JPS6355975A - Semiconductor device - Google Patents
Semiconductor deviceInfo
- Publication number
- JPS6355975A JPS6355975A JP61198881A JP19888186A JPS6355975A JP S6355975 A JPS6355975 A JP S6355975A JP 61198881 A JP61198881 A JP 61198881A JP 19888186 A JP19888186 A JP 19888186A JP S6355975 A JPS6355975 A JP S6355975A
- Authority
- JP
- Japan
- Prior art keywords
- gate
- region
- different
- threshold voltage
- semiconductor device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 12
- 239000000758 substrate Substances 0.000 claims abstract description 14
- 239000012535 impurity Substances 0.000 claims abstract description 7
- 230000005669 field effect Effects 0.000 claims description 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 abstract description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 4
- -1 Boron ions Chemical class 0.000 abstract description 3
- 238000001259 photo etching Methods 0.000 abstract description 3
- 230000015572 biosynthetic process Effects 0.000 abstract description 2
- 229910052796 boron Inorganic materials 0.000 abstract description 2
- 229910052814 silicon oxide Inorganic materials 0.000 abstract description 2
- 150000002500 ions Chemical class 0.000 abstract 2
- 229910052681 coesite Inorganic materials 0.000 abstract 1
- 229910052906 cristobalite Inorganic materials 0.000 abstract 1
- 239000000377 silicon dioxide Substances 0.000 abstract 1
- 235000012239 silicon dioxide Nutrition 0.000 abstract 1
- 229910052682 stishovite Inorganic materials 0.000 abstract 1
- 229910052905 tridymite Inorganic materials 0.000 abstract 1
- 238000000034 method Methods 0.000 description 15
- 238000005516 engineering process Methods 0.000 description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 239000010410 layer Substances 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000004020 conductor Substances 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Landscapes
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は半導体装置に係り、特に耐ホツトキャリア効果
がすぐれたMIS型電界効果トランジスタに関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor device, and particularly to an MIS field effect transistor with excellent hot carrier resistance.
従来、耐ホツトキャリアデバイスと有力であった構造は
特公昭48−44056号に記載されているようにLD
D構造があげられる。しかし、ケート長がサブミクロン
に入るとLDD構造でも信頼性が足りず新たな構造が必
要となってきており、構造上の対策の他に回路的工夫も
試みられている。その例としては、日経マイクロデバイ
ス、 1985年夏号1第48項に記載されているよう
に例えばインバータの駆動NMOSトランジスタと出力
ノード間に直列にノーマリオン型のエンハンスメント型
MOSトランジスタをそう入する方式がある。これによ
り、ドレイン、ソース間電圧が2つのMOSトランジス
タで分圧され個々のトランジスタの信頼性を向上させる
ことができる。Conventionally, the structure that has been popular as a hot-resistant carrier device is the LD as described in Japanese Patent Publication No. 48-44056.
An example is the D structure. However, when the gate length reaches submicron, even the LDD structure is not reliable enough and a new structure is required, and in addition to structural measures, circuit improvements are also being attempted. An example of this is a method in which a normally-on enhancement type MOS transistor is inserted in series between the drive NMOS transistor of the inverter and the output node, as described in Nikkei Micro Devices, Summer 1985 Issue 1, Item 48. There is. As a result, the voltage between the drain and the source is divided between the two MOS transistors, and the reliability of each transistor can be improved.
上記従来技術の内、LDD構造ではゲート長がサブミク
ロン、さらにハーフミクロン以下になると耐圧が足りず
、LDD構造の多少の改良だけで根本的な解を得るのは
困難である。Among the above-mentioned conventional techniques, the LDD structure does not have sufficient breakdown voltage when the gate length becomes submicron or even half micron, and it is difficult to obtain a fundamental solution with only slight improvements in the LDD structure.
また、回路技術を用いる場合には、確かに信頼性は向上
するがトランジスタ数が増大するためチップ面積の増大
を防ぐことはできない等の問題があった。Furthermore, when circuit technology is used, although reliability is certainly improved, the number of transistors increases, making it impossible to prevent an increase in chip area.
