JPS6356339A - Dripping type casting device - Google Patents

Dripping type casting device

Info

Publication number
JPS6356339A
JPS6356339A JP19843886A JP19843886A JPS6356339A JP S6356339 A JPS6356339 A JP S6356339A JP 19843886 A JP19843886 A JP 19843886A JP 19843886 A JP19843886 A JP 19843886A JP S6356339 A JPS6356339 A JP S6356339A
Authority
JP
Japan
Prior art keywords
mold
molten metal
casting
slab
ingot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19843886A
Other languages
Japanese (ja)
Inventor
Hideaki Mizukami
秀昭 水上
Akiya Ozeki
尾関 昭矢
Naoki Sakata
坂田 直起
Kentaro Mori
健太郎 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP19843886A priority Critical patent/JPS6356339A/en
Publication of JPS6356339A publication Critical patent/JPS6356339A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE:To obtain an ingot having fine crystal structure and no surface defects by heating the region near a casting mold of the molten metal surface in the mold selectively by a selective heating means at the time of dropping the liquid drops of a molten metal into the casting mold by a liquid drop casting means. CONSTITUTION:The opposed ends of electrodes 11 melt and the liquid drops 14 of the molten metal fall into the casting mold 13 when electricity is conducted between the electrodes 11 to form an arc 12. The liquid drops 14 are cooled before dropping into the casting mold 13 and are cast into the casting mold 13 in the state of having less overheating. An electron beam 21 emitted from an electron gum 20 is projected to the peripheral edge where the melt surface of the molten metal 16 in the mold 13 contacts the mold 13. Then, said part is selectively heated and the solidification boundary between the molten metal 16 in said part and the ingot 15 moves downward. The quick solidification of the part of the molten metal surface in contact with the mold 13 is, therefore, obviated even if the melt surface of the molten metal 16 rises instantaneously upon dropping of the liquid drops 14 into the mold 13. The formation of a recess in the surface of the ingot 15 and the consequent formation of a surface defect are thus prevented.

Description

【発明の詳細な説明】 この発明は、微細な組織を有する鋳片及び鋳塊を製造す
ることができる滴下式鋳造装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a drip casting apparatus capable of producing slabs and ingots having a fine structure.

[従来の技術] 通常、金属製品の中間素材である鋳片又は鋳塊は、溶融
金属を連続鋳造鋳型又は造塊用鋳型に注入して凝固させ
ることにより、製造されている。
[Prior Art] Usually, slabs or ingots, which are intermediate materials for metal products, are manufactured by pouring molten metal into a continuous casting mold or an ingot mold and solidifying it.

しかしながら、これらの技術においては、完全に溶けた
金属を鋳込むので、製造される鋳片又は鋳塊はその凝固
組織の結晶粒径が比較的大きい。
However, in these techniques, completely molten metal is cast, so the produced slab or ingot has a relatively large crystal grain size in its solidified structure.

このため、機械的特性を確保するために鋳片等に圧下を
加える場合に、大圧下を加えると鋳片等に割れが発生し
てしまう。従って、多数回に分けて圧下刃を印加する必
要があるが、これは長時間の処理を必要とし、また必要
な熱エネルギも多くなり、処理コストが高い。このよう
に凝固組織の結を製造する場合に、その製造玉稈が極め
て複雑になる。
For this reason, when applying a reduction to a slab or the like to ensure mechanical properties, if a large reduction is applied, cracks will occur in the slab or the like. Therefore, it is necessary to apply the reduction blade in multiple steps, but this requires a long processing time and also requires a large amount of thermal energy, resulting in high processing costs. When producing a knot of coagulated tissue in this way, the produced culm becomes extremely complicated.

