JPS6355864A - Fuel detector of fuel cell - Google Patents

Fuel detector of fuel cell

Info

Publication number
JPS6355864A
JPS6355864A JP61198858A JP19885886A JPS6355864A JP S6355864 A JPS6355864 A JP S6355864A JP 61198858 A JP61198858 A JP 61198858A JP 19885886 A JP19885886 A JP 19885886A JP S6355864 A JPS6355864 A JP S6355864A
Authority
JP
Japan
Prior art keywords
fuel
diaphragm
blower
gas detector
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61198858A
Other languages
Japanese (ja)
Inventor
Ryota Doi
良太 土井
Tsutomu Tsukui
津久井 勤
Sankichi Takahashi
燦吉 高橋
Katsuya Ebara
江原 勝也
Osamu Kuroda
修 黒田
Saburo Yasukawa
安川 三郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61198858A priority Critical patent/JPS6355864A/en
Publication of JPS6355864A publication Critical patent/JPS6355864A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04186Arrangements for control of reactant parameters, e.g. pressure or concentration of liquid-charged or electrolyte-charged reactants
    • H01M8/04194Concentration measuring cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To improve detection precision by providing a diaphragm wall at the liquid phase area of a fuel and anolyte supply system so that fuel vapor which permeates through the diaphragm wall is sent by a blower to a gas detector for detection. CONSTITUTION:A diaphragm 14 is provided at the wall of an anolyte reservoir 12 in contact with an anolyte 13. The diaphragm 14 is surrounded by a detection box 16, wherein a blower 15 is installed in lower opening thereof and a gas detector 7 and a thermister 8 used for compensating temperatures detected by the gas detector are installed in upper opening thereof and connected to a detection circuit 6. Fuel vapor which permeates through the diaphragm 14 is sent by the blower 15 to gas detector 7 and detected. Since fuel gas which permeates through the diaphragm 14 is immediately sent to the gas detector 7 by the blower 15, it can be detected with a high precision, coinciding with the fuel concentration in the anolyte 13. Also, because of intervention of the diaphragm 14, no sulfuric acid bleeds and a decline of reliability of the gas detector 7 due to corrosion is avoided.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は液体燃料を直接電気化学反応させて、電気エネ
ルギを発電する燃料電池に係り、中の燃料濃度を精度良
く検出する装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a fuel cell that generates electrical energy by directly electrochemically reacting liquid fuel, and to a device that accurately detects the fuel concentration therein.

〔従来の技術〕[Conventional technology]

液体を燃料とする燃料電池のアノライト中の燃料濃度の
検出方法は間接的及び直接的手法がとられている。間接
的手法は燃料及びアノライトの循環系統の気相部にガス
検出装置を設置する方法である。直接的手法は、たとえ
ば、特開昭56−118273号公報に記載のように小
形の燃料電池を設けて、電池性能で燃料濃度を評価する
方法や燃料の電解反応を利用したサイクリックポルタン
メトリー法がある。
Indirect and direct methods are used to detect the fuel concentration in an anorite of a fuel cell using liquid as fuel. An indirect method is to install a gas detection device in the gas phase of the fuel and anolite circulation system. Direct methods include, for example, a method in which a small fuel cell is installed and the fuel concentration is evaluated based on the cell performance, as described in JP-A No. 56-118273, and cyclic portammetry that utilizes the electrolytic reaction of fuel. There is a law.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