本発明の目的は信頼性の向上可能な方法として回路技術
を用いる手法を素子構造に実現し、面積の増大を最低減
に抑えることにある。An object of the present invention is to realize a method using circuit technology in an element structure as a method capable of improving reliability, and to suppress an increase in area to a minimum.
上記目的は、1つのMOSトランジスタのチャネル部分
内に基板表面不純物濃度の異なる部分を設け、閾値電圧
の異なる領域を形成する、あるいは、その閾値電圧の異
なる領域毎に異なるゲート電極を形成しかつそれらゲー
ト電極を接続させることにより達成される。The above purpose is to provide regions with different substrate surface impurity concentrations within the channel region of one MOS transistor to form regions with different threshold voltages, or to form different gate electrodes for each region with different threshold voltages, and to This is achieved by connecting the gate electrodes.
本構造におけるホットキャリア耐性を等価回路を用いて
説明する。ここでは、第1図中の7の方をエンハンスメ
ント型MO8,5の方をデプレッション型MO8とし、
同−人力信で動くこれらをCMOインバータの駆動NM
OSトランジスタに応用した例を第3図に、そして比較
して標準型インバータ例を第2図に示す。The hot carrier resistance in this structure will be explained using an equivalent circuit. Here, 7 in Figure 1 is an enhancement type MO8, 5 is a depression type MO8,
The CMO inverter drives these powered by human power.
An example of application to an OS transistor is shown in FIG. 3, and an example of a standard type inverter is shown in FIG. 2 for comparison.
まず、第2図の標準インバータであるが、この駆動NM
、OSMOSトランジスタな負荷容量における動作電圧
軌跡をゲート電圧Vas、ドレイン電圧Vog平面に描
いた図を第2図(b)に示す。First, in the standard inverter shown in Fig. 2, this drive NM
FIG. 2(b) shows the operating voltage locus of the load capacitance of an OSMOS transistor drawn on a plane with gate voltage Vas and drain voltage Vog.
図中の実線22が軌跡である。また、図中には破線21
で基板電流の等電流曲線が示してあり、上から10−8
.10−7.10−aA(7)モノテアル、 、:の図
からCMOSインバータの過渡時期にNMOSトランジ
スタに流れる基板電流は放電動作に多く流九、最大10
−”A弱もの基板電流の流れることが予想される。A solid line 22 in the figure is a locus. In addition, the broken line 21
The isocurrent curve of the substrate current is shown in 10-8 from the top.
.. 10-7.10-aA (7) Monotial, ,: From the figure, the substrate current flowing through the NMOS transistor during the transition period of the CMOS inverter is mostly due to discharge operation, and the maximum 10
- It is expected that a substrate current of less than 1A will flow.
これに対して、第3図(a)に示したように駆動NMO
Sトランジスタの代りに本発明の構造を適用した時の等
価回路では、各トランジスタQa工。On the other hand, as shown in FIG. 3(a), the driving NMO
In the equivalent circuit when the structure of the present invention is applied in place of the S transistor, each transistor Qa.
Qaaの動作電圧軌跡は夫々第3図(b)、(c)の如
くなる。この図の等基電流曲線は上から10−7゜10
−6,1O−9Aである。このように、第2図(b)と
比べて各トランジスタのドレイン電圧がよく分圧されて
いるため、電圧軌跡が基板電流の多量発生領域を通って
いない、電流量にして約3〜4ケタの電流低下となって
いる。一般にホットキャリア効果によるデバイス寿命τ
は、この基板電流のピーク値との間に
τ” (I SUB、peah)A
の関係があり、ピーク値I 5IJBePeJ1kに強
く依存する。ここでAは一般に2.5〜4であるため、
基板電流の3〜4ケタの電流低下は、寿命の7ケタから
10ケタ以上の向上に相当する1以上により、第3図(
a)の等価回路で示される本発明の構造は大きな信頼性
の得ることのできることがわかる。The operating voltage loci of Qaa are as shown in FIGS. 3(b) and 3(c), respectively. The isobase current curve in this figure is 10-7°10 from the top.