このような一般的な鋳造技術における欠点を解消すべく
、近時、VADER(VacuuIIIArcD ou
ble  E 1ectrodc  Remcltjn
g  真空アーク2電極溶解)法と称される鋳造技術が
提案されている(特開昭55−165271号)。この
VADER法においては、第6図に示すように、製造せ
んとする鋳片と同一組成の金属からなる1対の電極1間
に適宜の手段によりアーク2を形成し、電極1の対向端
部を溶融させる。この溶融金属の液滴4は鋳型3内に落
下し、鋳型3により冷却されて凝固する。溶融金属が一
部凝固して得られた鋳片5は鋳型4から連続的に下方へ
引抜かれる。この場合に、溶融金属の液滴3は電極1か
ら鋳型4に落下する過程で若干冷却され、過熱度がない
状態の溶融金属6として鋳型3に鋳込まれる。
In order to eliminate these shortcomings in general casting technology, VADER (VacuuIIIArcDou) has recently been developed.
ble E 1ectrodc Remcltjn
A casting technique called the vacuum arc two-electrode melting (vacuum arc two-electrode melting) method has been proposed (Japanese Unexamined Patent Publication No. 55-165271). In this VADER method, as shown in FIG. 6, an arc 2 is formed between a pair of electrodes 1 made of a metal having the same composition as the slab to be produced by an appropriate means, and an arc 2 is formed between the opposite ends of the electrodes 1. melt. This droplet 4 of molten metal falls into the mold 3, is cooled by the mold 3, and solidifies. A slab 5 obtained by partially solidifying the molten metal is continuously drawn downward from the mold 4. In this case, the molten metal droplet 3 is slightly cooled in the process of falling from the electrode 1 to the mold 4, and is cast into the mold 3 as molten metal 6 without superheating.

このため、鋳型3内では固液共存相が均一に存在する状
態で凝固するので、鋳片5の凝固組織の結晶粒径は小さ
い。従って、大圧下を加えても鋳片に割れが発生するこ
とはない。
Therefore, solidification occurs in the mold 3 in which the solid-liquid coexistence phase exists uniformly, so that the crystal grain size of the solidified structure of the slab 5 is small. Therefore, even if a large reduction is applied, cracks will not occur in the slab.

[発明が解決しようとする問題点] しかしながら、このような従来の装置においては、第7
図に示すように、鋳型3内におけるメニスカス部(湯面
)の鋳型3に接する領域においては、溶融金属6が鋳型
により急激に熱が奪われて凝固してしまい、この領域の
近傍が盛上がった状態となる。この状態で液滴4が鋳型
3内に落下すると、第8図に示すように、メニスカス部
が瞬間的に盛」二かり、鋳込まれた溶融金属が鋳型3に
接触して急激に凝固する。そうすると、鋳片5の表面に
凹所が残留し、表面欠陥7が形成されてしまう。
[Problems to be solved by the invention] However, in such conventional devices, the seventh
As shown in the figure, in the area of the meniscus (molten metal surface) in the mold 3 that is in contact with the mold 3, the molten metal 6 is rapidly removed heat by the mold and solidifies, causing a bulge in the vicinity of this area. The state will be as follows. When the droplet 4 falls into the mold 3 in this state, the meniscus instantly bulges, as shown in Figure 8, and the molten metal that has been cast comes into contact with the mold 3 and rapidly solidifies. . If this happens, recesses will remain on the surface of the slab 5, and surface defects 7 will be formed.

このような表面欠陥7は発生頻度が高く、その深さは通
常的2[11111であるが、場合によっては5mmに
も達することがある。このため、鋳片5の表面性状が極
めて悪くなり、鋳片5を加工する前にその表面を数mm
乃至10IIIIn程度研削除去せざるを得す、例えば
、直径20On+mの円柱状の鋳塊を5mm研削する場
合には、重量で約10%の損失となり、その分歩留が低
下してしまう。
Such surface defects 7 occur frequently, and their depth is typically 2 mm, but may reach 5 mm in some cases. For this reason, the surface quality of the slab 5 becomes extremely poor, and the surface of the slab 5 is removed by several millimeters before being processed.
For example, when grinding a cylindrical ingot with a diameter of 20 On+m by 5 mm, there will be a loss of about 10% in weight, and the yield will decrease accordingly.

この発明は斯かる事情に鑑みてなされたものであって、
微細な結晶組織を有すると共に、表面欠陥が発生せず表
面性状が優れた鋳片を得ることができる滴下式鋳造装置
を提供することをL1的とする。
This invention was made in view of such circumstances, and
The object of L1 is to provide a dropping casting apparatus capable of obtaining a slab having a fine crystal structure, no surface defects, and excellent surface quality.

[問題点を解決するための手段] この発明に係る滴下式鋳造装置は、鋳型と、溶融金属の
液滴を鋳型内に落下さぜる液滴鋳込み手段と、鋳型内の
湯面の鋳型近傍領域を選択的に加熱する選択加熱手段と
を有することを特徴とする。
[Means for Solving the Problems] The drip casting apparatus according to the present invention includes a mold, a droplet casting means for causing droplets of molten metal to fall into the mold, and a droplet casting means for causing droplets of molten metal to fall into the mold, and and selective heating means for selectively heating a region.

