JPS6356004A - Plane antenna - Google Patents

Plane antenna

Info

Publication number
JPS6356004A
JPS6356004A JP20061186A JP20061186A JPS6356004A JP S6356004 A JPS6356004 A JP S6356004A JP 20061186 A JP20061186 A JP 20061186A JP 20061186 A JP20061186 A JP 20061186A JP S6356004 A JPS6356004 A JP S6356004A
Authority
JP
Japan
Prior art keywords
conductor
feeding
conductors
power supply
radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20061186A
Other languages
Japanese (ja)
Inventor
Toshio Abiko
安彦 利夫
Katsuya Tsukamoto
塚本 活也
Hiroo Inoue
博夫 井上
Nobuaki Miyaji
伸明 宮地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP20061186A priority Critical patent/JPS6356004A/en
Publication of JPS6356004A publication Critical patent/JPS6356004A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a plane antenna with a high overall efficiency by separating a radiation section and a feeding system completely so as to design them most efficiently. CONSTITUTION:Dielectric layers 4a-4d are formed by air layers and the interval between both earth conductors 3a, 3b and conductors 5, 6a, 6b is kept to a prescribed distance respectively by a supporting rod 8. Moreover, an earth conductor 3a is provided with a through hole 9 to which connection conductors 7a, 7b are inserted. Since the radiation section 1 and the feeding system 2 are formed completely separately, they are designed most efficiently and the plane antenna with a high overall efficiency is obtained. Since two kinds of feeding points of the radiation conductor 5 are energized by a couple of the feeding conductors 6a, 6b, the plane antenna receiving various polarized waves is easily realized by switching the feeding system.

Description

【発明の詳細な説明】 [技術分Ii!?] 本発明は、放送衛星から送信されるR、j星放送を受G
する平面アンテナに関するものである。
[Detailed description of the invention] [Technical part Ii! ? ] The present invention is a system for receiving R and J star broadcasts transmitted from broadcasting satellites.
The invention relates to a planar antenna.

