JPS6356531A - Novel graft copolymer and gas separation membrane - Google Patents

Novel graft copolymer and gas separation membrane

Info

Publication number
JPS6356531A
JPS6356531A JP19947786A JP19947786A JPS6356531A JP S6356531 A JPS6356531 A JP S6356531A JP 19947786 A JP19947786 A JP 19947786A JP 19947786 A JP19947786 A JP 19947786A JP S6356531 A JPS6356531 A JP S6356531A
Authority
JP
Japan
Prior art keywords
group
formula
substituted
repeating unit
polyorganosiloxane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19947786A
Other languages
Japanese (ja)
Other versions
JPH0686527B2 (en
Inventor
Kiyohide Matsui
松井 清英
Yutaka Nagase
裕 長瀬
Shigehiro Mori
森 繁広
Masaki Uchikura
内倉 昌樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sagami Chemical Research Institute
Tosoh Corp
Original Assignee
Sagami Chemical Research Institute
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sagami Chemical Research Institute, Tosoh Corp filed Critical Sagami Chemical Research Institute
Priority to JP19947786A priority Critical patent/JPH0686527B2/en
Publication of JPS6356531A publication Critical patent/JPS6356531A/en
Publication of JPH0686527B2 publication Critical patent/JPH0686527B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Silicon Polymers (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)

Abstract

PURPOSE:To obtain a copolymer capable of giving separation membranes for effectively separating gaseous oxygen from nitrogen followed by concentration, by reaction between a specific poly-disubstituted acetylene and strong base followed by with a cyclosiloxane compound and then stopping the reaction with a halogenosilane compound. CONSTITUTION:The objective poly-disubstituted acetylene/polyorganosiloxane graft copolymer of a molecular weight >=10,000 constituted of the recurring units of formula I (A is alkyl or phenyl; X is H or of formula II; Y is oxygen atom or divalent organic group; Z is polyorganosiloxane chain of formula III; R<1>-R<7> are each H, alkyl, alkenyl or phenyl) with the molar ratio for the recurring units: 99/1-5/95 (pref. 60/40-10/90) of the poly-disubstituted acetylene in the main chain to the polyorganosiloxane in the side chain.

Description

【発明の詳細な説明】 [発明の利用分野] 本発明は、主鎖がポリニ置換アセチレン、側鎖がポリオ
ルガノシロキサンから成る新規のボリニ置換アセチレン
/ポリオルガノシロキサングラフト共重合体、および該
共重合体から形成される気体混合物の分離膜に関するも
のである。
Detailed Description of the Invention [Field of Application of the Invention] The present invention relates to a novel borini-substituted acetylene/polyorganosiloxane graft copolymer whose main chain is a polydisubstituted acetylene and whose side chain is a polyorganosiloxane, and to the copolymer. It relates to membranes for separating gas mixtures formed from coalescence.

特に空気中の酸素ガスを濃縮しうる酸素透過量が大きく
しかも優れた選択透過性と膜強度を有する選択性気体分
離膜に関するものである。
In particular, the present invention relates to a selective gas separation membrane that has a large oxygen permeation rate capable of concentrating oxygen gas in the air, and has excellent permselectivity and membrane strength.

膜を用いる気体分離法は、その省エネルギー性、高い安
全性および操作の簡便性の故に、急激に用途が択大しつ
つある。その中でも混合気体から酸素を分離する技術、
特に空気から酸素を分離、濃縮する技術は有用である。
Gas separation methods using membranes are rapidly becoming increasingly popular due to their energy saving, high safety, and ease of operation. Among them, technology to separate oxygen from mixed gases,
In particular, technology that separates and concentrates oxygen from air is useful.

空気よシ酸素に富む空気を簡単に、かつ経済的に製造で
きれば、各種燃焼機関、医療用機器、食品工業、廃棄物
処理などの分野に多大な貢献をするものと期待される。
If oxygen-rich air can be easily and economically produced, it is expected to make a significant contribution to fields such as various combustion engines, medical equipment, the food industry, and waste treatment.

[従来の技術およびその問題点コ 上記目的に用いる膜に望まれる特性は、酸素ガスと窒素
ガスの透過係数の比が大きいことと酸素ガスの透過量が
大きいことである。特に後者は分離装置を小型化し、処
理可能な気体量を増加させる上で極めて重要である。大
きな酸素ガス透過量を得るためには、膜素材として酸素
ガスの透過係数Po2の大きなものを選び、かつ膜の厚
みをできるだけ薄くする必要がある。したがって、膜素
材としては薄膜化に耐え得るための充分な膜強度を有す
ることが重要である。
[Prior art and its problems] The desired characteristics of the membrane used for the above purpose are a large ratio of the permeability coefficients of oxygen gas to nitrogen gas and a large permeation amount of oxygen gas. In particular, the latter is extremely important in downsizing the separation device and increasing the amount of gas that can be processed. In order to obtain a large amount of oxygen gas permeation, it is necessary to select a membrane material with a large oxygen gas permeability coefficient Po2 and to make the membrane thickness as thin as possible. Therefore, it is important that the membrane material has sufficient membrane strength to withstand thinning.

これまで知られている高分子膜のうち、大きな気体の透
過係数P(以下、特にことわらない限り、透過係数の単
位をm2(STP) 6 cm / am2@° 式・
cInHgとする。)を有する膜の代表としてポリジメ
チルシロキサンを挙げることができる。
Among the polymer membranes known so far, the large gas permeability coefficient P (hereinafter, unless otherwise specified, the unit of permeability coefficient is m2 (STP) 6 cm / am2@° formula・
cInHg. ) is polydimethylsiloxane.

その酸素ガスの透過係数Po2は6X10−8と透過性
は高いが、酸素ガスと窒素ガスの分離係数α(酸素ガス
の透過係数Po2/窒素ガスの透過係数PN2 )は2
.0と低い。さらにポリジメチルシロキサンは膜の機械
的強度が小さいため、数十μm以下では実際の使用に耐
え得る膜とすることができない。このため、充分な気体
透過量を有する膜を得ることが難しい。米国特許第39
80456号、同3874986号、特開昭56−26
504号公報などでポリジメチルシロキサンの製膜性を
改善する目的で、ポリジメチルシロキサンとポリカーボ
ネートやポリα−メチルスチレン等機械的強度の高いポ
リマーとの共重合体が開発されているが、酸素の透過係
数Po2が低下したシ、分離係数αが不充分であるなど
必ずしも満足するものとはいえなかった。
The permeability coefficient Po2 of oxygen gas is 6X10-8, which is high permeability, but the separation coefficient α between oxygen gas and nitrogen gas (permeability coefficient Po2 of oxygen gas/permeability coefficient PN2 of nitrogen gas) is 2
.. As low as 0. Furthermore, since polydimethylsiloxane has a low mechanical strength, it is impossible to form a film that can withstand actual use at a thickness of several tens of μm or less. For this reason, it is difficult to obtain a membrane having a sufficient amount of gas permeation. US Patent No. 39
No. 80456, No. 3874986, JP-A-56-26
Copolymers of polydimethylsiloxane and polymers with high mechanical strength such as polycarbonate and polyα-methylstyrene have been developed for the purpose of improving the film-forming properties of polydimethylsiloxane, such as in Publication No. 504. The results were not necessarily satisfactory, as the permeability coefficient Po2 was decreased and the separation coefficient α was insufficient.

一方、ポリジメチルシロキサンより高い気体透過係数を
有する材料としてプリ(1−トリメチルシリルゾロピン
)に代表されるポリニ置換アセチレンが知られている(
 Ja Ama Chem、 Soc、 5105.7
473(1983)またはJ、 Appl、 Po1y
rri。
On the other hand, polydisubstituted acetylenes represented by pri(1-trimethylsilylzolopine) are known as materials with higher gas permeability coefficients than polydimethylsiloxane (
Ja Ama Chem, Soc, 5105.7
473 (1983) or J. Appl. Poly.
rri.

Set、、30.1605(1985))。このポリ(
1−トリメチルシリルゾロビン)により形成される膜は
、酸素透過係数Po2が4〜7X10  。
Set, 30.1605 (1985)). This poly(
1-trimethylsilylzorobin) has an oxygen permeability coefficient Po2 of 4 to 7×10.

分離係数αが1.7〜2.0であう、また優れた膜強度
を有するため薄膜への成形が可能である。
It has a separation coefficient α of 1.7 to 2.0, and has excellent film strength, so it can be formed into a thin film.

しかしながら、酸素分離膜としてそのまま使用するには
分離係数αが小さいため充分な酸素濃度が得られず、さ
らに長時間の使用に際して酸素透過係数が低下するとい
う欠点を有している。
However, when used as an oxygen separation membrane as it is, the separation coefficient α is small, so a sufficient oxygen concentration cannot be obtained, and furthermore, the oxygen permeability coefficient decreases when used for a long time.

(Po1yrn嗜r Praprints * Jap
an a 35 e 424(19ss))iた、Iす
(1−トリメチルシリルプロピン)以外のポリニ置換ア
セチレン、例えばプリ(2−オクテン)、ポリ(2−デ
シン)、ポリ(1−7エニルプロビン)、ポリ(1−ク
ロロ−2−フェニルアセチレン)等よシ形成される膜は
いずれも充分な膜強度を有しているものの酸素透過係数
Po2が4×10 以下であF) (Polym@r 
Bull@tin 、 10 e 114(1983)
)実用的な酸素分離膜とはなり得ない。
(Polyrn fan Praprints * Jap
an a 35 e 424 (19ss)) polydisubstituted acetylenes other than (1-trimethylsilylpropyne), such as pri(2-octene), poly(2-decyne), poly(1-7enylpropyne), All films formed from materials such as poly(1-chloro-2-phenylacetylene) have sufficient film strength, but the oxygen permeability coefficient Po2 is 4×10 or less (F) (Polym@r
Bull@tin, 10 e 114 (1983)
) It cannot be used as a practical oxygen separation membrane.

