JPS635576A - Solar cell - Google Patents

Solar cell

Info

Publication number
JPS635576A
JPS635576A JP61149921A JP14992186A JPS635576A JP S635576 A JPS635576 A JP S635576A JP 61149921 A JP61149921 A JP 61149921A JP 14992186 A JP14992186 A JP 14992186A JP S635576 A JPS635576 A JP S635576A
Authority
JP
Japan
Prior art keywords
solar cell
gaas
protrusion
peripheral part
recessed parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61149921A
Other languages
Japanese (ja)
Inventor
Kazuo Ueda
和男 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP61149921A priority Critical patent/JPS635576A/en
Publication of JPS635576A publication Critical patent/JPS635576A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To obtain a large weight ratio output without damaging mechanical strength, by a method wherein a plurality of recessed parts are formed by an etching in the manner in which a grating type protrusion is left containing the peripheral part of a rear surface, and a metal electrode is formed only on the protrusion. CONSTITUTION:On the back main surface of a light receiving surface 3, a plurality of recessed parts 6 are formed in the manner in which a grating type protrusion 5 is left containing the peripheral part. A metal electrode on the rear side is formed only on the protrusion 5 and not formed in the recessed parts 6. Thereby, the strain or warpage of a GaAs substrate in a severe heat shock test and the like is reduced, and the cracks and the like of a solar cell are prevented. The protrusion is left along the peripheral part, so that the cracks and the cutouts at the peripheral part can be prevented, and the mechanical strength of the GaAs solar cell wherein the recessed parts are formed can be maintained. Further the weight of this GaAs solar cell is reduced by 20%, which improves the weight ratio output of 20% when the same conversion efficiency as the conventional cell is obtaind.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は例えば宇宙等で使用される太陽゛電池。[Detailed description of the invention] [Industrial application field] The present invention relates to a solar battery used, for example, in space.

特にGaAs太陽電池の軽量化に関するものである。In particular, it relates to weight reduction of GaAs solar cells.

〔従来の技術〕[Conventional technology]

第3図は従来の宇宙用等に使用されているGaA3太陽
電池の一例の斜視断面図である0図において、111は
GaAs太陽電池基板、1はp−AlGaAs又はp−
GaAs層、2はn−GaAs層、3は反射防止膜を形
成した受光面、4はp層の金属電極、5はn層の裏面電
極である。doはGaAs太陽電池の基板厚みであり、
このdoは例えば270〜300μmである。金属電極
4には通常T i−AgあるいはAu−Zn−Agが使
用され、裏面電極5にはAu/Ge−N1−Au−Ag
が形成されている。Agの厚みはGaAs太陽電池を直
列、並列にアセンブリするために通常4〜5μmの厚み
に形成されている。また、#各金属電極4は最大の効率
が得られるように細かいパターンに形成されているが、
裏面電極5は全面に形成されている。
FIG. 3 is a perspective cross-sectional view of an example of a conventional GaA3 solar cell used for space applications. In FIG. 0, 111 is a GaAs solar cell substrate, 1 is p-AlGaAs or p-
2 is a GaAs layer, 2 is an n-GaAs layer, 3 is a light receiving surface on which an antireflection film is formed, 4 is a metal electrode of the p layer, and 5 is a back electrode of the n layer. do is the substrate thickness of the GaAs solar cell,
This do is, for example, 270 to 300 μm. Usually Ti-Ag or Au-Zn-Ag is used for the metal electrode 4, and Au/Ge-N1-Au-Ag is used for the back electrode 5.
is formed. The thickness of Ag is usually 4 to 5 μm in order to assemble GaAs solar cells in series or parallel. Additionally, # each metal electrode 4 is formed into a fine pattern to obtain maximum efficiency;
The back electrode 5 is formed on the entire surface.

