, a line cannot be detected.

ここに、3回ともデータが0(零)であった場合には、
1ラインまたは全ラインの平均を求めるときに、そのデ
ータを除外す金。
Here, if the data is 0 (zero) all three times,
Excludes data when calculating the average of one line or all lines.

次に、ステップS23にて比較のための原稿(チャート
)の測定データをディスクから読み込む。
Next, in step S23, measurement data of a document (chart) for comparison is read from the disk.

さらにステップ824にサンプル(コピー)と原稿(チ
ャート)の対応する桝のデータの比較をとって倍率とす
る。続いて、ステップ825にて各ラインにおいて、1
ラインの倍率の平均および指定倍率との差が最大のデー
タを求め、ステップ826にて全ラインの倍率の平均を
求め、その後、終了する。
Further, in step 824, the data in the corresponding boxes of the sample (copy) and original (chart) are compared to determine the magnification. Subsequently, in step 825, 1
The average magnification of the lines and the data with the largest difference from the designated magnification are determined, and in step 826 the average of the magnifications of all lines is determined, and then the process ends.

第7図は実際に測定した倍率分布の一例を示し、この例
では、原稿とサンプル(複写画像)の倍率を1 (10
0%)としている。それぞれの右(R)、縦(■)、左
(シ)、上(U)、横(H)、下(D)は第1図の一点
鎖線で示す走査方向と対応している。この測定結果より
、どの位置で倍率が正常でないかを判定でき、画像の評
価と複写機の光学系および駆動系の評価を容易に行なう
ことかできる。
Figure 7 shows an example of the magnification distribution actually measured. In this example, the magnification of the original and the sample (copied image) is 1 (10
0%). Right (R), vertical (■), left (C), upper (U), horizontal (H), and lower (D) correspond to the scanning directions indicated by the dashed lines in FIG. 1, respectively. From this measurement result, it is possible to determine at which position the magnification is not normal, and it is possible to easily evaluate the image and the optical system and drive system of the copying machine.

(発明の効果) 以上のように本発明の測定法によれば、サンプルの各線
の間隔を測定するステップにて、縦、横両方向の両端、
中央の6!5所において、往復で異なるエツジ間隔を走
査方向と異ならせて複数回1、測定していることから、
画像全体を細かく区分した状態で正確に倍率を測定する
ことができ、複雑な測定装置を用いることなく、画像の
倍率分布を手軽に、かつ迅速に求めることかでき、また
、倍率分布の結果から複写機の光学系、駆動系の総合的
な評価を容易、かつ高精度に行なうことができるもので
ある。
(Effects of the Invention) As described above, according to the measuring method of the present invention, in the step of measuring the interval between each line of the sample, both ends in both the vertical and horizontal directions,
Because measurements were taken multiple times at 6!5 locations in the center, with different edge spacings in the reciprocating direction and in different scanning directions,
The magnification can be measured accurately by dividing the entire image into small sections, and the magnification distribution of the image can be easily and quickly determined without using complicated measuring equipment. Comprehensive evaluation of the optical system and drive system of a copying machine can be easily and highly accurately performed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の測定法に用いた原稿の一例を示す平面
図、第2図は本発明測定法のフローチャート、第3図は
測定ステップのフローチャート、第4図は処理ステップ
のフローチャート、第5図、第6図は測定法の説明図、
第7図tま測定結果の一例を示す図である。 A・・・原m(チャート)、B・・・線。 特許出願人      三田工業株式会社代 理 人 
     弁理士 小谷悦司同        弁理士
 長u1  正向        弁理士 板谷康夫 第  1  図 第  2  図
FIG. 1 is a plan view showing an example of a document used in the measurement method of the present invention, FIG. 2 is a flowchart of the measurement method of the present invention, FIG. 3 is a flowchart of measurement steps, FIG. 4 is a flowchart of processing steps, and FIG. Figures 5 and 6 are explanatory diagrams of the measurement method.
FIG. 7 is a diagram showing an example of measurement results. A... Original m (chart), B... Line. Patent applicant Agent: Sanda Kogyo Co., Ltd.
Patent Attorney Etsushi Kotani Patent Attorney Nagou1 Masamukai Patent Attorney Yasuo Itaya Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 1、所定の線幅で、かつ所定間隔で格子状に画かれた原
稿と、この原稿の複写画像でなるサンプルとの画像読取
りを行ない複写画像の倍率分布を測定する方法であって
、サンプル作成条件の入力、サンプルのセット状態と傾
きと位置ずれの測定、サンプルの複写倍率の概略測定、
サンプルの各線の間隔の測定、原稿とサンプルの測定デ
ータの比較による倍率分布を求める処理、および倍率分
布の出力表示の各ステップを順次有し、上記サンプルの
各線の間隔を測定するステップでは縦、横両方向の両端
、中央の各箇所において、往復で異なるエッジ間隔を走
査位置を異ならせて複数回、測定することを特徴とした
複写画像の倍率分布測定法。
1. A method for measuring the magnification distribution of a copied image by reading the image of an original drawn in a grid pattern with a predetermined line width and at a predetermined interval, and a sample consisting of a copied image of this original. Input conditions, measure sample set state, tilt and positional deviation, approximate sample copy magnification,
The steps of measuring the distance between each line of the sample, calculating the magnification distribution by comparing the measurement data of the original and the sample, and displaying the output of the magnification distribution are sequentially performed. A method for measuring magnification distribution of a copied image, characterized by measuring different edge intervals multiple times at different scanning positions at both ends and in the center in both horizontal directions.
JP20085286A 1986-08-27 1986-08-27 Magnification distribution measuring method for copy image Pending JPS6356639A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20085286A JPS6356639A (en) 1986-08-27 1986-08-27 Magnification distribution measuring method for copy image