[発明が解決しようとする問題点] 本発明は、上に述べた従来の気体分離膜の欠点、特にd
 リニ置換アセチレンのもつ欠点を解決するために行わ
れ九ものであシ、−リニ置換アセチレンのもつ充分な膜
強度を保持したまま気体透過性、選択性に優れ、安定し
た気体透過係数を与える新規の膜素材を提供するもので
ある。
[Problems to be Solved by the Invention] The present invention solves the drawbacks of the conventional gas separation membranes mentioned above, especially d
In order to solve the drawbacks of liny-substituted acetylene, there are nine new innovations that provide excellent gas permeability and selectivity and a stable gas permeability coefficient while maintaining the sufficient membrane strength of liny-substituted acetylene. It provides membrane materials for

[問題点を解決するための手段] 本発明者等は、Iリニ置換アセチレンのもつ優れた膜強
度を生かしつつ、気体分離係数が高く安定した気体透過
係数を与える新規の膜素材を得るべく鋭意検討した。そ
の結果、テリニ置換アセチレンにポリシロキサン鎖を導
入して得られるポリ二置換アセチレン/ポリオルガノシ
ロキサングラフト共重合体からなる膜が、良好な気体分
離係数および膜強度を有すると共に、ポリニ置換アセチ
レンを大幅に上回る高い気体透過係数を有し、かつ安定
した気体透過係数を与えることを見出し、本発明を完成
するに至った。
[Means for Solving the Problems] The present inventors have made efforts to obtain a new membrane material that provides a high gas separation coefficient and a stable gas permeation coefficient while taking advantage of the excellent membrane strength of I-liny substituted acetylene. investigated. As a result, a membrane made of a polydisubstituted acetylene/polyorganosiloxane graft copolymer obtained by introducing a polysiloxane chain into a terini-substituted acetylene has a good gas separation coefficient and membrane strength, and has a significantly lower polydisubstituted acetylene. The present inventors have discovered that the present invention has a gas permeability coefficient higher than 1, and provides a stable gas permeation coefficient, and has completed the present invention.

すなわち、本発明は、繰返し単位が一般式(1)%式%
(1) (式中、Aはアルキル基、置換アルキル基、フェニル基
または置換フェニル基を示す。Xは水素原子または一般
式 Xは繰返し単位ごとに任意に、異なっていてもよい。た
だし、Yは酸素原子または2価の有機基、2は一般式(
sl−o)−(II)で示されるポリオルガノシロキサ
ン鎖、R−R及びR、Rは同一あるいは異なっていても
よ〈水素原子、アルキル基。
That is, in the present invention, the repeating unit is represented by the general formula (1)% formula%
(1) (In the formula, A represents an alkyl group, a substituted alkyl group, a phenyl group, or a substituted phenyl group. is an oxygen atom or a divalent organic group, 2 is the general formula (
The polyorganosiloxane chain represented by sl-o)-(II), R-R, and R and R may be the same or different (hydrogen atom, alkyl group).

置換アルキル基、アルケニル基、置換アルケニル基、フ
ェニル基または置換フェニル基を示す。
Indicates a substituted alkyl group, alkenyl group, substituted alkenyl group, phenyl group or substituted phenyl group.

からなり、主鎖のポリニ置換アセチレンの繰返し単位と
側鎖のポリオルがノシロキサンの繰返し単位とのモル比
が99/1から5/95の範囲にあり、分子量が少なく
とも1万以上であるポリ二置換アセチレン/Iリオルガ
ノシロキサングラット共重合体、および該共重合体から
なる気体混合物の分離膜に関するものである。なお、一
般式(1)で表される分岐鎖Aとしては、プロピル基、
イソグロピ/l/基、ペンチル基、ヘゾテル基等の直鎖
又は分岐鎖を有するアルキル基、これらの水素原子が他
の原子等で置換された置換アルキル基、フェニル基、さ
らにフェニル基の水素原子がフッ素原子等で置換された
置換フェニル基をあげることができる。
The molar ratio of the polyvinyl-substituted acetylene repeating unit in the main chain to the nosiloxane repeating unit in the side chain is in the range of 99/1 to 5/95, and the molecular weight is at least 10,000 or more. The present invention relates to a substituted acetylene/I-liorganosiloxane glatt copolymer and a separation membrane for a gas mixture comprising the copolymer. In addition, the branched chain A represented by general formula (1) includes a propyl group,
Alkyl groups with straight or branched chains such as isoglopy/l/ groups, pentyl groups, and hezotel groups, substituted alkyl groups in which these hydrogen atoms are substituted with other atoms, phenyl groups, and further hydrogen atoms of phenyl groups. Examples include substituted phenyl groups substituted with fluorine atoms and the like.

一般式(I)におけるXは水素原子又は素ぶ子又は2価
の有機基を表し、例えば置換も)シ<は無置換のポリメ
チレン鎖(炭素数2以上)、フェニレン−リメチレン鎖
、@−0−CH20H2CH2−等を例示することがで
きる。又、2は (Si−0)−で表されるポリオルガノシロキサン鎮静 である。R−Rは水素原子、C1〜C1゜の直鎖又は分
岐鎖を有する鎖状又は環状のアルキル基、さらにこれら
のアルキル基の水素原子のいくつかがハロダン原子、ト
リメチルシリル基、フェニル基、ヘキサフルオロフェニ
ルts 、−00F(CF、)2、−C00CH2(C
F2)3CF、、−COOCH2C6H5等で置換され
た置換アルキル基、フェニル基、さらに、フェニル基の
水素原子のいくつかがアルキル基、ハロダン原子等で置
換された置換フェニル基、ビニル基等のアルケニル基、
置換アルケニル基である。
In the general formula (I), X represents a hydrogen atom, a substituent, or a divalent organic group, for example, a substitution). -CH20H2CH2-, etc. can be exemplified. Further, 2 is a polyorganosiloxane sedation represented by (Si-0)-. R-R is a hydrogen atom, a C1 to C1° linear or branched chain or cyclic alkyl group, and some of the hydrogen atoms of these alkyl groups are halodane atoms, trimethylsilyl group, phenyl group, hexafluoro Phenyl ts, -00F(CF,)2, -C00CH2(C
F2) Substituted alkyl groups and phenyl groups substituted with 3CF, -COOCH2C6H5, etc., and alkenyl groups such as substituted phenyl groups and vinyl groups in which some of the hydrogen atoms of the phenyl group are substituted with alkyl groups, halodane atoms, etc. ,
It is a substituted alkenyl group.

本発明の前記一般式(1)で表される繰返し単位からな
るポリニ置換アセチレン/?リオルガノクロキサングラ
フト共重合体は、例えば、繰返し単位が一般式(2) %式%() (式中、人はアルキル基、置換アルキル基、フェニル基
または置換フェニル基を示し、繰返し単位ごとに任意に
異なっていてもよい。)からなるポリ二置換アセチレン
を強塩基と反応させた後、一般式拍 (式中、R,Rは前記と同様であり、mは3〜6の整数
である。) で表されるシクロシロキサン化合物と反応させ、さらに
一般式間 督 B−8l−R’          (V)(式中、B
はハロダン原子 R3−R5は前記と同様である。) で表されるトリオルガノハロゲノシラン化合物を加えて
反応を停止させることによシ合成することができる。ま
た、上記の方法以外にも、前記一般式(ト)で表される
繰返し単位からなるポリ二置換アセチレンを強塩基と反
応させた後、−般式(6) %式% (式中、B 、 R1−R5,Yおよび2は前記と同様
である。) で表される片末端反応性Iリオルガノシロキサンと反応
させることにより合成することもできる。
Polydisubstituted acetylene consisting of a repeating unit represented by the general formula (1) of the present invention/? For example, the liorganocloxane graft copolymer has a repeating unit of the general formula (2) % formula % () (in the formula, % represents an alkyl group, a substituted alkyl group, a phenyl group, or a substituted phenyl group, and each repeating unit may be arbitrarily different from each other.) After reacting with a strong base, a polydisubstituted acetylene consisting of a polydisubstituted acetylene consisting of ) is reacted with a cyclosiloxane compound represented by the general formula B-8l-R' (V) (wherein B
is a halodane atom, and R3-R5 are the same as above. ) It can be synthesized by adding a triorganohalogenosilane compound represented by the following to stop the reaction. In addition to the above method, after reacting a polydisubstituted acetylene consisting of a repeating unit represented by the general formula (g) with a strong base, - general formula (6) % formula % (in the formula, B , R1-R5, Y and 2 are the same as above.

原料となる前記一般式(至)で表される繰返し単位から
なるポリ二置換アセチレンは、2−アルキン、1−フェ
ニルプロピンあるいはそれらの誘導体である二置換アセ
チレンの重合体である。
The polydisubstituted acetylene consisting of repeating units represented by the above general formula (-), which is a raw material, is a polymer of disubstituted acetylene which is 2-alkyne, 1-phenylpropyne or a derivative thereof.

又、分岐鎖Aとしては、プロピル基、イソゾロビル基、
ペンチル基、ヘプチル基等の直鎖又は分岐鎖を有するア
ルキル基、これらの水素原子が他の原子で置換された置
換アルキル基、フェニル基、さらに、フェニル基の水素
原子がフッ素原子等で置換された置換フェニル基をあげ
ることができる。さらに具体的にはポリ(2−ヘキシン
)、ポリ(4−メチル−2−ペンテン)。
In addition, as the branched chain A, propyl group, isozolobyl group,
Straight or branched alkyl groups such as pentyl and heptyl groups, substituted alkyl groups whose hydrogen atoms are substituted with other atoms, phenyl groups, and phenyl groups whose hydrogen atoms are substituted with fluorine atoms, etc. and substituted phenyl groups. More specifically, poly(2-hexyne) and poly(4-methyl-2-pentene).

Iす(4−メチル−2−ヘキシン)、ポリ(2−オクチ
ン)、?す(5−メチル−2−オクチン)、Iす(2−
デシン)、ポリ(1−7エニルプロビン)、ポリ(1−
ペンタフルオロフェニルプロピン)等およびこれらポリ
二置換アセチレンの繰返し単位の少なくとも2fi以上
の組合せからなる共重合体を例示することができる。
Isu(4-methyl-2-hexyne), poly(2-octyne), ? Su(5-methyl-2-octyne), Isu(2-
decine), poly(1-7 enylprobyne), poly(1-
(pentafluorophenylpropyne), etc., and a copolymer consisting of a combination of repeating units of at least 2fi or more of these polydisubstituted acetylenes.