-6,1O-9A. In this way, the drain voltage of each transistor is well divided compared to Fig. 2(b), so the voltage trajectory does not pass through the region where a large amount of substrate current occurs, and the amount of current is about 3 to 4 digits. The current has decreased. In general, device lifetime τ due to hot carrier effect
has a relationship of τ” (ISUB, piah)A with the peak value of this substrate current, and strongly depends on the peak value I5IJBePeJ1k. Here, since A is generally 2.5 to 4,
A 3- to 4-digit current reduction in substrate current is equivalent to a 7- to 10- or more-digit improvement in life, as shown in Figure 3 (
It can be seen that the structure of the present invention shown in the equivalent circuit a) can provide high reliability.
ただし、等価回路で示されるように本発明は素子が2倍
に増える(各トランジスタのゲート長は皆一定として)
ため、チップ面積の増大、多少の速度低下は避けられな
い、しかし、本発明の構造を用いれば面積については同
回路をまったく別の2つのトランジスタで形成するより
小さくなりその増加率は全体で10%以下である。However, as shown in the equivalent circuit, the present invention doubles the number of elements (assuming the gate length of each transistor is constant).
Therefore, an increase in chip area and a slight decrease in speed are unavoidable.However, if the structure of the present invention is used, the area will be smaller than if the same circuit were formed using two completely different transistors, and the overall increase rate would be 10%. % or less.
本発明のLSIへの適用は、各トランジスタにかかる回
路動作上のストレスを定量的に把握することにより、チ
ップ内で耐圧の足りない必要個所に用いればよい、耐圧
向上の為に複雑な構造を採用し、複雑なプロセスで形成
するよりも上記回路技術を応用した本発明の構造を用い
る方が賢明である。Application of the present invention to LSIs allows for the creation of complex structures to improve voltage resistance by quantitatively understanding the stress applied to each transistor during circuit operation. It is wiser to use the structure of the present invention, which applies the above circuit technology, than to form it by a complicated process.
また、上記説明は全てNチャネルMO5構造における例
をあげているが、導電型、印加電圧の符号を逆にするこ
とによりPチャネルMO8構造にも応用可能である。Furthermore, although the above explanations all give examples of the N-channel MO5 structure, it can also be applied to the P-channel MO8 structure by reversing the conductivity type and the sign of the applied voltage.
実施例1
以下に本発明の第一の実施例として第1図(a)で示し
た構造を形成するプロセスの概略を第4図を用いて説明
する。Example 1 Below, as a first example of the present invention, a process for forming the structure shown in FIG. 1(a) will be outlined using FIG. 4.
まず、第4図(a)の如くp型10Ω−1シリコン基板
上にフォトエツチング技術により選択的に素子分離領域
48を厚いシリコン酸化膜で形成し、エンハンスメント
型MO8形成用のための閾値電圧制御用のボロンイオン
47を打込む。次に(b)の如くゲート酸化膜42を2
5nm形成し、さらに多結晶シリコン膜を350nm被
膜後再びフォトエツチングにより第1のゲート電極43
を形成する。続いて(c)の如く、再びゲート・酸化膜
を25nm形成後、デプレッション型MO8形成の為の
閾値電圧制御用リンイオンを打込む、最後に(d)の如
く多結晶シリコン膜を350nm形成後フォトエツチン
グにより第2のゲート電極44を形成し、ヒ素を高濃度
打込みn平波散層46を形成し、後は層間絶縁膜被膜後
コンタクト孔をあけ、アルミニウム配線にて上記2つの
ゲートを接続して完成する。First, as shown in FIG. 4(a), an element isolation region 48 is selectively formed with a thick silicon oxide film on a p-type 10Ω-1 silicon substrate by photoetching technology, and threshold voltage control for enhancement type MO8 formation is performed. Boron ions 47 are implanted. Next, as shown in (b), the gate oxide film 42 is
After forming a 5 nm thick polycrystalline silicon film and coating a 350 nm thick polycrystalline silicon film, the first gate electrode 43 is formed by photoetching again.
form. Next, as shown in (c), after forming a gate oxide film again to a thickness of 25 nm, phosphorus ions for threshold voltage control to form a depletion-type MO8 are implanted.Finally, as shown in (d), a polycrystalline silicon film is formed to a thickness of 350 nm, and then photolithography is performed. A second gate electrode 44 is formed by etching, and arsenic is implanted at a high concentration to form an n-plane wave diffusion layer 46. After coating an interlayer insulating film, a contact hole is formed and the two gates are connected using aluminum wiring. and complete it.