[背量技術] 、2近、赤道上236000 K Inの+7J’止’
yh FD−によるS F(F帯(12(iHz帯)を
用いた衛星放送が実用化されており、放送衛星から送信
される電波を各家庭で受信するアンテナとしては、パラ
ボラアンテナが一般的である力C5アンテナ形状Rよび
取付部分の梠造が複雑であり、しかも大きな強度を必要
とするので、コストが高くなるという問題がある。そこ
で、パラボラアンテナの上記問題点を解決するために、
形状力C簡単で壁面あるいは屋根に簡単に取り付けるこ
とができ、保守ら容易にでさる平面アンテナが注目され
ている。ところで、この秤の平面アンテナとしては、例
えば、第7図乃至第10図に示すように衷jmに7−ス
カ:体3を設けた1枚の誘電体基板4の表面にクランク
型のマイクロストリップラインよりなる放射用導体5と
λ[?/4)ランス7オーマを具備したマイクロストリ
ップラインよりなる。給電用導体6とを形成、したもの
があった。しかしながら、このように放射用導体5と給
電用導水6とを同−平面に形!、λした従来例にあって
は、放射を目的とする放射部1と、放射ロスの少なくす
ることを目的とする給電系2とを同−溝成で形成して〜
・るので、一方の効率(例えば、放射部1の放射効率)
を重視iれば、池力の効率(例えば、給電系2の給電効
率)が悪くなるというジレンマがあり、平面アンテナの
総合効率を良くすることができないという問題があり、
上記従来例において放射B1の効率を重視した場合には
、等価給電系ロスは数dB/m程度になっていた。なお
、図中、x印は給電点を示しており、A点は左旋円偏波
の取り出し点、B点は右旋円偏波の取り出し点である6 次に、第11図乃至第13図は池の従来例を示すもので
、放射用導体5として第6図(a)〜(e)に示すよう
な方形バッチ導体を用い、放射用導体5とアース導体3
との間に給電用導体6を配置することにより、アンテナ
面と給電面とを分離形成したものであり、所謂トリプレ
ート方式の平面アンテナである。図中、4゛、4″は誘
電体層である。
[Back weight technology] , 2 near, 236,000 K In on the equator +7J 'stop'
Satellite broadcasting using the F band (12 (iHz band)) by yh FD- has been put into practical use, and parabolic antennas are commonly used as antennas for receiving radio waves transmitted from broadcasting satellites in each home. A certain force C5 The antenna shape R and the structure of the mounting part are complicated and require great strength, so there is a problem of high cost.Therefore, in order to solve the above problems of the parabolic antenna,
Planar antennas are attracting attention because they have a simple shape, can be easily attached to walls or roofs, and are easy to maintain. By the way, as a planar antenna for this scale, for example, as shown in Figs. The radiation conductor 5 consisting of a line and λ[? /4) Consists of a microstrip line equipped with a 7-ohm lance. There was one in which a power supply conductor 6 was formed. However, in this way, the radiation conductor 5 and the power supply water conductor 6 are formed on the same plane! , λ, in the conventional example, the radiation part 1 for the purpose of radiation and the feed system 2 for the purpose of reducing radiation loss are formed in the same groove configuration.
・Since it is, one of the efficiency (for example, the radiation efficiency of the radiation part 1)
If emphasis is placed on , there is a dilemma that the efficiency of the pond power (for example, the feeding efficiency of feeding system 2) will deteriorate, and the overall efficiency of the planar antenna cannot be improved.
In the conventional example described above, when emphasis was placed on the efficiency of the radiation B1, the equivalent feed system loss was approximately several dB/m. In addition, in the figure, the x mark indicates the feeding point, point A is the extraction point for left-handed circularly polarized waves, and point B is the extraction point for right-handed circularly polarized waves.6 Next, FIGS. 11 to 13 6(a) to (e) are used as the radiating conductor 5, and the radiating conductor 5 and the earth conductor 3 are connected to each other.
By arranging the feeding conductor 6 between them, the antenna surface and the feeding surface are formed separately, and it is a so-called triplate planar antenna. In the figure, 4'' and 4'' are dielectric layers.

しかしながら、このような従来例にあっては、平面アレ
テナを設計する場合、給電系2と放射部1との間の結合
を良くするためには誘電体層4゛の1・7さを薄くする
必要があるが、給電系ロスを少なくするためにはご電体
層4“のFJ、さを厚くする必要があり、これらの厚さ
の関係を共に満足させることができないという問題があ
った。また、放射部1と給電系2とが完全に分離されて
いないために不要なモードでの動作が発生し易く、不要
モードで動作しないように設計することが難しくなると
いう問題があり、この場合、等価給電系ロスは約3dB
/m程度であった。図中、X印は給電点を例示しており
、この給電点は受信される電波が左旋円偏波であるか右
旋円偏波であるかを考慮するとともに、給電、i2との
インピーダンスマツチングを考慮して適当に設定される
ようになっている。
However, in such conventional examples, when designing a planar array antenna, in order to improve the coupling between the feed system 2 and the radiating section 1, the dielectric layer 4 is made thinner by 1.7 mm. However, in order to reduce power supply system loss, it is necessary to increase the thickness of the FJ of the power layer 4, and there is a problem that it is not possible to satisfy both of these thickness relationships. Since the radiating section 1 and the feeding system 2 are not completely separated, there is a problem that operation in an unnecessary mode is likely to occur, and it is difficult to design the system so that it does not operate in an unnecessary mode. Equivalent power supply system loss is approximately 3dB
/m. In the figure, the X mark exemplifies the feeding point, and this feeding point takes into account whether the received radio waves are left-handed circularly polarized waves or right-handed circularly polarized waves. The settings are set appropriately with consideration to

また第8図は1辺がLの方形バッチ導体よりなる放射用
導体5の給電点と電流分布を示す動作説明図である。
FIG. 8 is an operational explanatory diagram showing the feeding point and current distribution of the radiation conductor 5, which is a rectangular batch conductor with one side of L.