これらのポリ二置換アセチレンを得る方法としては、原
料となる1fjJまたは2種以上の二置換アセチレン化
合物をV族または■族遷移金属であるタンタル、モリブ
デン、タングステンあるいはニオブのハロダン化物、た
とえば、五塩化タンタル、五塩化ニオブ、五塩化モリブ
デン、六塩化タングステン、五臭化タンタル、五臭化ニ
オブなどを触媒として、有機溶媒中で通常30〜100
℃の温度で2〜36時間重合することによシ得られる。
As a method for obtaining these polydisubstituted acetylenes, the raw material 1fjJ or two or more disubstituted acetylene compounds is treated with a group V or group II transition metal such as tantalum, molybdenum, tungsten, or a halodanide of niobium, such as pentachloride. Usually, 30 to 100
It is obtained by polymerization for 2 to 36 hours at a temperature of .degree.

溶媒としては、ベンゼン。Benzene as a solvent.

トルエン、キシレンなどの芳香族炭化水素、シクロヘキ
サンなどの脂環式炭化水素、クロロホルム、1.2−ジ
クロロエタン、四塩化炭素などの塩素系溶剤などを用い
ることができる。また、上記の触媒を主触媒とし、第2
成分としてアルミニウム、ケイ素、錫、アンチモン々ど
を含む有機金属化合物、例えば、トリメチルアルミニウ
ム、トリエチルアルミニウム、ヒドロシラン誘導体、テ
トラフェニル錫、テトラーn−ブチル錫、トリフェニル
アンチモンなどを助触媒として用いて目的とする重合体
を得ることもできる。
Aromatic hydrocarbons such as toluene and xylene, alicyclic hydrocarbons such as cyclohexane, chlorine solvents such as chloroform, 1,2-dichloroethane, and carbon tetrachloride, etc. can be used. In addition, the above catalyst is used as the main catalyst, and the second catalyst is used as the main catalyst.
Organometallic compounds containing aluminum, silicon, tin, antimony, etc. as components, such as trimethylaluminum, triethylaluminum, hydrosilane derivatives, tetraphenyltin, tetra-n-butyltin, triphenylantimony, etc., are used as promoters to achieve the desired purpose. It is also possible to obtain polymers that

前記一般式(2)で表される繰返し単位からなるポリニ
置換アセチレンを前記一般式いで表されるシクロシロキ
サン化合物または前記一般式(至)で表される片末端反
応性ポリオルガノシロキサンと反応させる際に用いる強
塩基としては、メチルリチウム、n−ブチルリチウム、
t−ブチルリチウム2フエニルリチウム、リチウムジイ
ソプロピルアミド等の有機リチウム化合物、水素化カリ
ウム、水素化ナトリウム等のアルカリ金属水素化合物、
ヨウ化メチルマグネシウム。
When reacting a polydisubstituted acetylene consisting of a repeating unit represented by the general formula (2) with a cyclosiloxane compound represented by the general formula or a one-end reactive polyorganosiloxane represented by the general formula (to) Examples of strong bases used include methyllithium, n-butyllithium,
Organolithium compounds such as t-butyllithium diphenyllithium and lithium diisopropylamide; alkali metal hydride compounds such as potassium hydride and sodium hydride;
Methylmagnesium iodide.

臭化エチルマグネシウム、臭化フェニルマグネシウム等
のグリニヤール化合物等を例示することができるが、反
応効率の点で有機リチウム化合物が好ましい。これらの
強塩基は通常原料の4リニ置換アセチレンの繰返し単位
に対して通常0.1〜4当量用い、この量によって、ポ
リオルガノシロキサン成分の導入率を制御できる。
Examples include Grignard compounds such as ethylmagnesium bromide and phenylmagnesium bromide, but organic lithium compounds are preferred in terms of reaction efficiency. These strong bases are usually used in an amount of 0.1 to 4 equivalents based on the repeating unit of the 4-line substituted acetylene as a raw material, and the introduction rate of the polyorganosiloxane component can be controlled by this amount.

前記一般式(至)で表されるIリニ置換アセチレンと強
塩基との反応においては溶媒を用いることが好ましく、
溶媒としては、ポリニ置換アセチレンを溶解し、反応に
関与しない溶媒であればいずれのものでもよ<、n−−
eンタン、n−ヘキサン、シクロペンタン、シクロヘキ
サン。
It is preferable to use a solvent in the reaction of the Iliny-substituted acetylene represented by the above general formula (to) with a strong base,
Any solvent may be used as long as it dissolves the polyni-substituted acetylene and does not participate in the reaction.
Entane, n-hexane, cyclopentane, cyclohexane.

テトラヒドロフラン、ジメトキシエタン、トルエン、ベ
ンゼン、キシレン等の有機溶媒を例示することができる
が、反応効率の点でn−ペンタン、n−ヘキサン、シク
ロペンタン、シクロヘキサン等の脂肪族炭化水素を用い
ることが好ましい。また、反応はO℃〜90℃の温度範
囲で20分間以上行うことが好ましい。さらに、この強
塩基との反応をN 、N 、N’、N’−テトラメチル
エチレンジアミン等のノアミンの存在下で行うと反応が
円滑に進行するので好ましい。
Examples include organic solvents such as tetrahydrofuran, dimethoxyethane, toluene, benzene, and xylene, but it is preferable to use aliphatic hydrocarbons such as n-pentane, n-hexane, cyclopentane, and cyclohexane in terms of reaction efficiency. . Further, the reaction is preferably carried out at a temperature range of 0°C to 90°C for 20 minutes or more. Furthermore, it is preferable to carry out the reaction with the strong base in the presence of a noamine such as N 2 , N 2 , N', N'-tetramethylethylenediamine because the reaction proceeds smoothly.

前記一般式〇で表されるシクロシロキサン化合物として
は、 C)12CH281(CI(3)。
The cyclosiloxane compound represented by the general formula 〇 is as follows: C) 12CH281 (CI(3)).

(ただし、mは3〜6の整数) 等を例示することができる。また、これらのシクロシロ
キサン化合物の2種以上の混合物を用いてもよい。
(However, m is an integer of 3 to 6). Furthermore, a mixture of two or more of these cyclosiloxane compounds may be used.

前記一般式(財)で表されるシクロシロキサン化合物を
強塩基に対して0.5〜50当量用いることKよシ、収
率よ〈目的物を得ることができる。
By using the cyclosiloxane compound represented by the general formula (I) in an amount of 0.5 to 50 equivalents based on the strong base, the desired product can be obtained with a good yield.

シクロシロキサン化合物を反応系に加える際には、シク
ロシロキサン化合物をあらかじめ溶媒に溶解させて加え
ることが好ましく、この場合に用いる溶媒としてはテト
ラヒドロフラン、n−ペンタン、n−ヘキサン、シクロ
ペンタン。
When adding the cyclosiloxane compound to the reaction system, it is preferable to dissolve the cyclosiloxane compound in a solvent beforehand, and the solvent used in this case is tetrahydrofuran, n-pentane, n-hexane, or cyclopentane.

シクロヘキサン等の有機溶媒を挙げることができる。ま
た、シクロシロキサン化合物と反応させる際の反応温度
は、室温付近で好適に反応が進行する。反応時間は2時
間以上であることが好ましく、更に好ましくは10時間
以上であり、反応が進行することによυシクロシロキサ
ン化合物の開環重合が完結する。
Organic solvents such as cyclohexane can be mentioned. In addition, the reaction temperature during the reaction with the cyclosiloxane compound is preferably around room temperature. The reaction time is preferably 2 hours or more, more preferably 10 hours or more, and as the reaction progresses, the ring-opening polymerization of the υcyclosiloxane compound is completed.

上記の反応を停止させるために用いる前記−般式■で表
されるトリオルガノハロゲノアラン化合物としては、C
ASi (CHs )s −CAB i (C2H5)
3 #CH,CH。
The triorganohalogenoalan compound represented by the general formula (2) used to stop the above reaction is C
ASi(CHs)s-CABi(C2H5)
3 #CH, CH.

CH,CH。CH, CH.

等を例示することができる。これらのトリオルガノハロ
ゲノシラン化合物はそのほとんどが市販されており、ま
た既知の方法により容易に合成することができる。これ
らのトリオルガノハロゲノシラン化合物を、用いた強塩
基に対し2〜20当量反応系へ加えることにより、反応
は完全に停止する。その場合、反応停止に要する時間は
20分間以上であることが好ましい。
etc. can be exemplified. Most of these triorganohalogenosilane compounds are commercially available, and can be easily synthesized by known methods. The reaction is completely stopped by adding 2 to 20 equivalents of these triorganohalogenosilane compounds to the reaction system based on the strong base used. In that case, the time required to stop the reaction is preferably 20 minutes or more.

また、前記一般式(11′/Dで表される片末端反応性
/ リオルガノシロキサンとしては、 CH,CH。
Further, the one-end reactive/liorganosiloxane represented by the general formula (11'/D) is CH, CH.

?H302H5 CL−8l−CH2CH2−Z−8l −C2H5CH
2CH2 CH,CH。
? H302H5 CL-8l-CH2CH2-Z-8l -C2H5CH
2CH2 CH, CH.

CH,CH。CH, CH.

CH3CH3 等を例示することができる。ただし、上記式中2は繰返
し単位が前記一般式(U)で表される一すオルガノシロ
キサン鎖であシ以下にその例を示す。
CH3CH3 etc. can be exemplified. However, 2 in the above formula is an organosiloxane chain in which the repeating unit is represented by the above general formula (U). Examples thereof are shown below.

CH。CH.

