JPS6355743B2 - - Google Patents

Info

Publication number
JPS6355743B2
JPS6355743B2 JP57149555A JP14955582A JPS6355743B2 JP S6355743 B2 JPS6355743 B2 JP S6355743B2 JP 57149555 A JP57149555 A JP 57149555A JP 14955582 A JP14955582 A JP 14955582A JP S6355743 B2 JPS6355743 B2 JP S6355743B2
Authority
JP
Japan
Prior art keywords
self
plunger
contact
holding
force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57149555A
Other languages
Japanese (ja)
Other versions
JPS5940429A (en
Inventor
Seiji Endo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP14955582A priority Critical patent/JPS5940429A/en
Publication of JPS5940429A publication Critical patent/JPS5940429A/en
Publication of JPS6355743B2 publication Critical patent/JPS6355743B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 この発明は自己保持型電磁接触器の接触子開閉
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a contact opening/closing method for a self-holding electromagnetic contactor.

通例の電磁接触器は、電気回路の開閉に当つて
接触子の開閉を交流電磁石による吸引吸着力とス
プリングによる復帰力とによつて行なつている
が、電気回路閉の状態、すなわち接触子が接触し
たままの状態の保持には電磁石に交流を通電して
おかなければならない。この交流常時通電のた
め、電力を消費するのみならず、時にうなりを発
生したり、温度上昇による電磁石コイルの損傷に
よる故障を起す等の欠点がある。
A typical electromagnetic contactor opens and closes the contact when opening and closing an electric circuit using the suction force of an AC electromagnet and the return force of a spring. To maintain contact, an alternating current must be applied to the electromagnet. This constant alternating current conduction not only consumes power, but also has drawbacks such as sometimes generating beats and causing failures due to damage to the electromagnetic coil due to temperature rise.

これらの欠点を解消する省電力型として、電磁
石の代りに永久磁石を使用した自己保持型ソレノ
イドを設けた電磁接触器(以下、単に自己保持型
電磁接触器と云う)が考案されている。
As a power-saving type that overcomes these drawbacks, an electromagnetic contactor (hereinafter simply referred to as a self-holding electromagnetic contactor) has been devised that uses a permanent magnet instead of an electromagnet and is equipped with a self-holding solenoid.

自己保持型電磁接触器においては、接触子の開
閉を自己保持型ソレノイドによる吸引吸着力と、
スプリングによる復帰力とによつて制御するが、
この自己保持型ソレノイドの駆動は、交流電源を
半波整流あるいは全波整流することで直流電源を
つくり、この電源により吸引釈放して行なわれ
る。すなわち、電気回路を閉にするには、自己保
持型ソレノイドの励磁コイルに直流を瞬時通電す
ることにより、スプリング力に打ち勝つ吸引力で
プランジヤーを吸引吸着するとともに接触子を閉
状態にし、その後はスプリング力に打ち勝つ永久
磁石の吸着力により接触子の閉状態を維持するも
のである。
In self-holding electromagnetic contactors, the opening and closing of the contact is achieved by the suction force of a self-holding solenoid.
It is controlled by the return force of a spring.
This self-holding solenoid is driven by creating a DC power source by half-wave or full-wave rectification of the AC power source, and by drawing and releasing the DC power source. In other words, to close an electric circuit, by instantaneously applying direct current to the excitation coil of the self-holding solenoid, the plunger is attracted and adsorbed by the attraction force that overcomes the spring force, and the contactor is closed. The contact is maintained in the closed state by the attraction force of the permanent magnet that overcomes the force.

また釈放時には、永久磁石からの磁束を打ち消
す方向の直流電流を励磁コイルに通電すること
で、吸着力をスプリング力以下にし、接触子を開
状態とする。
Furthermore, when the contact is released, a DC current is applied to the excitation coil in a direction that cancels out the magnetic flux from the permanent magnet, thereby reducing the attraction force to less than the spring force and opening the contact.