なお、本実施例では2つのゲート電極を別々に形成する
ため、各電極下への不純物打ち込みは自己整合的に行え
る。ただし、本実施例では第二ゲート44のゲート長の
制御がむずかしくなる0本実施例をCMOSインバータ
の駆動回路に用いる場合、デプレッション型である第二
ゲートMO5側を出力側にもってくることになる。この
インバータの特性は第一ゲートのエンハンスメント型M
O8側のW/Lには敏感に左右されるが、デプレッショ
ン型MO8のW/Lの多少の変動にはほとんど左右され
ないという特徴をもっている。このため本実施例に示す
プロセスで十分となる。このプロセスは通常の多結晶シ
リコンゲートニ層プロセスであり、特に困難な部分はな
い。In this embodiment, since the two gate electrodes are formed separately, impurities can be implanted under each electrode in a self-aligned manner. However, in this embodiment, it is difficult to control the gate length of the second gate 44. When this embodiment is used in a CMOS inverter drive circuit, the second gate MO5 side, which is a depression type, is brought to the output side. . The characteristics of this inverter are the enhancement type M of the first gate.
Although it is sensitively influenced by the W/L on the O8 side, it has the characteristic that it is almost unaffected by slight fluctuations in the W/L of the depression type MO8. Therefore, the process shown in this embodiment is sufficient. This process is a normal polycrystalline silicon gate two-layer process, and there are no particularly difficult parts.
実施例2
次に本発明の第二の実施例を第5図、第6図を用いて説
明する。Embodiment 2 Next, a second embodiment of the present invention will be described using FIGS. 5 and 6.
上記第一の実施例においては2つのゲート電極を別々に
形成し、後にアルミニウム配線工程でこれらを接続して
いた。第5,6図にはそれ以前の工程で接続した実施例
である。第5図に示したのは、第二ゲート電極4形成時
に第一ゲートと接続してしまうものであり、第6図に示
したのは、第一、第二ゲート共形成後、さらに別の導電
体10を被膜することにより形成したものである。なお
。In the first embodiment described above, the two gate electrodes were formed separately and later connected in an aluminum wiring process. Figures 5 and 6 show an embodiment in which connections were made in the previous process. The one shown in FIG. 5 is one that is connected to the first gate when the second gate electrode 4 is formed, and the one shown in FIG. 6 is one that is connected to the first gate when the second gate electrode 4 is formed. It is formed by coating the conductor 10. In addition.
この導電体はなんでもよく最後のアルミニウム配線工程
で2つのゲート電極接続を同時に継ぐコンタクトホール
を形成する方法でもよい、この場合には、上記二つのゲ
ートを別々にコンタクト孔をあけアルミニウム配線する
よりも縮少化できる。This conductor may be of any material, and a method may also be used in which a contact hole is formed to connect the two gate electrodes at the same time in the final aluminum wiring process.In this case, rather than separately drilling contact holes for the two gates and wiring the aluminum wiring. Can be reduced.
実施例3
上記第二の実施例(第6図)を応用した例を第7図を用
いて説明する。Embodiment 3 An example in which the second embodiment (FIG. 6) is applied will be described with reference to FIG. 7.