+StO+ CH2CH2CH20CF(C10)2Hs OCH2CH2 前記の片末端反応性ポリオルガノシロキサンのうち、第
(1)群の化合物は、例えば、下記の反応式で示す如く
、三置換シラノールに等舌ル量のn −BuLiを加え
ることによシ得られるシラル−トアニオンを開始剤とし
て、シクロシロキサン化合物をリビングアニオン重合し
、反応性置換基を有するハロゲノシラン化合物を用いて
反応を停止させることによシ合成することができる。
+StO+ CH2CH2CH20CF(C10)2Hs OCH2CH2 Among the above-mentioned one-end reactive polyorganosiloxanes, the compound of group (1) is, for example, as shown in the reaction formula below, when an isovalent amount of n-BuLi is added to a trisubstituted silanol. It can be synthesized by living anionic polymerization of a cyclosiloxane compound using a silal anion obtained by adding as an initiator, and stopping the reaction using a halogenosilane compound having a reactive substituent. .

(式中、pは1以上の整数、mは3〜6の整数を示す。(In the formula, p represents an integer of 1 or more, and m represents an integer of 3 to 6.

BおよびB′は同一あるいは異なる)・ログン原子で6
b、R’〜R7は同一あるいは異なりていてもよく、水
素原子、アルキル基、置換アルキル基、アルケニル基、
置換アルケニル基。
B and B' are the same or different)・6 in logon atom
b, R' to R7 may be the same or different, and are hydrogen atoms, alkyl groups, substituted alkyl groups, alkenyl groups,
Substituted alkenyl group.

フェニル基または置換フェニル基を示す。ただしuA 
、n7は各々繰返し単位ごとに任意に異なっていてもよ
い。)tた、その他にも上記のシラル−トアニオンを当
モル量のα、ω−ジクロロ?リオルガノシロキサンと反
応させることにより合成することができる。
Indicates a phenyl group or a substituted phenyl group. However, uA
, n7 may be arbitrarily different for each repeating unit. ) In addition, the above-mentioned silal anion may be added to an equimolar amount of α,ω-dichloro? It can be synthesized by reacting with liorganosiloxane.

さらに第(2)群の片末端反応性ポリオルガノシロキサ
ンは上記の反応式中 B−81−B’で表される化合物
の代りに一般式、 cz−st−u          (■)(式中R’
 e R’は上記と同様である。)で表されるシラン化
合物を用い、同様の方法により合成することができる一
般式、 (式中RxR,mおよびpは上記と同様である。) で表される片末端ヒドロシリル化ポリオルガノシロキサ
ンと、二重結合を有するクロロシラン化合物とのヒドロ
シリル化反応によって合成することができる。
Furthermore, the single-end reactive polyorganosiloxane of Group (2) has the general formula cz-st-u (■) (in the formula R') instead of the compound represented by B-81-B' in the above reaction formula.
e R' is the same as above. ) can be synthesized by a similar method using a silane compound represented by , can be synthesized by a hydrosilylation reaction with a chlorosilane compound having a double bond.

ここで用いる二重結合を有するクロロシラン化合物とし
ては、 C!(、CH3 CH,CH。
The chlorosilane compound having a double bond used here is C! (, CH3 CH, CH.

CH。CH.

等を例示することができる。etc. can be exemplified.

前記一般式(ロ)で表される片末端反応性ポリオルガノ
シロキサンを、強塩基に対して0.5〜3.0当量好ま
しくは0゜9〜2.0当量加え、通常室温付近で5分間
以上反応を行うことにより収率良く目的物を得ることが
できる。
Add 0.5 to 3.0 equivalents, preferably 0.9 to 2.0 equivalents, of the polyorganosiloxane with one end reactive represented by the general formula (b) above, to the strong base, and stir for 5 minutes, usually around room temperature. By performing the above reaction, the target product can be obtained in good yield.

本発明のグラフト共重合体はトルエン、ベンゼン、エチ
ルベンゼン、キシレン等の芳香族系溶媒、四塩化炭素、
クロロホルム、トリクロロエチレン等のハロダン化炭化
水素、n−ヘキサン、シクロヘキサン、シクロヘキセン
等の炭化水素系溶媒あるいはテトラヒドロフラン等の工
−チル系溶媒に可溶で、アルコール類または水に対して
は不溶性である。
The graft copolymer of the present invention can be used in aromatic solvents such as toluene, benzene, ethylbenzene, and xylene, carbon tetrachloride,
It is soluble in halodanized hydrocarbons such as chloroform and trichloroethylene, hydrocarbon solvents such as n-hexane, cyclohexane, and cyclohexene, and chlorinated solvents such as tetrahydrofuran, and is insoluble in alcohols or water.

本発明のグラフト共重合体を気体分離膜として用いる場
合には、主鎖の一すニ置換アセチレンの繰返し単位と側
鎖のIリオルガノシロキサンの繰返し単位とのモル比が
99/1から5/95の範囲、より好ましくは60/4
0から10/90の範囲にあることが望ましい。この範
囲よりオルガノシロキサン単位が少ないと、得られる膜
の気体透過係数は原料のポリニ置換アセチレンを気体分
離膜とした場合とほとんど違いがなく、また多いと、グ
ラフト共重合体の製膜性が悪くなシ薄膜化が困難となる
。このモル比の範囲のグラフト共重合体は、前述の製造
方法において強塩基の量又は前記一般式ωで表されるシ
クロシロキサン化合物の量もしくは前記一般式(ロ)で
表される片末端反応性Iリオルがノシロキサンの量およ
び鎖長を調整することにより得ることができる。
When the graft copolymer of the present invention is used as a gas separation membrane, the molar ratio of the mono-disubstituted acetylene repeating unit in the main chain to the I-liorganosiloxane repeating unit in the side chain is 99/1 to 5/5. 95 range, more preferably 60/4
It is desirable that it be in the range of 0 to 10/90. If the organosiloxane unit content is less than this range, the gas permeability coefficient of the membrane obtained will be almost the same as that of a gas separation membrane made of polydisubstituted acetylene as a raw material, and if it is too large, the graft copolymer will have poor film formability. Therefore, it becomes difficult to make the film thinner. The graft copolymer having this molar ratio range can be prepared in the above-mentioned production method by the amount of strong base, the amount of the cyclosiloxane compound represented by the general formula ω, or the one-end reactivity represented by the general formula (b). Iliol can be obtained by adjusting the amount and chain length of nosiloxane.

また、本発明のグラフト共重合体の分子量は膜強度の点
から大きいことが望ましく、通常1万以上、特に好まし
くは10万以上である。
Further, the molecular weight of the graft copolymer of the present invention is desirably large from the viewpoint of membrane strength, and is usually 10,000 or more, particularly preferably 100,000 or more.

本発明のグラフト共重合体の製戻方法としては、特に限
定されることなく公知あるいは周知の手段を用いること
ができる。例えば、キャスト溶液から金属上、ガラス板
上、水面上などで溶媒を蒸発させて製膜する方法。また
、多孔質の支持体を重合体溶液に浸漬したのちにひき上
げたシ、溶液を塗布、乾燥させるなどの方法も採用する
ことができる。
The method for remanufacturing the graft copolymer of the present invention is not particularly limited, and any known or well-known means can be used. For example, a method of forming a film by evaporating the solvent from a casting solution onto a metal, glass plate, water surface, etc. It is also possible to adopt methods such as immersing a porous support in a polymer solution, pulling it up, applying the solution, and drying.

本発明の膜は、膜の厚さがo、oi〜100μm特に0
.01〜50μmのものが好ましく用いられる。これよ
り膜厚が厚いと充分な気体透過量を与えない。また、薄
いと実用的な強度を持たない。膜厚が1μm以下の薄膜
では支持体とともに用いることが好ましい。支持体とし
ては、織布状支持体、不織布状支持体、ミクロフィルタ
ー、限外ろ過膜等、膜を支持する充分な強度を有する多
孔質体であれば、これを用いることができる。
The film of the present invention has a film thickness of o, oi to 100 μm, particularly 0
.. 01 to 50 μm is preferably used. If the film thickness is thicker than this, a sufficient amount of gas permeation will not be provided. Also, if it is thin, it does not have practical strength. For thin films with a thickness of 1 μm or less, it is preferable to use them together with a support. As the support, any porous material having sufficient strength to support the membrane can be used, such as a woven support, a nonwoven support, a microfilter, an ultrafiltration membrane, and the like.

本発明の膜は、平膜、管状膜、中空糸膜など、いかなる
形態においても用いることができる。
The membrane of the present invention can be used in any form, such as a flat membrane, a tubular membrane, or a hollow fiber membrane.

本発明のグラフト共重合体から形成される膜を用いその
用途の一例としての気体混合物を分離、濃縮する場合に
対象となる気体混合物としては、例えば水素、ヘリウム
、Wl素、窒素、二酸化炭素、−酸化炭素、メタン、エ
タン、プロア9ン、エチレン等の気体混合物があげられ
る。
When a membrane formed from the graft copolymer of the present invention is used to separate and concentrate a gas mixture as an example of its use, target gas mixtures include, for example, hydrogen, helium, Wl, nitrogen, carbon dioxide, - Gaseous mixtures such as carbon oxide, methane, ethane, proanine, ethylene, etc.

本発明のポリシロキサン鎖を側鎖にもつグラフト共重合
体よシ形成される膜は、膜強度において特に優れている
ため0.01〜0.1μm程度の薄膜化が可能となる実
用的な気体分離膜である。
The film formed from the graft copolymer having polysiloxane chains as side chains of the present invention is particularly excellent in film strength, so it is a practical gas that can be made into a thin film of about 0.01 to 0.1 μm. It is a separation membrane.

[発明の効果コ 本発明のポリニ置換アセチレン/?リオルガノシロキサ
ングラフト共重合体は気体透過係数が低いという従来の
ボリニ置換アセチレンのもつ欠点を改善したものであう
、該共重合体よシ形成される膜は実用的な気体分離膜と
なる。
[Effects of the invention] Polydisubstituted acetylene of the present invention/? The liorganosiloxane graft copolymer seems to have improved the drawback of conventional borini-substituted acetylenes, such as a low gas permeability coefficient, and the membrane formed from this copolymer is a practical gas separation membrane.