このように自己保持型電磁接触器の接触子の開
閉においては、瞬時の直流通電以外は電力を不要
とするため、省エネルギー型であり、温度上昇に
よる励磁コイルの損傷やうなりの発生等を解消す
る優れた面が多いが、他方、駆動電源が直流のた
め、整流回路、電源極性変更スイツチが必要であ
る等の問題点を有している。
In this way, when opening and closing the contacts of a self-holding magnetic contactor, no electric power is required other than instantaneous direct current, so it is energy-saving and eliminates damage to the excitation coil and generation of buzzing due to temperature rise. Although it has many advantages, it also has problems such as the need for a rectifier circuit and a power supply polarity change switch because the drive power source is direct current.

本発明は、これらの諸問題を解決しようとする
もので、従来、自己保持型電磁接触器の接触子の
開閉は直流によつて行なわなければならないとさ
れてきた通念を打破し、交流による接触子の開閉
を可能ならしめたものである。
The present invention aims to solve these problems, and breaks down the conventional wisdom that the contacts of self-holding electromagnetic contactors must be opened and closed using direct current. This allows the child to open and close.

自己保持型電磁接触器の接触子を開状態にすべ
く励磁コイルに交流を通電した場合、永久磁石の
みで吸着力を有するところに交流の正負両方に発
生する保持吸着力を加えても接触子を開状態にす
ることは不可能の如く考えられるが、本発明者が
種々実験を繰り返した結果、自己保持型電磁接触
器を構成する自己保持型ソレノイドの自己保持状
態でのプランジヤーの磁束密度を飽和あるいは
略々飽和とすることによつて、交流磁界の方向が
永久磁石による磁界と同一方向のときには磁束密
度の増加はあまりなく、永久磁石による磁界と反
対方向に磁界が加えられたとき印加起磁力に比例
して減少し自己保持型ソレノイドの釈放が可能に
なる事実を確認し、この知見に基づいて本発明を
完成したのである。
When alternating current is applied to the excitation coil in order to open the contact of a self-holding magnetic contactor, the contact will not hold even if the holding force generated in both the positive and negative sides of the alternating current is applied to the area where the permanent magnet alone has the holding force. Although it seems impossible to open the plunger in the self-holding state of the self-holding solenoid that constitutes the self-holding electromagnetic contactor, the inventor has repeatedly conducted various experiments. By setting it to saturation or nearly saturation, when the direction of the alternating current magnetic field is the same as the magnetic field from the permanent magnet, the magnetic flux density does not increase much, but when the magnetic field is applied in the opposite direction to the magnetic field from the permanent magnet, the applied magnetic field increases. They confirmed the fact that the magnetic force decreases in proportion to the magnetic force, making it possible to release the self-holding solenoid, and based on this knowledge, they completed the present invention.

第1図は本発明の方法を適用する自己保持型電
磁接触器の一実施例を示す縦断正面図であつて、
外枠1内にフレームヨーク2を収容し、プランジ
ヤー3及び固定コア4を収容する非磁性管5を前
記フレームヨーク2内に収容し、前記非磁性管5
とフレームヨーク2間に永久磁石6を配置し、さ
らにフレームヨーク内の前記永久磁石の下に吸引
用励磁コイル7、釈放用励磁コイル8を収容する
とともに、外枠1の上部に固定接触子14を設
け、これに対設する可動接触子13を前記プラン
ジヤー3の上部に固着する非磁性の支持部材9に
取付け、プランジヤー3を固定コア4より離間す
る方向に働くンプリング10を支持部材9の腕と
外枠1間に設けた構造で、同図はプランジヤー3
と固定コア4が離間し、従つて可動接触子と固定
接触子が開、電気回路が開の状態にあるところを
示している。
FIG. 1 is a longitudinal sectional front view showing an embodiment of a self-holding electromagnetic contactor to which the method of the present invention is applied,
A frame yoke 2 is housed within the outer frame 1, a non-magnetic tube 5 housing the plunger 3 and the fixed core 4 is housed within the frame yoke 2, and the non-magnetic tube 5 is housed within the frame yoke 2.
A permanent magnet 6 is disposed between the frame yoke 2 and the frame yoke, and an attraction excitation coil 7 and a release excitation coil 8 are housed below the permanent magnet in the frame yoke. A movable contact 13 disposed opposite thereto is attached to a non-magnetic support member 9 fixed to the upper part of the plunger 3, and a clamp 10 which acts in a direction to separate the plunger 3 from the fixed core 4 is attached to the arm of the support member 9. This figure shows plunger 3.
The figure shows that the fixed core 4 is separated, the movable contact and the fixed contact are open, and the electric circuit is open.