ところで、人工衛星等に搭載される太陽電池は、ロケッ
トの打上げ能力あるいは経済的な観点から、太陽電池の
単位重量当りの電気出力(重量比出力)が大きいことが
要求される。従来の2cm X 2 am”。
Incidentally, solar cells mounted on artificial satellites and the like are required to have a large electrical output per unit weight (weight-specific output) from the viewpoint of rocket launch capability or economics. Conventional 2cm x 2am”.

厚み300μmのGaAs太陽電池の場合重量比出力は
約150 m W / g程度である。
In the case of a GaAs solar cell with a thickness of 300 μm, the weight specific output is about 150 mW/g.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで、GaAs太陽電池の重量比出力を太き(する
には、変換効率を上げるかあるいは基板厚みを薄クシて
重量を小さくすることである。しかし、変換効率を上げ
るには限界があり、また例えば基板厚みを100〜15
0μmに薄くするとGaAs太陽電池の機械的強度が低
下し、製造中あるいは厳しい熱衝撃試験等でセル割れや
破壊が生じるという問題点があった。また、人工衛星等
に搭載される太陽電池には例えば−140℃〜+100
℃の熱サイクルが加わるが、従来の太陽電池では裏面の
金属電極が全面に形成されているので、電極材料と太陽
電池基板との熱膨張係数のちがいによる歪や応力が生じ
、時には破壊に至るという問題があった。
By the way, in order to increase the weight-specific output of a GaAs solar cell, it is possible to increase the conversion efficiency or reduce the weight by reducing the thickness of the substrate. However, there is a limit to increasing the conversion efficiency, and For example, set the substrate thickness to 100 to 15
When the thickness is reduced to 0 μm, the mechanical strength of the GaAs solar cell decreases, causing problems such as cell cracking and destruction during manufacturing or during severe thermal shock tests. In addition, for example, solar cells installed on artificial satellites etc.
℃ thermal cycle is applied, but since conventional solar cells have metal electrodes on the entire surface of the back side, distortion and stress occur due to the difference in thermal expansion coefficient between the electrode material and the solar cell substrate, sometimes leading to destruction. There was a problem.

本発明は上記のような問題点を解決するためになされた
もので、GaAs太陽電池の機械的強度を損なわずに重
量を軽量化し、大きな重量比出力を持つGaAs太陽電
池を得ることを目的とする。
The present invention was made to solve the above-mentioned problems, and its purpose is to reduce the weight of GaAs solar cells without impairing their mechanical strength, and to obtain a GaAs solar cell with a high weight-specific output. do.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係るGaAs太陽電池は、裏面の周辺部を含
み格子状に凸部が残るよう、エツチングにより複数の凹
部を形成し、上記凸部上のみに金属電極を形成するよう
にしたものである。
In the GaAs solar cell according to the present invention, a plurality of concave portions are formed by etching so that convex portions remain in a lattice shape including the peripheral portion of the back surface, and a metal electrode is formed only on the convex portions. .

〔作用〕[Effect]