すなわち、本発明のポリシロキサン鎖を側鎖にもつグラ
フト共重合体よシ形成される膜は、原料のポリニ置換ア
セチレンより形成される膜の良好な分離係数(例えば、
酸素と窒素の分離係数は2.0以上となる。)を維持し
たまま、より高い気体透過性を有する優れた選択性気体
分離膜となるので、これを用いて、空気からの酸素富化
静穏々の気体混合物の分離、濃縮を極めて効率良く行う
ことができる。さらに、膜の機械的強度の面で特に優れ
ているため0.01〜0.1μm程度の薄膜化が可能で
あシまだ、平膜、管状膜、中空糸膜などいかなる形態に
おいても用いることができる。
That is, the membrane formed from the graft copolymer having a polysiloxane chain as a side chain of the present invention has a good separation coefficient (for example,
The separation coefficient between oxygen and nitrogen is 2.0 or more. ), it becomes an excellent selective gas separation membrane with higher gas permeability, so it can be used to extremely efficiently separate and concentrate a quiet oxygen-enriched gas mixture from air. Can be done. Furthermore, because the membrane has particularly excellent mechanical strength, it can be made as thin as 0.01 to 0.1 μm, but it can also be used in any form such as flat membranes, tubular membranes, and hollow fiber membranes. can.

[実施例] 以下、実施例により本発明をさらに詳しく説明するが、
本発明はこれらに限定されるものでない。
[Examples] Hereinafter, the present invention will be explained in more detail with reference to Examples.
The present invention is not limited to these.

参考例1 ポリ(1−フェニルゾロピン)の合成 1−7エニルプロピン55.491−)ルエン500d
に溶解し、五塩化タンタル3.4gを加えステンレス製
重合管中にて脱気封管後、80℃で6時間振とうし、粘
稠なrル状重合体を得た。この重合体をトルエンに溶解
させ、多量のメタノール中に数回再沈殿を繰返し、得ら
れた黄白色繊維状固体を真空下60℃にて乾燥した。
Reference Example 1 Synthesis of poly(1-phenylzolopine) 1-7enylpropyne 55.491-) toluene 500d
3.4 g of tantalum pentachloride was added thereto, the tube was degassed and sealed in a stainless steel polymerization tube, and the mixture was shaken at 80° C. for 6 hours to obtain a viscous ripple-shaped polymer. This polymer was dissolved in toluene, reprecipitation was repeated several times in a large amount of methanol, and the resulting yellow-white fibrous solid was dried at 60° C. under vacuum.

収量は44.2g(収率79.8チ)であ−)た。得ら
れた重合体について、IR,H−轟m、”c−拠侃測定
および元素分析を行い、目的とするポリ(1−フェニル
プロピン)であることを確認した。また、GPC測定の
結果、その数平均分子量および重量平均分子量はポリス
チレン換算値でそれぞれ1.55X10  、5.47
X10  であった。
The yield was 44.2 g (yield 79.8 g). The obtained polymer was subjected to IR, H-concentration measurements and elemental analysis, and was confirmed to be the desired poly(1-phenylpropyne).In addition, as a result of GPC measurement, Its number average molecular weight and weight average molecular weight are 1.55X10 and 5.47, respectively, in terms of polystyrene.
It was X10.

実施例1 参考例1で得られたポリ(1−フェニルプロピン)5.
09を乾燥シクロヘキサン600dに溶解し、アルがン
ガス気流下60℃に加熱した後、N、N、N’、N’−
テトラメチルエチレンジアミン6、45 ml (43
,0mmoA)およびn−ブチルリチウムヘキサン溶液
(1,6mob/l ) 26.9 ml(43,Or
rrmoL )を加えさらに1時間攪拌を続けたところ
反応溶液が黒赤色を呈した。次に反応溶液の温度を室温
まで冷却し、ヘキサメチルシクロトリシロキサン47.
59 (213mmot)を乾燥THF 3501nl
に溶解した溶液を一度に加えたところ、反応溶液は黒赤
色から黒紫色に変化しその後しだいに淡黄色へと変化し
た。さらに、室温にて17時間攪拌を続け、トリメチル
クロロシラン2511L/ (197mrnoL )を
加え2時間攪拌を続けて反応を停止させた。その際に、
反応溶液中に塩化リチウムの白色沈殿が生じた。最後に
、上記の反応溶液をメタノール51に注ぐことによ)白
色ポリマーを得た。得られた・ポリマーを再びトルエン
500dに溶解しメタノール/ジエチルエーテル混合溶
媒(80/20マolチ)5ノに再沈殿を行い、さらに
同様に数回再沈殿を繰返すことにより、混入しているポ
リジメチルシロキサンを除きIリマーを精製した。
Example 1 Poly(1-phenylpropyne) obtained in Reference Example 15.
After dissolving 09 in 600 d of dry cyclohexane and heating it to 60°C under an alkali gas stream, N, N, N', N'-
Tetramethylethylenediamine 6, 45 ml (43
,0mmoA) and n-butyllithium hexane solution (1,6mob/l) 26.9ml (43,Or
rrmoL) was added and stirring was continued for an additional hour, and the reaction solution turned black-red. Next, the temperature of the reaction solution was cooled to room temperature, and hexamethylcyclotrisiloxane 47.
59 (213 mmot) dried THF 3501 nl
When a solution dissolved in 1 was added all at once, the reaction solution changed from black-red to black-purple, and then gradually changed to pale yellow. Further, stirring was continued for 17 hours at room temperature, and 2511 L/(197 mrnoL) of trimethylchlorosilane was added and stirring was continued for 2 hours to stop the reaction. At that time,
A white precipitate of lithium chloride was formed in the reaction solution. Finally, a white polymer was obtained by pouring the above reaction solution into methanol 51). The obtained polymer was dissolved again in 500 d of toluene, reprecipitated in 5 g of methanol/diethyl ether mixed solvent (80/20 molar), and the same reprecipitation was repeated several times to remove the contamination. The I-limer was purified by removing the polydimethylsiloxane.

生成Iリマーの収量は7.09でらった。The yield of produced I remer was 7.09.

得られたポリマーについてGPC測定を行ったところ、
数平均分子量および重量平均分子量はポリスチレン換算
値でそれぞれ1.37X10  。
When the obtained polymer was subjected to GPC measurement,
The number average molecular weight and weight average molecular weight are each 1.37×10 in terms of polystyrene.

4.58X10  であった。It was 4.58×10.

また、IRスペクトル、H−NMRスペクトルおよび元
素分析の結果は次のとおシであった。
Further, the results of IR spectrum, H-NMR spectrum and elemental analysis were as follows.

IRス(クトル(備 ):3100(ホ)、3070(
s)  、 3 0 4 0  @  、  2 9 
8 0 (s)  、  2 9 2 0 (m)  
IR: 3100 (E), 3070 (
s) , 3 0 4 0 @ , 2 9
80 (s), 2920 (m)
.

2860(ハ)、1950(→、1890(→、180
0(ロ)=1600(s、主鎖−リ(1−フェニルプロ
ピン)のフェニル基の特性吸収)、1so。
2860 (c), 1950 (→, 1890 (→, 180
0 (b) = 1600 (s, characteristic absorption of the phenyl group of main chain - li (1-phenylpropyne)), 1so.

(s) = 1440 (a) −1415(ホ)−1
370(a)。
(s) = 1440 (a) −1415 (e) −1
370(a).

1260(s、側鎖ポリジメチルシロキサンのメチル基
の特性吸収)、1100(a、シロキサン結合の特性吸
収)、1020(s、シロキサ/結合の特性吸収) 、
 910 (w) 、 860 (i) 。
1260 (s, characteristic absorption of methyl group of side chain polydimethylsiloxane), 1100 (a, characteristic absorption of siloxane bond), 1020 (s, characteristic absorption of siloxane/bond),
910 (w), 860 (i).

800 (s) 、 770 (s) 、 695 (
m)’H−NMR:x、ベクトル、δ(CDCt、 、
 ppm) : 0.10(側鎖ポリジメチルシロキサ
ンのメチル基のプロトンピーク)、1.60(主鎖ポリ
(1−7エニルグロピン)のメチル基のプロトンピーク
)。
800 (s), 770 (s), 695 (
m)'H-NMR: x, vector, δ(CDCt, ,
ppm): 0.10 (proton peak of methyl group of side chain polydimethylsiloxane), 1.60 (proton peak of methyl group of main chain poly(1-7 enylglopine)).

6.90(主鎖ポリ(1−フェニルプロピン)のフェニ
ル基のプロトンピーク) 元素分析値(イ):C:65.61 、Hニア、46以
上の結果よシ、生成ポリマーは原料のポリ(1−フェニ
ルプロピン)のメチル基上の水素の一部が CH,CI。
6.90 (Proton peak of phenyl group of main chain poly(1-phenylpropyne)) Elemental analysis value (a): C: 65.61, H near, 46 or higher results. Some of the hydrogens on the methyl group of 1-phenylpropyne are CH and CI.

で表される基に置換された構造を有するポリ(1−フェ
ニルブローン)/ポリジメチルシロキサングラフト共重
合体であることを確認した。
It was confirmed that the copolymer was a poly(1-phenylbrone)/polydimethylsiloxane graft copolymer having a structure substituted with a group represented by the following.

また、 H−曳スイクトルの0.10 ppmと6.9
0ppmのプロトンピーク面積比よシ求めたこのグラフ
ト共重合体の主鎖のポリ(1−フェニルゾロピン)の繰
返し単位と側鎖のポリジメチルシロキサンの繰返し単位
とのモル比は44156であった。
Also, 0.10 ppm and 6.9 of H-hikisuiktor
The molar ratio of the poly(1-phenylzolopine) repeating unit in the main chain of this graft copolymer to the polydimethylsiloxane repeating unit in the side chain, determined from the proton peak area ratio at 0 ppm, was 44,156.

得られたグラフト共重合体をトルエンに溶解した後、ガ
ラス版上に流延し、トルエンをゆっくりと蒸発除去する
ことにより、膜厚が71μmの丈夫な均質膜が得られた
。この膜を気体透過装置に装着し、25℃における酸素
および窒素の透過係数を測定した。その結果を表1に示
す。
After dissolving the obtained graft copolymer in toluene, it was cast onto a glass plate and the toluene was slowly evaporated off, thereby obtaining a strong homogeneous film with a film thickness of 71 μm. This membrane was attached to a gas permeation device, and the permeability coefficients of oxygen and nitrogen at 25° C. were measured. The results are shown in Table 1.