以上の構造において、電気回路を閉にする、す
なわち可動接触子13と固定接触子14とを閉に
するためには、吸引用励磁コイル7に瞬時、商用
交流を通電してプランジヤー3と固定コア4とを
吸着させる。
In the above structure, in order to close the electric circuit, that is, to close the movable contact 13 and the fixed contact 14, a commercial alternating current is momentarily applied to the attraction excitation coil 7 to connect the plunger 3 and the fixed core. 4 is adsorbed.

プランジヤー3が固定コア4に吸着後は永久磁
石6に磁力により支持スプリング10の力に打ち
勝ち電気回路を閉状態にて維持する。
After the plunger 3 is attracted to the fixed core 4, the magnetic force of the permanent magnet 6 overcomes the force of the support spring 10 and maintains the electric circuit in a closed state.

さらに電気回路を開にする、すなわち可動接触
子13と固定接触子14とを開にするためには、
釈放用励磁コイル8に瞬時、商用交流を通電する
ことでプランジヤー3と固定コア4とを釈放す
る。
Furthermore, in order to open the electric circuit, that is, to open the movable contact 13 and the fixed contact 14,
The plunger 3 and the fixed core 4 are released by momentarily energizing the release excitation coil 8 with commercial alternating current.

次に自己保持型電磁接触器を構成する自己保持
型ソレノイドにおける釈放作用について説明す
る。
Next, the release action in the self-holding solenoid that constitutes the self-holding electromagnetic contactor will be explained.

第2図に示すプランジヤーの磁化曲線におい
て、自己保持状態におけるプランジヤーの磁束密
度(Ba)は永久磁石による磁界により磁化曲線
上A点の位置で示される。
In the magnetization curve of the plunger shown in FIG. 2, the magnetic flux density (Ba) of the plunger in the self-holding state is indicated by the position of point A on the magnetization curve due to the magnetic field of the permanent magnet.

こゝで釈放用励磁コイルに交流電流Iを通電す
ると、プランジヤーに交流磁界が加わりA点の位
置はA→B→A→Cと変化し、それに伴いプラン
ジヤーの磁束密度も変化する。このとき図示の前
記A点が略々飽和状態に位置する場合、前記交流
磁界の方向が永久磁石による磁界と同一方向に加
えられたときには、磁束密度Bpの増加は殆どな
く、永久磁石による磁界と反対方向に磁界が加え
られたときは印加起磁力に比例して減少する。
When an alternating current I is applied to the excitation coil for release, an alternating magnetic field is applied to the plunger, and the position of point A changes from A to B to A to C, and the magnetic flux density of the plunger changes accordingly. At this time, when the illustrated point A is located in a substantially saturated state, when the direction of the alternating current magnetic field is applied in the same direction as the magnetic field by the permanent magnet, there is almost no increase in the magnetic flux density Bp, and the magnetic field by the permanent magnet increases. When a magnetic field is applied in the opposite direction, it decreases in proportion to the applied magnetomotive force.

このようなプランジヤーの磁束密度の変化に伴
いプランジヤーと固定コアの吸着面における吸着
力も同様に変化する。
As the magnetic flux density of the plunger changes, the attraction force on the attraction surfaces of the plunger and the fixed core also changes.