液体を燃料とする燃料電池の燃料の循環系路及び従来の
間接的手法によるアノライト中の燃料濃度検出方法を第
2図に示す。燃料及びアノライトの循環系路について説
明すると、燃料と電解液の混合液アノライト13はポン
プ5により、供給通路3Aを通して積m’ta池本体1
に設けられている燃料室3を径で戻り通路3Bを通って
アノライト溜12に回収される。燃料室3で燃料力曽肖
費され発電に供される。この液体を燃料とする燃料電池
では負荷電流を一定にとった場合、電池電圧は燃料濃度
の強く依存する。燃料濃度が低いと燃料不足をきたして
電池電圧が低くなり、逆に燃料濃度が高いところでは反
応にあずからない燃料が空気極において直接燃焼を起す
ため電池電圧の低下を招き、温度上昇をもたらす等の弊
害が生じるようになる、このため、アノライト中の燃料
濃度は精度良く制御する必要がある。
FIG. 2 shows a fuel circulation system for a fuel cell using a liquid as fuel and a conventional method for detecting the concentration of fuel in an anorite using an indirect method. To explain the fuel and anolyte circulation system, the fuel and electrolyte mixture anolyte 13 is fed to the m'ta pond main body 1 through the supply passage 3A by the pump 5.
The fuel is collected into the anorite reservoir 12 through the return passage 3B through the fuel chamber 3 provided therein. The fuel power is extracted in the fuel chamber 3 and used for power generation. In a fuel cell using this liquid as fuel, when the load current is kept constant, the cell voltage strongly depends on the fuel concentration. If the fuel concentration is low, there will be a fuel shortage and the cell voltage will be low; conversely, if the fuel concentration is high, the fuel that does not participate in the reaction will burn directly at the air electrode, leading to a drop in the cell voltage and a rise in temperature. Therefore, it is necessary to control the fuel concentration in the anorite with high precision.

従来は、アノライト溜12の上部に設置したガス検出装
置により、アノライト溜中の燃料蒸気を検知する方法を
とっている。すなわち、アノライト中の燃料濃度と気相
中の燃料蒸気圧の相関に係を利用したものである。とこ
ろで、アノライト13の気相部にガス検知装置を!2置
する方法では、気相の蒸気圧変化が、燃料蒸気の拡散速
度に大きく依存するためアノライト中の燃料濃度の変化
が早くなると、気相部の燃料蒸気圧が追従できなくなり
、ガス検出装[7で検出した濃度値と実際のアノライト
13中の燃料濃度に大巾なずれが生じる欠点があった。
Conventionally, a gas detection device installed above the anorite reservoir 12 is used to detect fuel vapor in the anorite reservoir. That is, it utilizes the correlation between the fuel concentration in the anorite and the fuel vapor pressure in the gas phase. By the way, there is a gas detection device in the gas phase of anorite 13! In the two-position method, the vapor pressure change in the gas phase largely depends on the diffusion rate of the fuel vapor, so if the fuel concentration in the anorite changes quickly, the fuel vapor pressure in the gas phase cannot follow it, and the gas detection device [There was a drawback that there was a large discrepancy between the concentration value detected in step 7 and the actual fuel concentration in the anorite 13.

すなわち、第3図に示すように。That is, as shown in FIG.

燃料としてメタノールを用いた場合について、アノライ
ト中のメタノール濃度を2110Q/Ωから1+m。
When methanol is used as fuel, the methanol concentration in the anolite is 2110Q/Ω to 1+m.

Q/Q  に十分間で減少させたときのアノライト中の
メタノール濃度は曲線aで示される。これに対して、ガ
ス検知装置7で示したメタノール濃度値は、曲線Cで示
されるように、実際濃度と大きくずれて検出精度が悪い
、また、一般に、ガス検出装置はガスの吸脱着を利用す
るため、高濃度の燃料蒸気にさらされると燃料蒸気の脱
着に長時間かかること等も精度を悪くする原因となって
いる。
The methanol concentration in the anolyte when reduced to Q/Q over a tenth period is shown by curve a. On the other hand, as shown by curve C, the methanol concentration value indicated by the gas detection device 7 deviates greatly from the actual concentration, resulting in poor detection accuracy.In addition, gas detection devices generally utilize gas adsorption and desorption. Therefore, when exposed to high-concentration fuel vapor, it takes a long time to desorb the fuel vapor, which also causes deterioration in accuracy.

電解液は酸性形では硫酸などの腐食性の強いものが使わ
れるため、このような雰囲気ではガス検出装置が腐食さ
れるために寿命が短かく、信頼性に欠ける問題がある。
If the electrolyte is acidic, a highly corrosive substance such as sulfuric acid is used, so in such an atmosphere the gas detection device will be corroded, resulting in a short lifespan and a lack of reliability.