この発明においては、裏面に設けられた凹部が、GaA
s太陽電池の重量を低減し、凸部はこ、のGaAs太陽
電池の機械的強度を保持する。また、金属電極が凸部上
のみに形成されているので、熱ストレスによる太陽電池
の歪や割れ等を防ぐことが出来る。
In this invention, the recess provided on the back surface is made of GaA
The convex portion reduces the weight of the solar cell and maintains the mechanical strength of the GaAs solar cell. Furthermore, since the metal electrode is formed only on the convex portion, distortion and cracking of the solar cell due to thermal stress can be prevented.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。第1
図はこの発明の一実施例による2CIIX21Ja  
のGaAs太陽電池の斜視断面図である0図において、
100はGaAs太陽電池基板、6は凹部、5は凸部、
d、は凹部の深さ、dtは凹部の基板厚み、a、bはそ
れぞれ格子状の凹部、凸部の巾、Cは周辺部の凸部の巾
である。doは全体の基板厚みで280 μm、  a
、は150 μm、  dzは130 μm、  cは
2m、aは4m、bは1nである。この形状は種々の場
合が考えられるが、周辺部の凸部の巾は機械的強度を保
持するために2fl程度必要である。また、a / b
の比は4あるいは5程度でよい、21面電極は凸部5の
みに形成され、凹部6には形成されない。
An embodiment of the present invention will be described below with reference to the drawings. 1st
The figure shows 2CIIX21Ja according to an embodiment of this invention.
In Figure 0, which is a perspective cross-sectional view of a GaAs solar cell,
100 is a GaAs solar cell substrate, 6 is a concave portion, 5 is a convex portion,
d is the depth of the recess, dt is the substrate thickness of the recess, a and b are the widths of the lattice-shaped recess and projection, respectively, and C is the width of the peripheral projection. do is the total substrate thickness of 280 μm, a
, is 150 μm, dz is 130 μm, c is 2 m, a is 4 m, and b is 1 n. Although various shapes can be considered, the width of the convex portion at the periphery is required to be about 2 fl in order to maintain mechanical strength. Also, a/b
The ratio may be about 4 or 5. The 21-plane electrode is formed only on the convex portion 5 and not on the concave portion 6.

第2図は上記実施例のGaAs太陽電池の裏面の凹凸を
形成するプロセスを示す図である0図において、図(′
b)は図(a)のGaAs基板111の両面にレジスト
7をコーティングする工程、図(11,)は裏面1橿5
およびGaAs基板111を選択的にエツチングする工
程である。この図(C)の工程では、まずAgを硝酸系
のエツチング液でエツチングし、下地のAu/Ge−N
i−Auをゴールドストリッパおよび硝酸系のエツチン
グ液でエツチングする。更に、GaAs基板111を酒
石酸および過酸化水素の混合液でエツチングする。この
ときのエツチングレートは1μm/+win程度であり
、従って150μmエツチングするには約150分必要
である0図(d)はこれらのエツチング終了後、レジス
ト7を除去する工程である。
FIG.
b) is the process of coating resist 7 on both sides of the GaAs substrate 111 shown in figure (a), and figure (11,) is the process of coating the resist 7 on both sides of the GaAs substrate 111 shown in figure (11,).
and a step of selectively etching the GaAs substrate 111. In the process shown in Figure (C), Ag is first etched with a nitric acid-based etching solution, and the underlying Au/Ge-N
Etch the i-Au using a gold stripper and a nitric acid-based etching solution. Further, the GaAs substrate 111 is etched with a mixed solution of tartaric acid and hydrogen peroxide. The etching rate at this time is approximately 1 .mu.m/+win, and therefore approximately 150 minutes are required to etch 150 .mu.m. FIG. 4(d) shows the step of removing the resist 7 after these etchings are completed.

このようにして作製されたGaAs太陽電池は裏面の金
属電極が凹部には形成されず凸部上のみに形成されるこ
とになり、これにより厳しい熱衝撃試験等でのGaAs
太陽電池の歪あるいはソリ等を減少し、太陽電池の割れ
等を防止することができる。また、周辺に沿って凸部が
残るので、周辺部での割れ、欠けを防止するとともに、
凹部を形成したGaAs太陽電池の機械的強度を保持す
ることができる。3らに、qのGaAs太陽電池は重量
が約20%減少し、従来と同じ変換効率が得られる場合
、重量比出力は20%向上することになる。
In the GaAs solar cell produced in this way, the metal electrode on the back side is not formed in the recessed part but only on the convex part, which makes it difficult to perform GaAs solar cells in severe thermal shock tests.
It is possible to reduce distortion or warpage of the solar cell and prevent cracking of the solar cell. In addition, since a convex portion remains along the periphery, it prevents cracking and chipping at the periphery, and
The mechanical strength of the GaAs solar cell in which the recessed portion is formed can be maintained. 3. Moreover, the weight of the q GaAs solar cell is reduced by about 20%, and if the same conversion efficiency as the conventional one is obtained, the weight-specific power output will be improved by 20%.