この場合に前記選択加熱手段は、電子ビームを照射する
電子銃で構成することができる。
In this case, the selective heating means can be constituted by an electron gun that irradiates an electron beam.

[作用] この発明においては、液滴鋳込み手段により溶融金属の
液滴を鋳型内に落下させる。この場合に、鋳型内湯面の
鋳型近傍領域を選択加熱手段により選択的に加熱する。
[Operation] In the present invention, droplets of molten metal are dropped into the mold by the droplet casting means. In this case, the selective heating means selectively heats the area near the mold on the surface of the hot water in the mold.

そうすると、この領域に溶融金属が厚く存在し、液滴が
落下してもこの領域が急激に凝固してしまうことがない
。このため、鋳片の表面欠陥が著しく減少する。
In this case, a thick layer of molten metal exists in this region, and even if a droplet falls, this region will not solidify rapidly. Therefore, surface defects in the slab are significantly reduced.

[実施例] 以下、添付図面を参照して、この発明の実施例について
具体的に説明する。
[Embodiments] Hereinafter, embodiments of the present invention will be specifically described with reference to the accompanying drawings.

第1図は、この発明の実施例に係る連続鋳造装置を示す
断面図である。鋳型13は銅製で筒状をなし、例えば、
断面が円形の鋳片を製造する場合には円筒状をなしてい
る。この鋳型13は適宜の水冷手段により水冷されるよ
うになっている。この鋳型13の上方には、製造せんと
する鋳片と同一組成を有する金属からなる一対の電極が
適長間隔をおいて配設されている。この一対の電極11
は電源装置(図示せず)から給電され、この電極11間
にアーク12が形成されるようになっている。このアー
ク12により電極11の対向端部が溶融し、液滴14と
なって鋳型]3内に落下する。
FIG. 1 is a sectional view showing a continuous casting apparatus according to an embodiment of the present invention. The mold 13 is made of copper and has a cylindrical shape, for example,
When producing slabs with a circular cross section, they are cylindrical. This mold 13 is water-cooled by an appropriate water-cooling means. Above this mold 13, a pair of electrodes made of metal having the same composition as the slab to be manufactured are arranged at an appropriate length interval. This pair of electrodes 11
is supplied with power from a power supply device (not shown), and an arc 12 is formed between the electrodes 11. This arc 12 causes the opposing ends of the electrodes 11 to melt, forming droplets 14 that fall into the mold 3.

鋳型13内に落下した液滴]4は溶融金属16となり、
この溶融金属16が鋳型13により冷却され、凝固して
生成された鋳片15はピンチロール(図示せず)により
下方に引抜かれる。
The droplet] 4 that fell into the mold 13 becomes the molten metal 16,
The molten metal 16 is cooled by the mold 13, and the resulting slab 15 is pulled downward by pinch rolls (not shown).

鋳型13の上方には電子銃2oが設置されている。この
電子銃20は、例えば30KVの高圧電源(図示せず)
から給電され、鋳型13内における溶融金属16の湯面
が鋳型13と接触する周縁部に電子ビーム21を照射す
るようになっている。
An electron gun 2o is installed above the mold 13. This electron gun 20 is powered by a high voltage power source (not shown) of, for example, 30 KV.
Electricity is supplied from the mold 13, and an electron beam 21 is irradiated onto the peripheral edge where the surface of the molten metal 16 in the mold 13 comes into contact with the mold 13.

このように構成された滴下式鋳造装置においては、先ず
、電極11間に通電してアーク12を形成することによ
り、電極11の対向端部が溶融し、この溶融金属の液滴
14が鋳型13内に落下する。
In the dropping casting apparatus configured as described above, first, an electric current is applied between the electrodes 11 to form an arc 12, thereby melting the opposing ends of the electrodes 11, and droplets 14 of the molten metal are poured into the mold 13. fall inside.