さらに、このグラフト共重合体の0.5重:i%トルエ
ン溶液をつ<シ、水面上に展開したところ膜厚が約25
0にの薄膜を得た。この薄膜をシェラガード上に2層積
層し、それを気体透過装置に装着し、25℃における酸
素および窒素の透過速度を測定した。その結果を表2に
示す。
Furthermore, when a 0.5% toluene solution of this graft copolymer was spread on the water surface, the film thickness was approximately 25%.
A thin film of 0 was obtained. Two layers of this thin film were laminated on Shellagard, which was attached to a gas permeation device, and the permeation rates of oxygen and nitrogen at 25° C. were measured. The results are shown in Table 2.

なお、この透過速度は30日後に再測定しても何ら変化
が見られなかった。
Note that no change was observed in this permeation rate even when remeasured 30 days later.

実施例2 実施例1における、ヘキサメチルシクロトリシロキサン
の量を71.3 g(320mmot)とした以外は実
施例1と同じ操作を行い、白色/ IJマー7.99を
得た。
Example 2 The same operation as in Example 1 was performed except that the amount of hexamethylcyclotrisiloxane was changed to 71.3 g (320 mmot) to obtain a white/IJ mer of 7.99.

GPC測定による数平均分子量および重量平均分子量は
ポリスチレン換算値でそれぞれ1.57X 10  、
4.83 X 10  でありた。
The number average molecular weight and weight average molecular weight determined by GPC measurement are 1.57X 10 in terms of polystyrene, respectively.
It was 4.83×10.

得られたポリマーのIRスペクトルおヨヒ’H−NMR
スイクトルは実施例1の測定結果とほぼ同様であり、元
素分析値は以下の通υであった。
IR spectrum of the obtained polymer Oyohi'H-NMR
The suictor was almost the same as the measurement results of Example 1, and the elemental analysis values were as follows.

元素分析値(イ):C:62.57.H:フ、65した
がって、生成ポリマーは実施例1で得られたポリマーと
同様な構造を有するポリ(1−フェニルゾロビン)/I
ポリメチルシロキサングラフト共重合体であ、i5、H
−NMRス(クトルのプロトンピーク面積比より求めた
主鎖のポリ(1−フェニルプロピン)の繰返し単位と側
鎖のポリジメチルシロキサンの繰返し単位とのモル比は
39/61であった。
Elemental analysis value (a): C: 62.57. H: F, 65 Therefore, the resulting polymer is poly(1-phenylzolobin)/I having a structure similar to that of the polymer obtained in Example 1.
Polymethylsiloxane graft copolymer, i5, H
The molar ratio between the repeating units of poly(1-phenylpropyne) in the main chain and the repeating units of polydimethylsiloxane in the side chains, determined from the proton peak area ratio of -NMR spectroscopy, was 39/61.

得られたグラフト共重合体をトルエンに溶解した後、ガ
ラス板上に流延しヘ トルエンをゆっくシと蒸発除去す
ることによシ、膜厚が69μmの丈夫な均質膜が得られ
た。この膜を気体透過装置に装着し、25℃における酸
素および窒素の透過係数を測定した。その結果を表1に
示す。
The obtained graft copolymer was dissolved in toluene, then cast onto a glass plate, and the toluene was slowly evaporated off, thereby obtaining a strong homogeneous film with a film thickness of 69 μm. This membrane was attached to a gas permeation device, and the permeability coefficients of oxygen and nitrogen at 25° C. were measured. The results are shown in Table 1.

さらに、このグラフト共重合体の0.5重量%トルエン
溶液を作製し水面上に展開したところ膜厚が約260X
の薄膜を得た。この薄膜をシェラガード上に2層積層し
、それを気体透過装置に装着し、25℃における酸素お
よび窒素の透過速度を測定した。その結果を表2に示す
Furthermore, when a 0.5% by weight toluene solution of this graft copolymer was prepared and spread on the water surface, the film thickness was approximately 260X.
A thin film was obtained. Two layers of this thin film were laminated on Shellagard, which was attached to a gas permeation device, and the permeation rates of oxygen and nitrogen at 25° C. were measured. The results are shown in Table 2.

なお、との−透過速度は30日後に再測定しても何ら変
化が見られなかりた。
Note that no change in the permeation rate was observed even when remeasured 30 days later.

実施例3 実施例1における、ヘキサメチルシクロトリシロキサン
の量を95.0 El (427mmoL)とした以外
は実施例1と同じ操作を行い、白色ポリマー9.0gを
得た。
Example 3 The same operation as in Example 1 was performed except that the amount of hexamethylcyclotrisiloxane in Example 1 was changed to 95.0 El (427 mmoL), and 9.0 g of a white polymer was obtained.

GPC測定による数平均分子量および重量平均分子量は
Iリスチレン換算値でそれぞれ1.67XI0 .4.
73X10  でありた。
The number average molecular weight and weight average molecular weight determined by GPC measurement are 1.67XI0. 4.
It was 73x10.

得られたポリマーのIRスペクトルおよび’ !(−N
MRスペクトルは実施例1の測定結果とほぼ同様であり
、元素分析値は以下の通りであった。
IR spectrum of the obtained polymer and '! (-N
The MR spectrum was almost the same as the measurement results of Example 1, and the elemental analysis values were as follows.

元素分析値(イ);C:56.28.Hニア、65した
がって、生成ポリマーは実施例1で得られたポリマーと
同様な構造を有するポリ(1−7エニルプロビン’)/
7f?I)ジメチルシロキサングラフト共重合体であり
、H−NMRスペクトルのプロトンピーク面積比よシ求
めた主鎖のポリ(1−フェニルプロピン)の繰返し単位
と側鎖のポリジメチルシロキサンの繰返し単位とのモル
比は29/71であった。
Elemental analysis value (a); C: 56.28. H near, 65 Therefore, the resulting polymer is poly(1-7 enylprobyn')/ having a structure similar to that of the polymer obtained in Example 1.
7f? I) It is a dimethylsiloxane graft copolymer, and the mole of the repeating unit of poly(1-phenylpropyne) in the main chain and the repeating unit of polydimethylsiloxane in the side chain is determined by the proton peak area ratio of the H-NMR spectrum. The ratio was 29/71.

得られたグラフト共重合体をトルエンに溶解した後、ガ
ラス板上に流延し、トルエンをゆっくりと蒸発除去する
ことにより、膜厚が60μmの丈夫な均質膜が得られた
。この膜を気体透過装置に装着し、25℃における酸素
および窒素の透過係数を測定した。その結果を表1に示
す。
After dissolving the obtained graft copolymer in toluene, it was cast onto a glass plate and the toluene was slowly evaporated off, thereby obtaining a strong homogeneous film with a film thickness of 60 μm. This membrane was attached to a gas permeation device, and the permeability coefficients of oxygen and nitrogen at 25° C. were measured. The results are shown in Table 1.

さらに、このグラフト共重合体の0.5重−f1%トル
エン溶液を作製し水面上に展開したところ膜厚が約23
0Xの薄膜を得た。この薄膜をシェラガード上に2層積
層し、それを気体透過装置に装着し、25℃における酸
素および窒素の透過速度を測定した。その結果を表2に
示す。
Furthermore, when a 0.5 weight-f1% toluene solution of this graft copolymer was prepared and spread on the water surface, the film thickness was approximately 23 mm.
A 0X thin film was obtained. Two layers of this thin film were laminated on Shellagard, which was attached to a gas permeation device, and the permeation rates of oxygen and nitrogen at 25° C. were measured. The results are shown in Table 2.

なお、この透過速度は30日後に再測定しても何ら変化
が見られなかった。
Note that no change was observed in this permeation rate even when remeasured 30 days later.

実施例4 実施例1における、゛ヘキサメチルシクロトリシロキサ
ンの量を142.5 g (640mmot)とし九以
外は実施例1とまりたく同様な操作を行い、白色ポリマ
ー11.4,9を得た。
Example 4 The same procedure as in Example 1 was carried out except that the amount of hexamethylcyclotrisiloxane was changed to 142.5 g (640 mmot), except for 9, to obtain white polymers 11.4 and 9.

GPC測定による数平均分子量および重量平均分子量は
、/ リスチレン換算値でそれぞれ1.42XI0 .
4.95X10  であった。
The number average molecular weight and weight average molecular weight determined by GPC measurement are 1.42XI0.
It was 4.95×10.

得られたポリマーのIRスペクトルおよび’H−NMR
スイクトルは実施例1の測定結果とほぼ同様であシ、元
素分析値は以下の通りであった。
IR spectrum and 'H-NMR of the obtained polymer
The suictor was almost the same as the measurement results of Example 1, and the elemental analysis values were as follows.

元素分析値(イ):C:50.06.)iニア、74し
たがって、生成ポリマーは実施例1で得られたポリマー
と同様な構造を有するポリ(1−7エニルプロピン)/
ポリジメチルシロキサ/グラフト共重合体であり、)t
−NMRスペクトルのプロトンピーク面積比より求め喪
主類のポリ(1−7エニルプロビンー)の繰返し単位と
側鎖のポリジメチルシロキサ/の繰返し単位とのモル比
は21/79であった。
Elemental analysis value (a): C: 50.06. )i near, 74 Therefore, the resulting polymer is poly(1-7 enylpropyne)/ having a structure similar to that of the polymer obtained in Example 1.
Polydimethylsiloxa/graft copolymer, )t
The molar ratio of the repeating unit of poly(1-7 enylprobyne) as the main group and the repeating unit of polydimethylsiloxane/ as the side chain was determined from the proton peak area ratio of the -NMR spectrum and was 21/79.

このようにして得られたグラフト共重合体をトルエンに
溶解した後、ガラス板上に流延し、トルエンをゆっくり
と蒸発除去することにより、膜厚が64μmの丈夫な均
質膜が得られた。この膜を気体透過装置に装着し、25
における酸素および窒素の透過係数を測定した。その結
果を表1に示す。
The thus obtained graft copolymer was dissolved in toluene, cast on a glass plate, and the toluene was slowly evaporated off, thereby obtaining a strong homogeneous film with a film thickness of 64 μm. This membrane was attached to a gas permeation device, and
The permeability coefficients of oxygen and nitrogen were measured. The results are shown in Table 1.