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20085286A JPS6356639A (en) 1986-08-27 1986-08-27 Magnification distribution measuring method for copy image

Publications (1)

Publication Number Publication Date
JPS6356639A true JPS6356639A (en) 1988-03-11

Family

ID=16431291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20085286A Pending JPS6356639A (en) 1986-08-27 1986-08-27 Magnification distribution measuring method for copy image

Country Status (1)

Country Link
JP (1) JPS6356639A (en)

Similar Documents

Publication Publication Date Title
US9787960B2 (en) Image processing apparatus, image processing system, image processing method, and computer program
TW385358B (en) Method to measure the distance P of an edge of the structurelement on a substrate
JP2856846B2 (en) Pattern defect inspection method and apparatus
US10102631B2 (en) Edge detection bias correction value calculation method, edge detection bias correction method, and edge detection bias correcting program
KR860008478A (en) Method and apparatus for measuring color separation film
KR20090101356A (en) Defect detecting device, and defect detecting method
CN103198468A (en) Image processing apparatus, image processing method, and image processing system
CN113487539B (en) Gel path quality analysis method, device, system and storage medium
CN111623942A (en) Displacement measurement method for test structure model of unidirectional vibration table
US6985640B2 (en) Parallel non-iterative method of determining and correcting image skew
TWI251892B (en) Improved method of wafer height mapping
CN111862082B (en) Train brake pad thickness rechecking method and system thereof
JP2565885B2 (en) Spatial pattern coding method
JPS6356639A (en) Magnification distribution measuring method for copy image
JPH076777B2 (en) Pattern contour detection method and length measuring apparatus using this method
JP2961140B2 (en) Image processing method
JP3685772B2 (en) Camera parameter calibration method for three-dimensional shape measuring apparatus
CN114567771A (en) Method and device for performing SFR test on checkerboard test pattern and readable storage medium
JP3990002B2 (en) Image measuring device
JP2628951B2 (en) Image defect determination processing device
CN112215240A (en) Optimization method for improving 2D complex edge detection precision
CN118328897B (en) Method for measuring slot hole size of sheet metal workpiece
JPS63222247A (en) Correction of image distortion
JP3572252B2 (en) Method and apparatus for aligning photographed image and range data, and recording medium recording program for executing the method
CN117593378B (en) Device and method for calibrating internal parameters of vehicle-mounted camera module