この液滴14は電極11から鋳型]3内に落下するまで
の間に冷却され、過熱度が少ない状態で鋳型13に鋳込
まれる。鋳型13に鋳込まれた溶融金属16は鋳型13
内で固液共存相が均一に存在する状態で鋳型13により
冷却されて凝固する。
The droplet 14 is cooled down before it falls from the electrode 11 into the mold 3, and is cast into the mold 13 with a low degree of superheating. The molten metal 16 cast into the mold 13 is
The solid-liquid coexistence phase is cooled and solidified by the mold 13 in a state where the solid-liquid coexistence phase exists uniformly within the mold.

従って、得られる鋳片]5の凝固組織の結晶粒径は小さ
い。
Therefore, the crystal grain size of the solidified structure of the obtained slab [5] is small.

この場合に、第2図に示すように、電子銃20から射出
された電子ビーム21を、鋳型13内における溶融金属
16の湯面が鋳型13と接触する周縁部に照射する。そ
うすると、その部分が選択的に加熱されて、その部分の
溶融金属16と鋳片15との間の凝固界面が下方に移動
する。つまり、溶融金属]6の湯面が鋳型13と接触す
る周縁部及びその近傍において溶融金属16の厚みが厚
くなる。このため、液滴14が鋳型13内に落下して溶
融金属16の湯面が瞬間的に上昇しても、溶融金属16
の湯面の鋳型13に接する部分が急激に凝固してしまう
ことがない。従って、鋳片15表面に凹所が形成されて
表面欠陥が発生することを回避することができる。これ
により、表面性状が良好な鋳片を得ることができる。
In this case, as shown in FIG. 2, an electron beam 21 emitted from an electron gun 20 is irradiated onto the peripheral portion of the mold 13 where the surface of the molten metal 16 contacts the mold 13. Then, that part is selectively heated, and the solidification interface between the molten metal 16 and the slab 15 in that part moves downward. That is, the thickness of the molten metal 16 becomes thicker at and near the peripheral edge where the surface of the molten metal 6 contacts the mold 13. Therefore, even if the droplet 14 falls into the mold 13 and the level of the molten metal 16 rises momentarily, the molten metal 16
The part of the molten metal surface in contact with the mold 13 will not solidify rapidly. Therefore, it is possible to avoid the occurrence of surface defects due to the formation of recesses on the surface of the slab 15. Thereby, a slab with good surface quality can be obtained.

次に、この実施例に係る装置によりNi基超超耐熱合金
製造した具体例について説明する。第1表はこの具体例
で使用した合金の組成を示す。
Next, a specific example of producing a Ni-based super super heat-resistant alloy using the apparatus according to this embodiment will be described. Table 1 shows the composition of the alloy used in this example.

第1表 (重量%) この具体例においては、鋳型は内径100+nmの円筒
形のものを使用し、電子銃として最大出力60KVのも
のを用い、電極は」1記組成の直径100n+n+の丸
棒を用いた。そして、電極に160OAの電流を通電し
く電流密度 2OA/cm2)、電極の対向端部を溶融させて鋳型内
に溶融液滴を落下させた。また、電子銃の出力を30K
Vにして電子ビームを照射した。この場合に、電子ビー
ムが0.002秒で鋳型内の湯面周縁部を一周するよう
に、電子ビームの走査速度を設定した。
Table 1 (% by weight) In this specific example, a cylindrical mold with an inner diameter of 100+nm is used, an electron gun with a maximum output of 60KV is used, and the electrodes are round rods with a diameter of 100n+n+ having the composition listed in 1. Using. Then, a current of 160 OA was applied to the electrode (current density: 2 OA/cm 2 ) to melt the opposing ends of the electrode, and droplets of molten liquid were dropped into the mold. In addition, the output of the electron gun was increased to 30K.
The voltage was set to V and an electron beam was irradiated. In this case, the scanning speed of the electron beam was set so that the electron beam went around the periphery of the molten metal surface in the mold in 0.002 seconds.

このような条件で鋳造して生成した鋳片の表面を観察し
、]、000cm2りの表面欠陥の個数を調査した。第
3図はこの実施例における鋳片の表面欠陥の個数を従来
と比較して示すグラフ図である。
The surface of the slab produced by casting under these conditions was observed, and the number of surface defects per 1,000 cm2 was investigated. FIG. 3 is a graph showing the number of surface defects on the slab in this example compared to the conventional one.