さらに、このグラフト共重合体の0.5重量%トルエン
溶液を作製し水面上に展開したところ膜厚が約2501
の薄膜を得た。この薄膜をシェラガード上に2層積層し
、それを気体透過装置に装着し、25℃における酸素お
よび窒素の透過速度を測定した。その結果を表2に示す
Furthermore, when a 0.5% by weight toluene solution of this graft copolymer was prepared and spread on the water surface, the film thickness was approximately 2,501 mm.
A thin film was obtained. Two layers of this thin film were laminated on Shellagard, which was attached to a gas permeation device, and the permeation rates of oxygen and nitrogen at 25° C. were measured. The results are shown in Table 2.

愈お、この透過速度は30日後に再測定しても何ら変化
が見られなかった。
Unfortunately, no change was observed in this permeation rate even when remeasured 30 days later.

実施例5 実施例1における、ヘキサメチルシクロトリシロキサン
の量を47.59 (213mmot)とし、これにト
リス(3,3,3−)リフルオログロビル)トリメチル
シクロトリシロキサン100g(213rranoL 
)を加えた以外は実施例1と同じ操作を行い、白色ポリ
マー13゜6gを得た。
Example 5 The amount of hexamethylcyclotrisiloxane in Example 1 was set to 47.59 (213 mmot), and 100 g of tris(3,3,3-)lifluoroglobil)trimethylcyclotrisiloxane (213 mmot) was added to this.
) was carried out in the same manner as in Example 1, except that 13.6 g of a white polymer was obtained.

GPC測定による数平均分子量および重量平均分子量は
ポリスチレン換算値でそれぞれ2.26xlO+5.9
5xlO5であった。
The number average molecular weight and weight average molecular weight measured by GPC are 2.26 x lO + 5.9, respectively, in terms of polystyrene.
It was 5xlO5.

ti・、IRスペクトル、H−NMRスペクトルおよび
元素分析の結果は次のとおりであった。
The results of ti., IR spectrum, H-NMR spectrum, and elemental analysis were as follows.

IRスイクトル(cm−’): 31006Ti1.3
070(ハ)、3040(ハ)、 2980 (s) 
、 2920(ホ)。
IR squictor (cm-'): 31006Ti1.3
070 (c), 3040 (c), 2980 (s)
, 2920 (e).

1950(w)、1600(m、主鎖ポリ(1−フェニ
ルプロピン)のフェニル基の特性吸収)。
1950 (w), 1600 (m, characteristic absorption of phenyl groups in main chain poly(1-phenylpropyne)).

1500(ハ)、1440(ホ)、1370(ホ)、1
3NJ(ハ)、1260(i、側鎖ポリオルガノシロキ
サンのメチル基の特性吸収)、1210(s、C−F結
合の特性吸収)、1130(s)−1100(s、シロ
キサン結合の特性吸収)、1070(s)、1020(
a、シロキサン結合の特性吸収)、900 (a) 、
 840 (a) 、 800 (s) 、770 (
s) 。
1500 (c), 1440 (e), 1370 (e), 1
3NJ (c), 1260 (i, characteristic absorption of methyl group of side chain polyorganosiloxane), 1210 (s, characteristic absorption of C-F bond), 1130 (s)-1100 (s, characteristic absorption of siloxane bond) , 1070(s), 1020(
a, characteristic absorption of siloxane bonds), 900 (a),
840 (a), 800 (s), 770 (
s).

695(s)、550(へ) ’H−NFiiRスペクトル、δ(CDC23、pP”
) : 0.10(側鎖ポリオルガノシロキサンのメチ
ル基のプロトンピーク) 、 0.85 (3,3,3
−トリフルオロプロピルシリル基のシリル基側メチレン
基のプロトンビーク)、1.60(主鎖ポリ(1−フェ
ニルプロピン)のメチル基のプロトンピーク)。
695(s), 550(to) 'H-NFiiR spectrum, δ(CDC23, pP'
): 0.10 (proton peak of methyl group of side chain polyorganosiloxane), 0.85 (3,3,3
- proton peak of the methylene group on the silyl group side of the trifluoropropylsilyl group), 1.60 (proton peak of the methyl group of the main chain poly(1-phenylpropyne)).

2.12 (3,3,3−トリフルオロプロピルシリル
基のトリフルオロメチル基側メチレン基のプロトンビー
ク)、6.90(主鎖29(1−7エニルプロビン)の
フェニル基のプロトンピーク)元素分析値(イ);C:
52.31 、H:6.53以上の結果よシ、生成ポリ
マーは原料のIす(l−フェニルプロピン)のメチル基
上の水素の一部が される繰返し単位からなるポリオルガノシロキサンであ
る。) で表される基に置換された構造を有するポリ(1−フェ
ニルグロビン)/ポリオルガノシロキサングラフト共重
合体であることを確認した。
2.12 (proton peak of methylene group on trifluoromethyl group side of 3,3,3-trifluoropropylsilyl group), 6.90 (proton peak of phenyl group of main chain 29 (1-7 enylprobyne)) Elemental analysis Value (a); C:
52.31, H: 6.53 and above, the produced polymer is a polyorganosiloxane consisting of repeating units in which some of the hydrogens on the methyl groups of the raw material I-phenylpropyne are replaced. ) It was confirmed that it was a poly(1-phenylglobin)/polyorganosiloxane graft copolymer having a structure substituted with a group represented by the following.

また、 H−NMRスペクトルの0.10 ppm 、
 0.85ppm 、 6.90 ppmのプロトンー
ーり面積比よシ求めた側鎖Iリオルガノシロキサンの 単位のモル比は51/49であり、主鎖のポリ(1−7
エニルプロビン)の繰返し単位と側鎖のポリオルガノシ
ロキサンの繰返し単位とのモル比は33/67であった
In addition, 0.10 ppm of the H-NMR spectrum,
The molar ratio of the side chain I-liorganosiloxane units determined from the proton-to-area ratio of 0.85 ppm and 6.90 ppm is 51/49, and the main chain poly(1-7
The molar ratio of the repeating unit of enylprobyne) to the repeating unit of the side chain polyorganosiloxane was 33/67.

このようにして得られたグラフト共重合体をトルエンに
溶解した後、ガラス板上に流延し、トルエンをゆっくり
と蒸発除去することによシ、膜厚が58μmの丈夫カ均
質膜が得られた。この膜を気体透過装置に装着し、25
℃における酸素および窒素の透過係数を測定した。その
結果を表1に示す。
After dissolving the graft copolymer thus obtained in toluene, it was cast onto a glass plate and the toluene was slowly evaporated off, thereby obtaining a durable and homogeneous film with a film thickness of 58 μm. Ta. This membrane was attached to a gas permeation device, and
The permeability coefficients of oxygen and nitrogen at °C were measured. The results are shown in Table 1.

実施例6 実施例1において、ヘキサメチルシクロトリシロキサン
の量を95.09 (427mmoL)とし、これK)
リス(3,3,3−)リフルオロゾロビル)トリメチル
シクロトリシロキサン100g(213mmot)を加
え、それ以外は実施例1とまったく同様な操作を行い、
白色4リマー15.2gを得た。
Example 6 In Example 1, the amount of hexamethylcyclotrisiloxane was 95.09 (427 mmol), and this K)
Add 100 g (213 mmot) of lis(3,3,3-)lifluorozolobyl)trimethylcyclotrisiloxane, and otherwise perform the same operation as in Example 1.
15.2 g of white 4-rimer was obtained.

GPC測定による数平均分子量および重量平均分子量は
ポリスチレン換算値でそれぞれ2.14XI0 .4.
19X10  であ−)た。
The number average molecular weight and weight average molecular weight determined by GPC measurement are 2.14XI0. 4.
It was 19×10).

得られたポリマーの!Rスペクトルおよび’ H−NM
Rスペクトルは実施例5の結果と同様であり、元素分析
値は以下の通シであった。
of the resulting polymer! R spectrum and 'H-NM
The R spectrum was similar to the results of Example 5, and the elemental analysis values were as follows.

元素分析値(9):C:45.21 、H:6.54し
たがって、生成ポリマーは実施例5で得られたポリマー
と同様な構造を有するIす(1−7工ニルゾロビン/ポ
リオルガノシロキサングラフト共重合体であり、’H−
畠αスペクトルのゾロトンピーク面積比より求めた側鎖
ポリオルガ表される繰返し単位のモル比は62/38で
あり、主鎖のポリ(1−フェニルグロビン)の繰返し単
位と側鎖のポリジメチルシロキサンの緑返し単位とのモ
ル比は21/79でありた。
Elemental analysis value (9): C: 45.21, H: 6.54 Therefore, the produced polymer has a structure similar to that of the polymer obtained in Example 5. It is a copolymer, 'H-
The molar ratio of the repeating units represented by the side chain polyorgan, determined from the zoloton peak area ratio of the Hatake α spectrum, is 62/38, and the molar ratio of the repeating units of the main chain poly(1-phenylglobin) and the side chain polydimethylsiloxane is 62/38. The molar ratio with the return unit was 21/79.

このようにして得られたグラフト共重合体をトルエンに
溶解した後、ガラス板上に流延し、トルエンをゆっくり
と蒸発除去することによシ、膜厚が54μmの丈夫な均
質膜が得られた。この膜を気体透過装置に装着し、25
℃における酸素および窒素の透過係数を測定した。その
結果を表1に示す。
After dissolving the graft copolymer obtained in this way in toluene, it was cast onto a glass plate and the toluene was slowly evaporated off, thereby obtaining a strong homogeneous film with a film thickness of 54 μm. Ta. This membrane was attached to a gas permeation device, and
The permeability coefficients of oxygen and nitrogen at °C were measured. The results are shown in Table 1.