第3図にプランジヤーに発生する吸着力(磁束
の2乗に比例する)と時間との関係を示す。図
中、Fmで示す破線は永久磁石による吸着力、
Fspで示す破線はプランジヤーに付加されるスプ
リング(第1図10)力を表わしている。
FIG. 3 shows the relationship between the attraction force (proportional to the square of the magnetic flux) generated in the plunger and time. In the figure, the broken line indicated by Fm is the attraction force due to the permanent magnet,
The dashed line labeled Fsp represents the spring (Fig. 1, 10) force applied to the plunger.

プランジヤー1に発生する吸着力は永久磁石と
釈放用励磁コイルとによる合成吸着力(Fm+
Fcoil)であり、t0、t1領域ではスプリング力Fsp
より強く、t1、t2領域ではスプリング力Fspの方
が強い。
The attraction force generated on the plunger 1 is the composite attraction force (Fm+
Fcoil), and the spring force Fsp in the t 0 and t 1 regions
The spring force Fsp is stronger in the t 1 and t 2 regions.

プランジヤーに発生する合成吸着力(Fm+
Fcoil)がt1、t2領域にくるとスプリング力Fspに
よりプランジヤーは吸着状態から釈放され、固定
コアとプランジヤーとの間に空隙が生じる。さら
にt2、t3領域に移行したとき、プランジヤーは吸
引状態となり、この吸引力が強すぎると再度、吸
着され、プランジヤーは振動を起こすこととな
る。しかし、本発明において前述のごとく、t2
t3領域においてプランジヤーにおける磁束密度の
増加は少なく、すなわち吸着力の増加が少なく限
定されている。
Combined adsorption force generated in the plunger (Fm+
When Fcoil) reaches the t 1 and t 2 regions, the plunger is released from the adsorption state by the spring force Fsp, and a gap is created between the fixed core and the plunger. Further, when moving to the t 2 and t 3 regions, the plunger enters a suction state, and if this suction force is too strong, it will be attracted again, causing the plunger to vibrate. However, in the present invention, as described above, t 2 ,
In the t 3 region, the increase in magnetic flux density in the plunger is small, that is, the increase in attraction force is small and limited.

一方、永久磁石(第1図6)による吸引吸着力
はプランジヤーと固定コアの空隙の増加とともに
急激に減衰する性質を有しているから、前記永久
磁石と釈放用励磁コイル(第1図8)との合成吸
引吸着力も空隙の増加とともに急激に減衰する。
On the other hand, since the attraction force by the permanent magnet (Fig. 1, 6) has the property of rapidly attenuating as the air gap between the plunger and the fixed core increases, the permanent magnet and the excitation coil for release (Fig. 1, 8) The combined suction and adsorption force also decreases rapidly as the void increases.

従つて、t1、t2領域におけるこの空隙の発生
と、空隙がない場合にプランジヤーに作用する力
(Fm+Fcoil−Fsp)が小さくなるごとく設定さ
れている2つの効果によりt2、t3領域での合成吸
引吸着力は吸着時よりも急激に低下しており、従
つて実際にはt2、t3の領域の永久磁石と励磁コイ
ルによる吸着力は、Fspより小さくなり交流に基
く振動を起すことなく完全な釈放が維持されるも
のと推察される。
Therefore, due to the occurrence of this void in the t 1 and t 2 regions, and the two effects that are set so that the force (Fm + Fcoil − Fsp) that acts on the plunger in the absence of a void is small, the difference in the t 2 and t 3 regions The composite attraction and attraction force of t2 and t3 is actually lower than that at the time of adsorption, and therefore the attraction force due to the permanent magnet and excitation coil is smaller than Fsp, causing AC-based vibration. It is inferred that complete release will be maintained without any delay.

本発明の方法を実施する為に自己保持状態での
プランジヤーの磁束密度を飽和あるいは略々飽和
ならしめる設計には、使用する永久磁石の特性、
プランジヤーを含む磁気回路の性質等を考慮して
決定する。
In order to carry out the method of the present invention, the characteristics of the permanent magnet used,
Determine by taking into consideration the characteristics of the magnetic circuit including the plunger.