なお、上記実施例では凹部の形状は正方形としたが、円
形あるいは長方形としてもよい、また、本発明は勿論G
aAS太陽電池以外の太陽電池にも適用でき、上記実施
例と同様の効果が得られる。
In the above embodiment, the shape of the recess is square, but it may also be circular or rectangular.
It can also be applied to solar cells other than aAS solar cells, and the same effects as in the above embodiments can be obtained.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば裏面の周辺部を含み格
子状に凸部が残るよう、エツチングにより複数の凹部を
形成し、凸部上のみに金属電極が形成される構成にした
ので、機械的強度を低下させずに、熱ストレスによる影
響が少なく、重量比出力の大きいGaAs太陽電池が得
られる効果がある。
As described above, according to the present invention, a plurality of concave portions are formed by etching so that convex portions remain in a grid pattern including the peripheral portion of the back surface, and the metal electrode is formed only on the convex portions. This has the effect of providing a GaAs solar cell that is less affected by thermal stress and has a high weight specific output without reducing mechanical strength.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例によるGaAs太陽電池の
斜視断面図、第2図は本発明の製造プロセスを示す図、
第3図は従来のGaAs太陽電池の斜視断面図である6
図中、1はp−AjiGaAS層、又はp−GaAs層
、2はn−G、aAs層、3は反射防止膜を形成した受
光面、4はp−金属電極、5はn−裏面電極、6は凹部
、a、bは格子状の凹部、凸部の巾、Cは周辺部の凸部
の巾、doは基板厚み、d、は凹部の深さ、d!は凹部
の基板厚みである。 なお図中同一符号は同−又は相当部分を示す。
FIG. 1 is a perspective cross-sectional view of a GaAs solar cell according to an embodiment of the present invention, and FIG. 2 is a diagram showing the manufacturing process of the present invention.
Figure 3 is a perspective cross-sectional view of a conventional GaAs solar cell6.
In the figure, 1 is a p-AjiGaAS layer or a p-GaAs layer, 2 is an n-G, aAs layer, 3 is a light receiving surface on which an antireflection film is formed, 4 is a p-metal electrode, 5 is an n-back electrode, 6 is the recess, a, b is the grid-like recess, the width of the protrusion, C is the width of the protrusion in the peripheral area, do is the substrate thickness, d is the depth of the recess, d! is the substrate thickness of the recess. Note that the same reference numerals in the figures indicate the same or equivalent parts.

Claims (2)

【特許請求の範囲】[Claims] (1)半導体基板にGaAsを使用した太陽電池におい
て、 受光面の裏の主面に、周辺部を含み格子状に凸部が残る
よう複数の凹部が形成され、上記凸部上に金属電極が形
成されていることを特徴とする太陽電池。
(1) In a solar cell using GaAs as a semiconductor substrate, a plurality of concave portions are formed on the main surface behind the light-receiving surface so that convex portions remain in a lattice shape including the peripheral portion, and a metal electrode is placed on the convex portions. A solar cell characterized in that:
(2)上記凹部の基板厚みが100〜150μmであり
、上記凸部の基板厚みが250〜300μmであること
を特徴とする特許請求の範囲第1項記載の太陽電池。
(2) The solar cell according to claim 1, wherein the substrate thickness of the concave portion is 100 to 150 μm, and the substrate thickness of the convex portion is 250 to 300 μm.
JP61149921A 1986-06-25 1986-06-25 Solar cell Pending JPS635576A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61149921A JPS635576A (en) 1986-06-25 1986-06-25 Solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61149921A JPS635576A (en) 1986-06-25 1986-06-25 Solar cell

Publications (1)

Publication Number Publication Date
JPS635576A true JPS635576A (en) 1988-01-11

Family

ID=15485491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61149921A Pending JPS635576A (en) 1986-06-25 1986-06-25 Solar cell

Country Status (1)