[発明の目的] 本発明は上記の点に鑑みて為されたものであり、その目
的とするところは、放射部と、給電系とを完全に分離す
ることにより、それぞれが最も効率良く設計できるよう
にして総合効率の高い平面アンテナを提供することにあ
る。
[Objective of the Invention] The present invention has been made in view of the above points, and its purpose is to completely separate the radiating section and the power supply system so that each can be designed most efficiently. The object of the present invention is to provide a planar antenna with high overall efficiency.

[発明の開示] (実施例) 第1図および第2図は本発明一実施例を示すもので、第
1のアース導体3aと放射用導体5を第1の誘電体層4
aを介して対向させて放射部1を形成するとともに、第
2のアース導体3bと一対の、給電用導体6 a、 6
 bを第2、第3の誘電体層4b。
[Disclosure of the Invention] (Embodiment) FIGS. 1 and 2 show an embodiment of the present invention, in which a first earth conductor 3a and a radiation conductor 5 are connected to a first dielectric layer 4.
A pair of power feeding conductors 6a, 6 are formed to face each other via a to form the radiation part 1, and are paired with the second ground conductor 3b.
b represents the second and third dielectric layers 4b.

・1cを介して対向させて給電系2を形成し、放射部1
の裏面側に第4の誘電体層4dを介して給電系2を配置
し、放射用導体5の2種の給電点A。
・The power supply system 2 is formed by facing each other via 1c, and the radiation part 1
A power supply system 2 is arranged on the back side of the radiating conductor 5 via a fourth dielectric layer 4d, and two types of power supply points A of the radiation conductor 5 are provided.

已に給電用導体G g、 6 bの給電点を接続導体7
aw7bを介し′ζ接続したものである。また、実施例
では、誘電体層4a、4b、4c、4dは空気層にて形
、成されており、両アース導体3 +1+ 3 bおよ
び各導体5,6a、6bii!1の間隔は支持棒8にて
それぞれ所定距眉久U、αb、Q、c+Qdに保持され
るようになっている。ますこ、アース導体3aには接続
導体7a。
Connect the power supply point of the power supply conductor G g, 6 b to the conductor 7.
This is a 'ζ connection via aw7b. Further, in the embodiment, the dielectric layers 4a, 4b, 4c, and 4d are formed of air layers, and both ground conductors 3+1+3b and each conductor 5, 6a, 6bii! 1 is maintained at predetermined distances U, αb, Q, and c+Qd by a support rod 8, respectively. Masuko, the connection conductor 7a is connected to the ground conductor 3a.

71)が挿通される挿通孔9が穿設されて(する。なお
、誘電体層4 a、 4 b、 4 c、 4 dを従
来例と同様番こ誘電体基板にて形成しても良(1ことは
1了うまでもない。また、給電用導体6a、6b間に誘
電体層を介して第3のアース導体を設けることにより、
給電用導体6 a、 6 b間のアイソレーションをよ
り確実にしても良い。
71) is inserted into the through hole 9. Note that the dielectric layers 4a, 4b, 4c, and 4d may be formed of a thin dielectric substrate as in the conventional example. (1) Needless to say, by providing a third ground conductor between the power supply conductors 6a and 6b via a dielectric layer,
The isolation between the power supply conductors 6a and 6b may be made more reliable.