また、この他にも濃度検出装置として、電解電流を利用
したサイクリックポルタンメトリ法やたとえば、特開昭
56−118273号公報に記載のように小型電池を設
けて濃度検出装置として用いるもの等もあるが、これら
は検出感度とは別に検出系システムが複雑になって小形
化に難があるとともに信頼性に欠ける嫌いがある。
In addition, other concentration detection devices include cyclic portammetry using electrolytic current, and a concentration detection device equipped with a small battery as described in JP-A-56-118273. However, in addition to the detection sensitivity, these systems have complicated detection systems, making it difficult to miniaturize them and lacking in reliability.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点は燃料及びアノライトの供給系統の液相部に
隔膜壁14を設け、この隔膜壁14を透過した燃料蒸気
を送風装置15によってガス検知装置7に送って検知す
る手法により解決できる。
The above problem can be solved by providing a partition wall 14 in the liquid phase portion of the fuel and anolite supply system, and sending the fuel vapor that has permeated through the partition wall 14 to the gas detection device 7 using the blower device 15 for detection.

すなわち、隔膜を透過する燃料蒸気の透過量は、アノラ
イト中の燃料濃度と気相側の燃料蒸気分圧および温度で
一義的に定まることを利用したものである。また、送風
装置15を設けることにより、気相側の拡散による遅れ
をなくすことができる。
That is, this method utilizes the fact that the amount of fuel vapor permeating through the diaphragm is uniquely determined by the fuel concentration in the anorite, the fuel vapor partial pressure on the gas phase side, and the temperature. Furthermore, by providing the blower device 15, delays due to diffusion on the gas phase side can be eliminated.

また、ガス検知装置7に送風することにより、検知装置
内の燃料濃度の履歴を解消し応答のよい燃料濃度の測定
か可能となる。
In addition, by blowing air to the gas detection device 7, the history of fuel concentration within the detection device is eliminated, making it possible to measure the fuel concentration with good response.

〔作用〕[Effect]

隔膜を透過した燃料ガスは送風装置で、即時、ガス検知
装置に送られるため、アノライト中の燃料濃度とのずれ
がなく精度よく検出することができる。また、隔膜を介
しているため、硫酸の放出がなくなり、ガス検出装置7
の腐食による信頼性の低下がなくなる。
The fuel gas that has passed through the diaphragm is immediately sent to the gas detection device by the blower, so it can be detected accurately without any deviation from the fuel concentration in the anorite. In addition, since the diaphragm is used, no sulfuric acid is released, and the gas detection device 7
This eliminates the reduction in reliability due to corrosion.

〔実施例〕〔Example〕

実施例を第1図で説明する。 An example will be explained with reference to FIG.

積層電池本体1の両側に空気室2および燃料室3を配列
し、燃料室3にはポンプ5により電解液13を供給通路
3A、3Bを通じて循環する。又、空気室2にはファン
4により酸化剤となる空気を供給通路2Aを通して供給
させて燃料電池を運転する。
An air chamber 2 and a fuel chamber 3 are arranged on both sides of the stacked battery body 1, and an electrolytic solution 13 is circulated into the fuel chamber 3 by a pump 5 through supply passages 3A and 3B. Further, the fuel cell is operated by supplying air as an oxidizing agent to the air chamber 2 through the supply passage 2A by the fan 4.

アノライト13と接しているアノライト溜12の壁面に
隔膜14を設置する。隔膜14を設置した部分を囲った
検出箱16を設け、検出箱16の下部間り部に送風装置
15および上部間り部にガス検出装置7、ガス検出装置
の検出値の温度補償に用いるサーミスタ8を配し、検出
回路6に接続する。
A diaphragm 14 is installed on the wall surface of the anolyte reservoir 12 that is in contact with the anolyte 13. A detection box 16 surrounding the part where the diaphragm 14 is installed is provided, and a blower 15 is installed in the lower part of the detection box 16, a gas detection device 7 is provided in the upper part of the detection box 16, and a thermistor is used for temperature compensation of the detected value of the gas detection device. 8 is arranged and connected to the detection circuit 6.