Country Link
JP (1) JPS635576A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5397400A (en) * 1992-07-22 1995-03-14 Mitsubishi Denki Kabushiki Kaisha Thin-film solar cell
US5508206A (en) * 1993-12-14 1996-04-16 Spectrolab, Inc. Method of fabrication of thin semiconductor device
DE19717713A1 (en) * 1997-04-18 1998-12-24 Ralf Stobbe System recovering excess energy radiated by electrodeless light sources excited by microwaves
EP1061584A2 (en) * 1999-06-17 2000-12-20 Intersil Corporation Self-supported ultra thin silicon wafer process
BE1013081A3 (en) * 1999-06-18 2001-09-04 E N E Sa Treatment method of the rear of a solar cell photovoltaic.
WO2011046206A1 (en) * 2009-10-16 2011-04-21 三菱化学株式会社 Truck vehicle, loading platform, and solar cell panel

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5397400A (en) * 1992-07-22 1995-03-14 Mitsubishi Denki Kabushiki Kaisha Thin-film solar cell
US5472885A (en) * 1992-07-22 1995-12-05 Mitsubishi Denki Kabushiki Kaisha Method of producing solar cell
US5963790A (en) * 1992-07-22 1999-10-05 Mitsubshiki Denki Kabushiki Kaisha Method of producing thin film solar cell
US5508206A (en) * 1993-12-14 1996-04-16 Spectrolab, Inc. Method of fabrication of thin semiconductor device
EP0658944A3 (en) * 1993-12-14 1997-05-07 Spectrolab Inc Thin semiconductor device and method of fabrication.
DE19717713A1 (en) * 1997-04-18 1998-12-24 Ralf Stobbe System recovering excess energy radiated by electrodeless light sources excited by microwaves
EP1061584A2 (en) * 1999-06-17 2000-12-20 Intersil Corporation Self-supported ultra thin silicon wafer process
EP1061584A3 (en) * 1999-06-17 2001-06-13 Intersil Corporation Self-supported ultra thin silicon wafer process
BE1013081A3 (en) * 1999-06-18 2001-09-04 E N E Sa Treatment method of the rear of a solar cell photovoltaic.
WO2011046206A1 (en) * 2009-10-16 2011-04-21 三菱化学株式会社 Truck vehicle, loading platform, and solar cell panel

Similar Documents

Publication Publication Date Title
JP3169497B2 (en) Solar cell manufacturing method
US3690953A (en) Vertical junction hardened solar cell
EP0658944B1 (en) Thin semiconductor device and method of fabrication
US6313397B1 (en) Solar battery cell
US4348254A (en) Method of making solar cell
US4610077A (en) Process for fabricating a wraparound contact solar cell
JP2001504996A (en) Solar cell having slight shading and method for manufacturing the same
AU2006276661A1 (en) Method for manufacturing photoelectric conversion element and the photoelectric conversion element
JPH0682854B2 (en) Solar cell
JPS635576A (en) Solar cell
JP2951061B2 (en) Solar cell manufacturing method
JPH11274538A (en) Substrate for forming high-strength thin semiconductor element, high-strength thin semiconductor element and manufacture thereof
JP3301663B2 (en) Solar cell manufacturing method
JPH01125988A (en) Solar cell element
JP3133494B2 (en) Photovoltaic element
JPS63234566A (en) Solar cell
US4420650A (en) Wedged channel vertical junction silicon solar cell
JP2013207117A (en) Method of roughening substrate, method of manufacturing solar battery, solar battery, and solar battery module
JP2013171903A (en) Solar battery cell
JP2994842B2 (en) Silicon solar cell element
CN113206171A (en) Flexible solar cell and manufacturing method thereof
JPH02244681A (en) Solar cell
JP4558461B2 (en) Solar cell and method for manufacturing the same
JP5868661B2 (en) Bypass diode and manufacturing method thereof
JPS6293981A (en) Manufacture of thin semiconductor device