以下、実施例の動作について説明する。いま、平面アン
テナのディンGは、放射部1のゲインをG、(clB)
、等価給電系ロスをF(dB/ω)、給電系2のマイク
ロストリップラインの永さをLとすれば、 G=G、−FL  (dB) となる。ここに、放射部1のアンテナ受信効率が高い場
合(例えば80%程度)には、平面アンテナのディンG
に対して等価給電系ロスFが大きな二毛響を与えること
になる。ところで、実施例においては、放射g1と、給
電系2とが完全に分淫して形成されているので、それぞ
れが最ら効率良く設計でさ、総合効率の高い平面アンテ
ナが得られるようになってす3す、例元ば、放射部1を
十分な受信効率が得られるように設計したエル合にす、
;いて、等価給電系ロスFを0 、8 dB /’IQ
程度に設計することができ、従来例に比較して総合効率
を大幅に改碧できることになる。
The operation of the embodiment will be described below. Now, the din G of the planar antenna is the gain of the radiating part 1, G, (clB)
, if the equivalent feed system loss is F (dB/ω) and the length of the microstrip line of the feed system 2 is L, then G=G, -FL (dB). Here, when the antenna reception efficiency of the radiator 1 is high (for example, about 80%), the din G of the planar antenna is
The equivalent power supply system loss F has a large effect on the power supply. By the way, in the embodiment, since the radiation g1 and the feeding system 2 are formed completely separately, each can be designed in the most efficient manner, and a planar antenna with high overall efficiency can be obtained. For example, if the radiating section 1 is fitted with an elbow designed to obtain sufficient reception efficiency,
; the equivalent feed system loss F is 0, 8 dB/'IQ
This means that the overall efficiency can be significantly improved compared to the conventional example.

また、一対の給電用導体6 a、 6 bによって放射
用導体5の2種の給電点に給電でさるようになっている
ので、給電方式を切り換え゛ζ各a偏波を受信できる平
面アンテナを容易に実現できることになる。例えば、放
射用導体5の給電点Aから給電した場合には、偏波面X
の直線偏波用平面アンテナとなり、給電点Bから給電し
た場合には、偏波面Yの直線偏波月平面アンテナとなり
、また、給電点A、Bに同時に同相あるいは逆相給電し
た場合には傾きをもった直線偏波用平面アンテナとなる
。一方、給電点Aと給電、αBの給電位相を±90°ず
らせることにより右旋円偏波あるいは左旋円偏波用の平
面アンテナとなる。
In addition, since the pair of feed conductors 6a and 6b feeds power to two types of feed points on the radiation conductor 5, it is possible to switch the feed method and use a planar antenna that can receive each a-polarized wave. This can be easily achieved. For example, when power is supplied from the feeding point A of the radiation conductor 5, the polarization plane
When feeding from feed point B, it becomes a linearly polarized lunar plane antenna with polarization plane Y, and when feed points A and B are fed at the same time in the same phase or in opposite phase, the antenna It becomes a linearly polarized planar antenna with . On the other hand, by shifting the feeding phase of the feeding point A and the feeding phase of αB by ±90°, a planar antenna for right-handed circularly polarized waves or left-handed circularly polarized waves can be obtained.

第3図は、BSコンバータ10を切換スイッチ11を介
して給電用導体6 g、 6 bに選択接続して直線偏
波用アンテナ装置を形成したものであり、直線偏波の垂
直偏波あるいは水平偏波受信を切換スイッチ11にて選
択自在にしている。
FIG. 3 shows a linearly polarized antenna device formed by selectively connecting the BS converter 10 to the feed conductors 6g and 6b via the changeover switch 11. Polarized wave reception can be freely selected using a changeover switch 11.

第4図は、各給?ご用導体6 a、 6 bがらの43
号取り出し点を2個設け、両信号取り出し点間距離ηを
λg/4に設定することにより、両給電煮A、B間の位
相差を90゛にして円偏波用アンテナ装置を形成したも
のであり、切換スイッチ11をa側にセットすることに
よって右旋円偏波が受信され、b側にセットすることに
より左旋円偏波が受信されるようになっている。
Figure 4 shows each salary? Conductor 6a, 6b empty 43
By providing two signal extraction points and setting the distance η between both signal extraction points to λg/4, a circularly polarized antenna device is formed with a phase difference of 90 degrees between both feeds A and B. By setting the changeover switch 11 to the a side, right-handed circularly polarized waves are received, and by setting it to the b side, left-handed circularly polarized waves are received.

第5図は、信号取り呂し点間距離l゛をλg/2に設定
することにより、傾きをもった直#la偏波用アンテナ
装置を形成したものであり、切換スイッチ11を切り換
えることによって傾いた偏波面を反転させることができ
るようになっている。
In FIG. 5, a tilted direct #la polarized antenna device is formed by setting the distance l between signal points to λg/2, and by switching the changeover switch 11. It is now possible to reverse the tilted plane of polarization.