隔膜14を透過した燃料蒸気は送風装置15によってガ
ス検知装置7に送られて検知される。検知濃度が設定値
より低下すれば検出回路6を介して燃料供給バルブ11
が開いて燃料タンク9より燃料10がアノライト溜12
へ供給される。
The fuel vapor that has passed through the diaphragm 14 is sent to the gas detection device 7 by the blower device 15 and detected. If the detected concentration falls below the set value, the fuel supply valve 11 is activated via the detection circuit 6.
opens and fuel 10 flows from the fuel tank 9 into the anorite reservoir 12.
supplied to

本方式によれば第3図の曲gbで示されるように、電解
液中の燃料濃度と(濃度曲線a)とガス検出装置7によ
って検知した燃料濃度がよく一致し、良好な検出精度を
得ることができる。このことからアノライト溜12中の
アノライト13中の燃料濃度の低下が、即時、検知され
、不足分の燃料が供給されることにより、アノライト中
の燃料濃度を一定に保持することができる。
According to this method, as shown by curve gb in Fig. 3, the fuel concentration in the electrolyte (concentration curve a) and the fuel concentration detected by the gas detection device 7 match well, and good detection accuracy is obtained. be able to. From this, a decrease in the fuel concentration in the anolite 13 in the anolite reservoir 12 is immediately detected, and by supplying fuel for the shortage, the fuel concentration in the anolite can be maintained constant.

ニーで、隔膜14は7ノライト及び燃料の液体を通さず
に気体蒸気を通す機能をもつ膜であれば良く四弗化エチ
レン樹脂製多孔質、たとえば、ボアテックス(ジャパン
ボアテックス製部品名)。
At the knee, the diaphragm 14 may be a porous membrane made of tetrafluoroethylene resin, as long as it has the function of passing gaseous vapor without passing through the 7-norite and fuel liquid, such as VORETEX (part name manufactured by Japan VORETEX).

ポリフロンペーパ(ダイキン工業製商品名)、セルボア
(種水化学工業製商品名)等が十分機能を果す。又、カ
ーボン繊維をすいて紙状にしたものに、弾撥水性の四弗
化エチレン微粒子の懸濁液を処理し焼成したものも良い
。送風装置はファンやブロアー等の小型品で十分可能で
ある。
Polyflon paper (trade name manufactured by Daikin Industries), Cellbore (trade name manufactured by Tanemizu Chemical Industry), etc. function adequately. Alternatively, a paper made of carbon fibers may be treated with a suspension of elastic and water-repellent tetrafluoroethylene fine particles and fired. A small fan or blower can be used as the blower.

C発明の効果〕 本発明によれば、検呂精度がよく、信頼性の高い燃料電
池の燃料検出装置を得ることができる。
C Effects of the Invention] According to the present invention, a fuel detection device for a fuel cell with good test accuracy and high reliability can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の燃料濃度検出装置応用の燃
料電池の運転系統図、第2図は従来型の燃料濃度検出装
置応用の燃料電池の運転系統図。 第3図は本発明及び従来型燃料濃度検出装置の応答特性
の比較を示す図である。 1・・・積層電池本体、2・・・空気室、3・・・燃料
室、4・・・ファン、S・・・ポンプ、6・・・検出回
路、7・・・ガス検出装置、8・・・サーシスタ、9・
・・燃料タンク、10・・・燃料、11・・・燃料供給
バルブ、12・・・アノライト溜、13・・・7ノライ
ト、14・・・隔膜、15・・・送風装置、16・・・
検出箱。          111.1  、′二丁 代理人 弁理士 小川勝男 t−t:;+光3区
FIG. 1 is an operation system diagram of a fuel cell to which a fuel concentration detection device according to an embodiment of the present invention is applied, and FIG. 2 is an operation system diagram of a fuel cell to which a conventional fuel concentration detection device is applied. FIG. 3 is a diagram showing a comparison of the response characteristics of the present invention and the conventional fuel concentration detection device. DESCRIPTION OF SYMBOLS 1... Laminated battery main body, 2... Air chamber, 3... Fuel chamber, 4... Fan, S... Pump, 6... Detection circuit, 7... Gas detection device, 8・・・Sirsista, 9・
...Fuel tank, 10...Fuel, 11...Fuel supply valve, 12...Anolyte reservoir, 13...7 norite, 14...Diaphragm, 15...Blower, 16...
detection box. 111.1 ,'Nichō Agent Patent Attorney Katsuo Ogawa t-t:;+Hikari 3rd Ward

Claims (1)