この図に示すように、従来装置の場合には100cm2
当りの表面欠陥個数が1乃至6の間に分布しているのに
対し、この実施例の場合にはその個数が2以下であり極
めて少ない。また、表面欠陥の深さもこの実施例の場合
には従来よりも浅いことが確認された。
As shown in this figure, in the case of the conventional device, 100 cm2
While the number of surface defects per unit is distributed between 1 and 6, in the case of this example, the number is 2 or less, which is extremely small. It was also confirmed that the depth of surface defects in this example was shallower than in the conventional case.

第4図はこの実施例に係る装置により製造した鋳片の表
面形状を示す図、第5図は従来装置で製造した鋳片の表
面形状を示す図である。これらの図から明らかなように
、従来装置により製造した鋳片は、表面欠陥が極めて多
いが、この実施例に係る装置により製造した鋳片は表面
欠陥が殆ど観察されず、極めて優れた表面性状を有して
いる。
FIG. 4 is a diagram showing the surface shape of a slab manufactured by the apparatus according to this embodiment, and FIG. 5 is a diagram showing the surface shape of a slab manufactured by the conventional apparatus. As is clear from these figures, the slab produced using the conventional equipment has extremely many surface defects, but the slab produced using the equipment according to this example has almost no surface defects observed and has an extremely excellent surface quality. have.

なお、この実施例においては、一対の電極間にアークを
形成して液滴を生成したが、これに限らず、適当な液滴
を製造することができればどのような手段であってもよ
い。また、選択加熱手段として電子銃を用いたが、鋳型
内の湯面の鋳型近傍領域を選択的に加熱することができ
ればどのような手段であってもよい。更に、この実施例
においては、連続鋳造用の鋳型により連続的に引抜いて
鋳片を製造する場合について示したが、造塊用の鋳型を
使用して鋳塊を製造する場合にも適用することができる
In this example, the droplets were generated by forming an arc between a pair of electrodes, but the present invention is not limited to this, and any method may be used as long as suitable droplets can be produced. Although an electron gun is used as the selective heating means, any means may be used as long as it can selectively heat the area near the mold on the surface of the mold. Furthermore, although this example shows the case where slabs are produced by continuous drawing using a mold for continuous casting, the present invention can also be applied to the case where an ingot is produced using a mold for ingot making. Can be done.

なお、この発明においては、鋳型内の場面の鋳型近傍領
域成のみを加熱することが重要である。
In this invention, it is important to heat only the area inside the mold near the mold.

もし、湯面の全域を加熱すると、湯面には過熱度が高い
完全液相の領域が形成される。このように完全液相の領
域が形成されると、溶融金属を鋳型内で固液共存相が均
一に存在する状態で凝固させることが不可能となり、凝
固組織の結晶粒径を微細にすることができない。従って
、上述のように、鋳型内の湯面の鋳型近傍領域のみを加
熱する。
If the entire area of the hot water surface is heated, a completely liquid phase region with a high degree of superheating will be formed on the hot water surface. When a completely liquid phase region is formed in this way, it becomes impossible to solidify the molten metal in a state where the solid-liquid coexistence phase exists uniformly within the mold, and the crystal grain size of the solidified structure becomes finer. I can't. Therefore, as described above, only the area near the mold of the molten metal surface in the mold is heated.

[発明の効果] この発明によれば、溶融金属の液滴を鋳型内に落下させ
、鋳型内の湯面の鋳型近傍領域を選択的に加熱する。こ
のため、凝固組織の結晶粒径が微細であると共に、表面
性状が優れた鋳片又は鋳塊を得ることができる。従って
、この発明は極めて実用性が高い。
[Effects of the Invention] According to the present invention, droplets of molten metal are dropped into a mold to selectively heat a region of the molten metal surface in the mold near the mold. For this reason, it is possible to obtain a slab or an ingot having a fine crystal grain size in the solidified structure and excellent surface quality. Therefore, this invention has extremely high practicality.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例に係る滴下式鋳造装置を示す
模式図、第2図は電子ビームを照射する部分を示す説明
図、第3図はこの実施例における鋳片の表面欠陥の個数
を従来と比較して示すグラフ図、第4図はこの実施例に
係る装置により製造した鋳片の表面形状を示す図、第5
図は従来装置で製造した鋳片の表面形状を示す図、第6
図は従来装置を示す模式図、第7図及び第8図はその鋳
型内を示す拡大図である。 11;電極、12;アーク、13;鋳型、]4;液滴、
15;鋳片、16;溶融金属、20;電子銃、21;電
子ビーム 出願人代理人 弁理士 鈴江武彦 第1図 第4図 1鴇FI8G3−56339 (5) 第6図
Fig. 1 is a schematic diagram showing a dropping casting apparatus according to an embodiment of the present invention, Fig. 2 is an explanatory diagram showing the part irradiated with an electron beam, and Fig. 3 is the number of surface defects on a slab in this embodiment. Fig. 4 is a graph showing the surface shape of the slab manufactured by the apparatus according to this embodiment, Fig. 5 is a graph showing a comparison with the conventional method.
The figure shows the surface shape of slabs produced using conventional equipment.
The figure is a schematic diagram showing a conventional device, and FIGS. 7 and 8 are enlarged views showing the inside of the mold. 11; electrode, 12; arc, 13; mold,] 4; droplet,
15; Slab, 16; Molten metal, 20; Electron gun, 21; Electron beam Applicant's representative Patent attorney Takehiko Suzue Figure 1 Figure 4 Figure 1 Toki FI8G3-56339 (5) Figure 6