第6図は、方形パッチ素子よりなる放射用導体5の給電
点A、Bをそれぞれ一辺両端の角部に設定した例を示し
ており、両給電点A、Bに同一位相でMF電した場合に
は、偏波面Xの直線偏波用平面アンテナが得られ、逆位
相で給電した場合には、偏波面Yの直線偏波用アンテナ
が得られる。一方、給電、αAのみに給電した場合には
右旋円偏波用アンテナが得られ、給電点Bのみに給電し
た場合には左旋円偏波用アンテナが得られる。
Fig. 6 shows an example in which feeding points A and B of the radiation conductor 5 made of a rectangular patch element are set at the corners of both ends of one side, and when MF current is applied to both feeding points A and B in the same phase. In this case, a linearly polarized planar antenna with a polarization plane X is obtained, and when the power is fed in an opposite phase, a linearly polarized antenna with a polarization plane Y is obtained. On the other hand, when power is fed only to αA, a right-handed circularly polarized wave antenna is obtained, and when power is fed only to feeding point B, a left-handed circularly polarized wave antenna is obtained.

[発明の効果j 本発明は上述のように、第1のアース導体と放射用導体
を!51の誘電体層を介して対向させて放射部を形成す
るとともに、第27−ス導体と一対の給電用導体を第2
、第3の誘電体層を介して対向させて2種の給電系を形
成し、放射部の裏面側に第4の″JJ電体層を介して上
記給電系を配置し、放射用導体の2種の給電点に各給電
用導体の給電点を接続用導体を介して接続したものであ
り、放射部と、給電系とが完全に分離して形成されてい
るので、それぞれが最も効率良く設計でき、総合効率の
高い平面アンテナがf、lられるというダJ果があり、
また、一対の給電用導体にて放射用導体の243の給電
点に給電できるようにしているので、各種偏波を受イ3
できる平面アンテナを容易に実現できるという効果があ
る。
[Effects of the Invention j As described above, the present invention provides a first earth conductor and a radiation conductor! The 27th space conductor and the pair of power supply conductors are connected to the 27th space conductor and the 27th power supply conductor to face each other through the 51st dielectric layer.
, two types of power supply systems are formed by facing each other with a third dielectric layer interposed therebetween, and the above power supply system is arranged on the back side of the radiating section through a fourth "JJ" electric layer, and the radiating conductor is The feed point of each feed conductor is connected to two types of feed points via a connecting conductor, and the radiating part and the feed system are completely separated, so each can be used in the most efficient manner. The result is that a planar antenna that can be designed and has high overall efficiency can be created.
In addition, since a pair of power supply conductors can supply power to 243 power supply points on the radiation conductor, it is possible to receive various polarized waves at 3 points.
This has the effect of easily realizing a planar antenna.

・10図面の簡41) f説11/イ 第1図は本発明−天蒲例の断1711図、第2図は同上
の上面図、第3図乃至第6図は同上の使月例を示す図、
第7図乃至第10図は従来例の要部構成お上り動作を示
す図、第11図乃至第13図は院の従来例の要部慴成お
よび動作を示す図である。
・10 Drawing Simplification 41) Theory f 11/A Figure 1 shows the present invention - 1711 cross-section of the Tenfu example, Figure 2 shows the top view of the same, and Figures 3 to 6 show the example of the same moon. figure,
FIGS. 7 to 10 are diagrams showing the configuration and operation of the main parts of the conventional example, and FIGS. 11 to 13 are diagrams showing the construction and operation of the main parts of the conventional example of a hospital.

1は放射部、2は給電系、3 a、 3 bはアース導
体、4 a、 4 b、 4 c、 4 dは誘電体層
、5放射用導体、6a、bbは給電用導体、7 a、 
7 bは接続導体で・ある。
1 is a radiation part, 2 is a feeding system, 3 a, 3 b are ground conductors, 4 a, 4 b, 4 c, 4 d are dielectric layers, 5 is a radiation conductor, 6 a, bb are feeding conductors, 7 a ,
7 b is a connecting conductor.