この図に示した構造は第一の実施例と同様のプロセスで
第二ゲートまで形成し、さらに第三のゲートを形成した
ものである。これは第一、及び、第二の実施例よりもさ
らに高信頼度が必要な場所、例えば不揮発性メモリであ
るEPROMにおいて書込み高電圧の印加されるトラン
ジスタに応用する場合に有効となる。この場合には左端
の第一ゲートの閾値電圧が最も高く、逆に右端の第三ゲ
ートのそれが最も低く (あるいは負電圧、ただしこれ
らはnチャネルの場合)なっている、これにより、上記
目的を達成できる。また、(b)は、その等価回路を示
したものである。このように、閾値電圧の異なる領域数
、あるいはゲート数はその時必要な信頼性向上量によっ
て定めればよい。The structure shown in this figure is obtained by forming up to the second gate using the same process as in the first embodiment, and further forming the third gate. This is effective in applications where higher reliability is required than in the first and second embodiments, for example, to transistors to which a high write voltage is applied in EPROM, which is a non-volatile memory. In this case, the threshold voltage of the first gate on the left is the highest, and conversely, the threshold voltage of the third gate on the right is the lowest (or negative voltage, if these are n-channels). can be achieved. Moreover, (b) shows the equivalent circuit. In this way, the number of regions with different threshold voltages or the number of gates may be determined depending on the amount of reliability improvement required at that time.
本発明によれば、従来プロセスを応用するだけで従来構
造よりも高信頼度化が達成でき、将来のULSIの構築
に非常に有効となる。According to the present invention, higher reliability than the conventional structure can be achieved simply by applying the conventional process, and it will be very effective for constructing future ULSI.
第1図は本発明の代表例を示す構造の断面図、第2図は
標準CMOSインバータの回路図と動作電圧軌跡を示す
図、第3図は本発明をCMOSインバータに応用した時
の等価回路囚と動作電圧軌跡を示す図、第4図は本発明
の第一の実施例を形成するプロセスフローを示す図、第
5図、第6図。
第7図は本発明のその他の実施例を示した図61.41
・・・半導体基板、2,42.48・・・絶縁膜、3.
4,43,44,71,72,73・・・ゲート電極、
5,7,45,47,75,76.77・・・閾値な圧
制御用不純物層、6.46・・・高濃度拡散層、21,
31・・・等基板電流曲線、22,32゜\〜 ゛
第1ffJ
(久)
v2凹
(良)
221力1乍奄圧ム友形
第3因
(0,、)
(b) (C)%5(V)
Ve(V)3/ vt幕¥L電双
皇縁
32.33 動作’ttvL詳
′rIJ4凹
(a、)
43 FDIノー5itri) 46 nQfJ
層葉 5凹
第 61!1
/θFig. 1 is a cross-sectional view of a structure showing a typical example of the present invention, Fig. 2 is a circuit diagram of a standard CMOS inverter and a diagram showing the operating voltage locus, and Fig. 3 is an equivalent circuit when the present invention is applied to a CMOS inverter. FIG. 4 is a diagram showing a process flow forming a first embodiment of the present invention, and FIGS. 5 and 6 are diagrams showing the operating voltage trajectory. Figure 7 shows another embodiment of the invention. Figure 61.41
... Semiconductor substrate, 2,42.48 ... Insulating film, 3.
4, 43, 44, 71, 72, 73... gate electrode,
5,7,45,47,75,76.77...Threshold pressure control impurity layer, 6.46...High concentration diffusion layer, 21,
31... Equivalent substrate current curve, 22,32゜\~ ゛1st ffJ (long) v2 concave (good) 221 force 1 to pressure 3rd factor (0,,) (b) (C)% 5(V)
Ve(V)3/ vtmaku¥Ldensokoen 32.33 operation'ttvLdetail'rIJ4concave(a,) 43 FDI no5itri) 46 nQfJ
Laminar leaf 5th concave 61st!1 /θ
Claims (1)
ジスタにおけるソース、ドレイン間の該基板表面領域に
おいて2つ以上の不純物濃度の異なる領域のあることを
特徴とする半導体装置。 2、特許請求の範囲第1項記載の半導体装置において、
該不純物濃度の異なる領域毎に別のゲート電極のあるこ
とを特徴とする半導体装置。 3、特許請求の範囲第2項記載の半導体装置において、
該ゲート電極が全て接続されていることを特徴とする半
導体装置。 4、特許請求の範囲第1項、第2項もしくは第3項記載
の半導体装置において、不純物濃度領域と該領域上のゲ
ート電極で形成される夫々MIS型構造においてエンハ
ンスメント型とデプレツシヨン型の2つを含んでいるこ
とを特徴とする半導体装置。[Claims] 1. A semiconductor device characterized in that a MIS type field effect transistor formed on a semiconductor substrate has two or more regions having different impurity concentrations in a surface region of the substrate between a source and a drain. 2. In the semiconductor device according to claim 1,
A semiconductor device characterized in that a separate gate electrode is provided for each region having a different impurity concentration. 3. In the semiconductor device according to claim 2,