Claims (2)

【特許請求の範囲】[Claims] (1)鋳型と、溶融金属の液滴を鋳型内に落下させる液
滴鋳込み手段と、鋳型内の湯面の鋳型近傍領域を選択的
に加熱する選択加熱手段とを有することを特徴とする滴
下式鋳造装置。
(1) Dripping characterized by having a mold, droplet casting means for dropping droplets of molten metal into the mold, and selective heating means for selectively heating a region of the molten metal surface in the mold near the mold. Type casting equipment.
(2)前記選択加熱手段は、電子ビームを照射する電子
銃であることを特徴とする特許請求の範囲第1項に記載
の連続鋳造装置。
(2) The continuous casting apparatus according to claim 1, wherein the selective heating means is an electron gun that irradiates an electron beam.
JP19843886A 1986-08-25 1986-08-25 Dripping type casting device Pending JPS6356339A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19843886A JPS6356339A (en) 1986-08-25 1986-08-25 Dripping type casting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19843886A JPS6356339A (en) 1986-08-25 1986-08-25 Dripping type casting device

Publications (1)

Publication Number Publication Date
JPS6356339A true JPS6356339A (en) 1988-03-10

Family

ID=16391083

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19843886A Pending JPS6356339A (en) 1986-08-25 1986-08-25 Dripping type casting device

Country Status (1)

Country Link
JP (1) JPS6356339A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0544114A1 (en) * 1991-11-28 1993-06-02 Thyssen Stahl AG Process and device for casting metallic ingots

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0544114A1 (en) * 1991-11-28 1993-06-02 Thyssen Stahl AG Process and device for casting metallic ingots

Similar Documents

Publication Publication Date Title
JPH06292942A (en) Method and device for producing monotectic alloy
KR20000070812A (en) Method for casting molten metal, apparatus for the same, and cast slab
JP3646570B2 (en) Silicon continuous casting method
JPS6356339A (en) Dripping type casting device
JP3603676B2 (en) Silicon continuous casting method
KR101737719B1 (en) Continuous casting method for ingot produced from titanium or titanium alloy
JP5730738B2 (en) Continuous casting method and continuous casting apparatus for slab made of titanium or titanium alloy
JP6551162B2 (en) Twin roll casting apparatus and casting method
JPS6150065B2 (en)
JP5774438B2 (en) Continuous casting method and continuous casting apparatus for slab made of titanium or titanium alloy
JPH08279B2 (en) Manufacturing method of steel forgings
JPS6333167A (en) Dropping type casting method
JP5627015B2 (en) Continuous casting method and continuous casting apparatus for slab made of titanium or titanium alloy
JP3000371B2 (en) Continuous casting method
JPS61255757A (en) Dropping type casting method
JPH0399757A (en) Twin roll type strip continuous casting method
JPH05285632A (en) Method for electrically melting slag
JPH0126789B2 (en)
JPS63235062A (en) Production of orientated solidified cast ingot by electro slag remelting
JP3394730B2 (en) Continuous casting method of steel slab
JPS62230458A (en) Single-side solidification type continuous casting apparatus
BE1011970A3 (en) Process development of a metal jacket on a tree.
KR20020051310A (en) Method For Continuous Casting A Strip
JPS6410313B2 (en)
JPS6372840A (en) Electroslag refining process