代理人 弁理士 石 1)艮 七 6D 第4図 I−1 第5図 a 第6図 戸 第7図 第10図 つ (c )             (d )(e) 第12図 第13図 手続補正書(自発) 昭和61年10月25日Agent Patent Attorney Ishi 1) Ai Shichi 6D Figure 4 I-1 Figure 5 a Figure 6 door Figure 7 Figure 10 Two (c) (d) (e) Figure 12 Figure 13 Procedural amendment (voluntary) October 25, 1986

Claims (1)

【特許請求の範囲】[Claims] (1)第1のアース導体と放射用導体を第1の誘電体層
を介して対向させて放射部を形成するとともに、第2ア
ース導体と一対の給電用導体を第2、第3の誘電体層を
介して対向させて2種の給電系を形成し、放射部の裏面
側に第4の誘電体層を介して上記給電系を配置し、放射
用導体の2種の給電点に各給電用導体の給電点を接続用
導体を介して接続したことを特徴とする平面アンテナ。
(1) A first ground conductor and a radiation conductor are opposed to each other via a first dielectric layer to form a radiation part, and a second earth conductor and a pair of power supply conductors are connected to a second and third dielectric layer. Two types of power supply systems are formed by facing each other with the body layer in between, and the above power supply system is arranged on the back side of the radiating section with a fourth dielectric layer interposed therebetween. A planar antenna characterized in that a feeding point of a feeding conductor is connected via a connecting conductor.
JP20061186A 1986-08-26 1986-08-26 Plane antenna Pending JPS6356004A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20061186A JPS6356004A (en) 1986-08-26 1986-08-26 Plane antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20061186A JPS6356004A (en) 1986-08-26 1986-08-26 Plane antenna

Publications (1)

Publication Number Publication Date
JPS6356004A true JPS6356004A (en) 1988-03-10

Family

ID=16427245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20061186A Pending JPS6356004A (en) 1986-08-26 1986-08-26 Plane antenna

Country Status (1)

Country Link
JP (1) JPS6356004A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01254008A (en) * 1988-04-01 1989-10-11 Hitachi Chem Co Ltd Microstrip antenna
JPH01286501A (en) * 1988-05-12 1989-11-17 Toyota Central Res & Dev Lab Inc Antenna for mobile body

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01254008A (en) * 1988-04-01 1989-10-11 Hitachi Chem Co Ltd Microstrip antenna
JPH01286501A (en) * 1988-05-12 1989-11-17 Toyota Central Res & Dev Lab Inc Antenna for mobile body

Similar Documents

Publication Publication Date Title
US5818391A (en) Microstrip array antenna
KR100526585B1 (en) Planar antenna with circular and linear polarization.
US4816835A (en) Planar antenna with patch elements
US7705782B2 (en) Microstrip array antenna
EP0685900B1 (en) Antennae
JP3029231B2 (en) Double circularly polarized TEM mode slot array antenna
JP2604947B2 (en) Planar antenna
GB2167606A (en) Microwave plane antenna
KR20030054827A (en) Circular Polarized Microstrip Patch Antenna and Array Antenna arraying it for Sequential Rotation Feeding
JPS6356004A (en) Plane antenna
CN212257683U (en) L-band antenna structure and mobile terminal
JP2002118420A (en) Shared polarization planar antenna
JPH0126564B2 (en)
Murata et al. A self-steering planar array antenna for satellite broadcast reception
JPS62210703A (en) Plane antenna
JPS6398201A (en) Plane antenna
KR920009219B1 (en) Plate antenna
JP3068149B2 (en) Microstrip array antenna
JPH01198806A (en) Planar antenna
JPS62172803A (en) Plane antenna
JPH05160634A (en) Polarized wave sharing dual beam plane antenna
JPH0722838A (en) Feeding part for planar antenna
JPH0837414A (en) Plane antenna
Sriram et al. Low profile co-radiator transmit-receive antenna for Ku-band
JPH1188048A (en) Grid array antenna