A semiconductor device characterized in that all of the gate electrodes are connected. 4. In the semiconductor device according to claim 1, 2, or 3, there are two types of MIS type structures, an enhancement type and a depletion type, each formed of an impurity concentration region and a gate electrode on the region. A semiconductor device comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61198881A JPS6355975A (en) | 1986-08-27 | 1986-08-27 | Semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61198881A JPS6355975A (en) | 1986-08-27 | 1986-08-27 | Semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6355975A true JPS6355975A (en) | 1988-03-10 |
Family
ID=16398476
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61198881A Pending JPS6355975A (en) | 1986-08-27 | 1986-08-27 | Semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6355975A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4990984A (en) * | 1987-11-27 | 1991-02-05 | Nec Corporation | Semiconductor device having protective element |
JP2005531934A (en) * | 2002-07-02 | 2005-10-20 | サンディスク コーポレイション | Technology for manufacturing logic elements using multiple gate layers |
US7208798B2 (en) | 2003-07-07 | 2007-04-24 | Oki Electric Industry Co., Ltd. | Semiconductor device with an enhancement type field effect transistor in which threshold voltage is dependent upon substrate bias voltage |
-
1986
- 1986-08-27 JP JP61198881A patent/JPS6355975A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4990984A (en) * | 1987-11-27 | 1991-02-05 | Nec Corporation | Semiconductor device having protective element |
JP2005531934A (en) * | 2002-07-02 | 2005-10-20 | サンディスク コーポレイション | Technology for manufacturing logic elements using multiple gate layers |
US7208798B2 (en) | 2003-07-07 | 2007-04-24 | Oki Electric Industry Co., Ltd. | Semiconductor device with an enhancement type field effect transistor in which threshold voltage is dependent upon substrate bias voltage |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5426322A (en) | Diodes for electrostatic discharge protection and voltage references | |
EP0535681A2 (en) | Semiconductor body, its manufacturing method, and semiconductor device using the body | |
US6528853B2 (en) | Method and semiconductor structure for implementing dual plane body contacts for silicon-on-insulator (SOI) transistors | |
JPH07131025A (en) | Semiconductor integrated circuit device and fabrication thereof | |
US20040070024A1 (en) | MOSFET with a thin gate insulating film | |
JP2000058675A (en) | Semiconductor integrated circuit device and manufacture thereof | |
JPS5851427B2 (en) | Manufacturing method of insulated gate type read-only memory | |
JP3039336B2 (en) | Semiconductor device | |
JPS6043693B2 (en) | drive circuit | |
US6188111B1 (en) | Dual gate semiconductor device for shortening channel length | |
JPS6355975A (en) | Semiconductor device | |
JP2601202B2 (en) | Semiconductor storage device | |
JPH10173072A (en) | Semiconductor device and manufacture thereof | |
JP3419597B2 (en) | Method for manufacturing semiconductor integrated circuit device | |
US7067888B2 (en) | Semiconductor device and a method of manufacturing the same | |
JPH0878536A (en) | Complementary device using thin film transistor with improved electric current driving | |
JPS63187664A (en) | Semiconductor device | |
JPH1154509A (en) | Semiconductor integrated circuit device and its manufacture | |
JPH02198167A (en) | Semiconductor device | |
JP2000012841A (en) | Semiconductor device | |
JP2000278098A (en) | Ratio circuit, latch circuit and mos transistor | |
JP3316425B2 (en) | Semiconductor integrated circuit and manufacturing method thereof | |
JPH04326524A (en) | Semiconductor device | |
JP3006134B2 (en) | Static semiconductor memory device | |
JPS5968964A (en) | Manufacture of semiconductor device |