【特許請求の範囲】[Claims] 1、液体燃料、およびアノライト供給系統の液相部に隔
膜壁を設置し、前記隔膜壁を透過した燃料蒸気を移送す
る送風装置と前記燃料蒸気を検知するガス検知装置とを
設けたことを特徴とする燃料電池の燃料検出装置。
1. A diaphragm wall is installed in the liquid phase part of the liquid fuel and anorite supply system, and a blower device for transferring the fuel vapor that has passed through the diaphragm wall and a gas detection device for detecting the fuel vapor are provided. A fuel detection device for a fuel cell.
JP61198858A 1986-08-27 1986-08-27 Fuel detector of fuel cell Pending JPS6355864A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61198858A JPS6355864A (en) 1986-08-27 1986-08-27 Fuel detector of fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61198858A JPS6355864A (en) 1986-08-27 1986-08-27 Fuel detector of fuel cell

Publications (1)

Publication Number Publication Date
JPS6355864A true JPS6355864A (en) 1988-03-10

Family

ID=16398085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61198858A Pending JPS6355864A (en) 1986-08-27 1986-08-27 Fuel detector of fuel cell

Country Status (1)

Country Link
JP (1) JPS6355864A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000026978A2 (en) * 1998-11-03 2000-05-11 Forschungszentrum Jülich GmbH Method for adjusting the fuel concentration of a fuel mixture containing alcohol or ether as fuel and water, used by a fuel cell and a fuel cell system
JP2007095679A (en) * 2005-09-28 2007-04-12 Samsung Sdi Co Ltd Fuel cell system, and device and method for controlling same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000026978A2 (en) * 1998-11-03 2000-05-11 Forschungszentrum Jülich GmbH Method for adjusting the fuel concentration of a fuel mixture containing alcohol or ether as fuel and water, used by a fuel cell and a fuel cell system
WO2000026978A3 (en) * 1998-11-03 2002-10-24 Forschungszentrum Juelich Gmbh Method for adjusting the fuel concentration of a fuel mixture containing alcohol or ether as fuel and water, used by a fuel cell and a fuel cell system
AU756379B2 (en) * 1998-11-03 2003-01-09 Forschungszentrum Julich Gmbh Method for adjusting the fuel concentration of a fuel mixture containing alcohol or ether as fuel and water, used by a fuel cell and a fuel cell system
JP2007095679A (en) * 2005-09-28 2007-04-12 Samsung Sdi Co Ltd Fuel cell system, and device and method for controlling same

Similar Documents

Publication Publication Date Title
US4025412A (en) Electrically biased two electrode, electrochemical gas sensor with a H.sub.2
US10062915B2 (en) Electrochemical reactor, such as a fuel cell or an electrolyser, provided with a device for measuring a parameter of a gas specific to the operation of said reactor
US7264233B2 (en) Humidifier
JP4678132B2 (en) Fuel cell system
US6696186B1 (en) Humidifying device for a fuel cell, method for humidifying a fuel cell membrane and fuel cell
US3223597A (en) Method and means for oxygen analysis of gases
JP3647181B2 (en) Nitrogen oxide measurement method
US7125617B2 (en) Method of operating phosphoric acid fuel cell
US7655330B2 (en) Method of operating fuel cell and power supply system
WO2015162418A1 (en) Electrochemical cell
US20110212376A1 (en) Amperometric sensor
JP6100066B2 (en) Fuel cell system and control method thereof
JP3128171U (en) Fuel cell device with adjustable operating coefficient
KR20130124941A (en) Method of measuring the electroosmotic transport coefficient of a proton exchange membrane and device for implementing such a method
US20040013912A1 (en) Method and device for determining an alcohol concentration in the electrolyte of fuel cells
JPH04110651A (en) Method and equipment for sensing dinitrogen monoxide
JPS6355864A (en) Fuel detector of fuel cell
US20060237333A1 (en) Method for the detection of carbon monoxide in a hydrogen-rich gas stream
US4960497A (en) Apparatus and method for minimizing the effect of an electrolyte's dissolved oxygen content in low range oxygen analyzers
JP2954174B1 (en) Constant potential electrolytic gas sensor
JP2000009685A (en) Hydrogen gas sensor, fuel cell system and concentration measuring method for hydrogen gas
JP2007024627A (en) Hydrogen detection device and fuel cell system
EP4375398A1 (en) Carbon dioxide recovery system
JP3972822B2 (en) Gas sensor and fuel cell system using the same
JP2005172655A (en) Gas sensor, fuel cell system using it, and vehicle