さらに、このグラフト共重合体の0.5重量%トルエン
溶液を作復し水面上に展開したところ膜厚が約220X
の薄膜を得た。この薄膜をシェラガード上に2層積層し
、それを気体透過装置に装着し、25℃における酸素お
よび窒素の透過速度を測定した。その結果を表2に示す
Furthermore, when a 0.5% by weight toluene solution of this graft copolymer was prepared and spread on the water surface, the film thickness was approximately 220X.
A thin film was obtained. Two layers of this thin film were laminated on Shellagard, which was attached to a gas permeation device, and the permeation rates of oxygen and nitrogen at 25° C. were measured. The results are shown in Table 2.

なお、この透過速度は30日後に再測定しても何ら変化
が見られなかった。
Note that no change was observed in this permeation rate even when remeasured 30 days later.

表  1 傘単位:百m (s’rp )・−X−・気・創Hg表
  2 傘単位: cm” (STP )7m” ・see ・
zHg比較例 参考例1で得られたポリ(1−7エニルグロピン)をト
ルエンに溶解した後ガラス板上に流延し、トルエンをゆ
っくりと蒸発除去することによυ、膜厚が76μmの均
質膜を得、これを気体透過装置に装着し25℃における
酸素および窒素の透過係数を測定した。その結果、酸素
透過係数Po2は1.12 X 10  m”(STP
)m/m” ・冠・副Hg、窒素透過係数PN2は3.
59X10cm”(STP)・cm/cwr”m・cm
Hg e分離係数Po2//PN2は3.12でありた
Table 1 Umbrella unit: 100m (s'rp)・-X-・Ki・WoundHgTable 2 Umbrella unit: cm” (STP)7m”・see・
zHg Comparative Example The poly(1-7 enylglopine) obtained in Reference Example 1 was dissolved in toluene and then cast onto a glass plate, and the toluene was slowly evaporated off to form a homogeneous film with a film thickness of 76 μm. This was attached to a gas permeation device and the permeability coefficients of oxygen and nitrogen at 25°C were measured. As a result, the oxygen permeability coefficient Po2 was 1.12 x 10 m” (STP
) m/m” - Crown/auxiliary Hg, nitrogen permeability coefficient PN2 is 3.
59X10cm"(STP)・cm/cwr"m・cm
The Hg e separation coefficient Po2//PN2 was 3.12.

したがって、この結果を表1に示した結果と比べると、
実施例1〜6で得られたグラフト共重合体は原料となる
?す(1−7エニルデロぎン)に比べ酸素の透過係数が
約5倍から17倍以上大幅に増大していることが明らか
である。
Therefore, when comparing this result with the results shown in Table 1,
Are the graft copolymers obtained in Examples 1 to 6 used as raw materials? It is clear that the oxygen permeability coefficient is significantly increased by about 5 to 17 times compared to (1-7 enylderogine).

[− 本多小平 。[- Kodaira Honda.

Claims (1)

【特許請求の範囲】 1)繰返し単位が一般式 ▲数式、化学式、表等があります▼ (式中、Aはアルキル基、置換アルキル基、フェニル基
または置換フェニル基を示す。Xは水素原子または一般
式 ▲数式、化学式、表等があります▼で表わされる基を示
す。A およびXは繰返し単位ごとに任意に異なってもよい。た
だし、Yは酸素原子または2価の有機基、Zは ▲数式、化学式、表等があります▼で示されるポリオル
ガノシロキサ ン鎖、R^1〜R^5及びR^6、R^7は同一あるい
は異なっていてもよく、水素原子、アルキル基、置換ア
ルキル基、アルケニル基、置換アルケニル基、フェニル
基または置換フェニル基を示す。) からなり、主鎖のポリ二置換アセチレンの繰返し単位と
側鎖のポリオルガノシロキサンの繰返し単位とのモル比
が99/1から5/95の範囲にあり、分子量が少なく
とも1万以上であるポリ二置換アセチレン/ポリオルガ
ノシロキサングラフト共重合体。 2)繰返し単位が一般式 ▲数式、化学式、表等があります▼ (式中、Aはアルキル基、置換アルキル基、フェニル基
または置換フェニル基を示す。Xは水素原子または一般
式 ▲数式、化学式、表等があります▼で表される基を示す
。Aおよ びXは繰返し単位ごとに任意に異なっていてもよい。た
だし、Yは酸素原子または2価の有機基、Zは▲数式、
化学式、表等があります▼で示されるポリオルガ ノシロキサン鎖、R^1〜R^5及びR^6、R^7は
同一あるいは異なっていてもよく、水素原子、アルキル
基、置換アルキル基、アルケニル基、置換アルケニル基
、フェニル基または置換フェニル基を示す。) からなり、主鎖のポリ二置換アセチレンの繰返し単位と
側鎖のポリオルガノシロキサンの繰返し単位とのモル比
が99/1から5/95の範囲にあり、分子量が少なく
とも1万以上であるポリ二置換アセチレン/ポリオルガ
ノシロキサングラフト共重合体から形成される気体混合
物の分離膜。
[Claims] 1) The repeating unit has a general formula ▲ Numerical formula, chemical formula, table, etc. ▼ (In the formula, A represents an alkyl group, a substituted alkyl group, a phenyl group, or a substituted phenyl group. X is a hydrogen atom or a substituted phenyl group. Indicates a group represented by the general formula ▲There are mathematical formulas, chemical formulas, tables, etc.▼.A and X may be arbitrarily different for each repeating unit.However, Y is an oxygen atom or a divalent organic group, and Z is ▲ There are mathematical formulas, chemical formulas, tables, etc. The polyorganosiloxane chain shown by ▼, R^1 to R^5, R^6, and R^7 may be the same or different, and may be a hydrogen atom, an alkyl group, or a substituted alkyl group. , alkenyl group, substituted alkenyl group, phenyl group or substituted phenyl group), and the molar ratio of the repeating unit of polydisubstituted acetylene in the main chain to the repeating unit of polyorganosiloxane in the side chain is from 99/1 to 5/95 and a molecular weight of at least 10,000 or more. 2) The repeating unit is a general formula ▲ Numerical formula, chemical formula, table, etc. ▼ (In the formula, A represents an alkyl group, substituted alkyl group, phenyl group, or substituted phenyl group. X is a hydrogen atom or general formula ▲ Numerical formula, chemical formula , tables, etc. are available. Indicates a group represented by ▼. A and X may be arbitrarily different for each repeating unit. However, Y is an oxygen atom or a divalent organic group, Z is ▲ formula,
There are chemical formulas, tables, etc. The polyorganosiloxane chain shown by ▼, R^1 to R^5, R^6, and R^7 may be the same or different, and are hydrogen atoms, alkyl groups, substituted alkyl groups, alkenyl group, substituted alkenyl group, phenyl group or substituted phenyl group. ), the molar ratio of the polydisubstituted acetylene repeating unit in the main chain to the polyorganosiloxane repeating unit in the side chain is in the range of 99/1 to 5/95, and the molecular weight is at least 10,000 or more. A gas mixture separation membrane formed from a disubstituted acetylene/polyorganosiloxane graft copolymer.
JP19947786A 1986-08-26 1986-08-26 New graft copolymer Expired - Lifetime JPH0686527B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19947786A JPH0686527B2 (en) 1986-08-26 1986-08-26 New graft copolymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19947786A JPH0686527B2 (en) 1986-08-26 1986-08-26 New graft copolymer

Publications (2)

Publication Number Publication Date
JPS6356531A true JPS6356531A (en) 1988-03-11
JPH0686527B2 JPH0686527B2 (en) 1994-11-02

Family

ID=16408452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19947786A Expired - Lifetime JPH0686527B2 (en) 1986-08-26 1986-08-26 New graft copolymer

Country Status (1)

Country Link
JP (1) JPH0686527B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5707423A (en) * 1996-06-14 1998-01-13 Membrane Technology And Research, Inc. Substituted polyacetylene separation membrane

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5707423A (en) * 1996-06-14 1998-01-13 Membrane Technology And Research, Inc. Substituted polyacetylene separation membrane

Also Published As

Publication number Publication date
JPH0686527B2 (en) 1994-11-02

Similar Documents

Publication Publication Date Title
JPH0521923B2 (en)
JPH05279481A (en) Fluorosilicon block copolymer and its production
JPH03170530A (en) Organopolysiloxane having one branched molecular terminal and blocked by aminoalkyl group, and its preparation
Kowalewska et al. Novel polymer systems with very bulky organosilicon side chain substituents
US4746334A (en) Poly(disubstituted acetylene)/polyorganosiloxane graftcopolymer and membrane for gas separation
JP2525026B2 (en) Polysiloxane containing siloxane and polyamic acid containing siloxane
JPS6356531A (en) Novel graft copolymer and gas separation membrane
Guiver et al. Modified polysulfones. IV. Synthesis and characterization of polymers with silicon substituents for a comparative study of gas‐transport properties
JPS60163887A (en) Cyclosiloxane derivative
JPS61252214A (en) Production of graft copolymer
US4755561A (en) Poly(disubstituted acetylene)/polyorganosiloxane graft copolymer and membrane for gas separation
Gunji et al. Preparation and properties of organic-inorganic hybrid gel films based on polyvinylpolysilsesquioxane synthesized from trimethoxy (vinyl) silane
Flipsen et al. Densely crosslinked polycarbosiloxanes. I. Synthesis
Beckham et al. Diacetylene-terminated diacetylene-containing polysiloxanes
JPH0546845B2 (en)
JP3579536B2 (en) Method for producing polypropylene-organopolysiloxane copolymer
Hu et al. Synthesis and gas permeation properties of poly (diphenylacetylenes) having bulky alkyl/silyl and hydroxy groups
Hu et al. Synthesis and properties of substituted polyacetylenes having cyclohexyl groups
JPH0618884B2 (en) Polysiloxane compound having bifunctional phenyl group
JPH0255100B2 (en)
Cai et al. Synthesis of poly [1, 1‐bis (trimethylsilyloxy)‐3, 3, 5, 5‐tetramethyltrisiloxane] by anionic ring‐opening polymerization of 1, 1‐bis (trimethylsilyloxy)‐3, 3, 5, 5‐tetramethylcyclotrisiloxane
JPH0542290B2 (en)
JPH0637559B2 (en) Method for producing graft copolymer
JPS6386725A (en) Production of graft copolymer
EP0245516A1 (en) Polymer membrane for separating liquid mixture