本発明の方法を適用する自己保持型電磁接触器
は、停電時も永久磁石の吸着力により接触子1
3,14が密着のまゝで電気回路が閉の状態を維
持する。これは用途によつては、停電解消後に電
磁接触器の操作なしで電気回路閉の状態にあるこ
とが、危険な場合がある。
The self-holding electromagnetic contactor to which the method of the present invention is applied uses the attraction force of the permanent magnet to keep the contactor 1 even during power outages.
3 and 14 remain in close contact and the electrical circuit remains closed. Depending on the application, it may be dangerous to remain in a closed state without operating the electromagnetic contactor after the power outage is resolved.

この問題は、例えば第4図に示す回路を付属さ
せることで容易に解決することができる。
This problem can be easily solved by adding the circuit shown in FIG. 4, for example.

同図において、8は自己保持型電磁接触器の釈
放用励磁コイル、15は自己保持型電磁接触器の
吸引用励磁コイルの励磁により開路から閉路に移
る接点(a接点)、16は主電気回路系に挿入さ
れた電磁コイルの励磁により閉路から開路に移る
接点(b接点)、17,18はスイツチ、19は
過電流継電器、20はダイオード、21はコンデ
ンサーである。
In the figure, 8 is an excitation coil for releasing the self-holding type electromagnetic contactor, 15 is a contact (A contact) that changes from open circuit to closed circuit due to excitation of the excitation coil for attracting the self-holding type electromagnetic contactor, and 16 is the main electric circuit. Contacts 17 and 18 are switches, 19 is an overcurrent relay, 20 is a diode, and 21 is a capacitor.

吸引用励磁コイル7に交流を通電すると接触子
13,14が密着し、主電気回路が閉となり、ま
たa接点15も閉となるとともに吸引用の励磁コ
イル7のb接点(図示せず)が開になるが、この
状態を保持するためには電力を必要としない。こ
こで吸引用コイル7のb接点はプランジヤーと連
動させてあるので、吸着時にはb接点開の状態の
ため釈放作用を防止している。
When alternating current is applied to the attraction excitation coil 7, the contacts 13 and 14 are brought into close contact, the main electric circuit is closed, the a contact 15 is also closed, and the b contact (not shown) of the attraction excitation coil 7 is closed. open, but no power is required to maintain this state. Since the b contact of the suction coil 7 is interlocked with the plunger, the b contact is open during suction, thereby preventing the release action.

停電等のトラブルがない通常の使用の場合は、
スイツチ17をONすることで釈放用励磁コイル
8に交流を通電し釈放が行なわれる。また主電気
回路が閉になると前述の如く自動的にa接点15
が閉となるため、ダイオード20を通してコンデ
ンサー21が充電され、停電発生時にはスイツチ
18をONすることでコンデンサー21に蓄えら
れた電力が釈放用励磁コイル8に流れ釈放が行わ
れる。
For normal use without problems such as power outages,
By turning on the switch 17, alternating current is applied to the release excitation coil 8 to perform release. Also, when the main electric circuit is closed, the A contact 15 will automatically open as described above.
is closed, the capacitor 21 is charged through the diode 20, and when a power outage occurs, by turning on the switch 18, the power stored in the capacitor 21 flows to the release excitation coil 8 and release is performed.

さらに停電発生と同時に釈放されるようにする
には、第4図中、点線内に示すようにb接点16
を設けると、主電気回路系が停電すると同時にb
接点16が閉となり、コンデンサー21に蓄えら
れている電力が釈放用励磁コイル8に流れ釈放が
行われ主電気回路系を開にすることができる。ま
た電磁開閉器としてこの電磁接触器を作用させる
場合は過電流継電器19を設けることで前記と同
様な作用により、接触子13,14を開にするこ
とが可能である。
Furthermore, in order to release the power at the same time as a power outage occurs, contact b 16 as shown in the dotted line in Fig.
When the main electric circuit system is out of power, b
The contact point 16 is closed, and the electric power stored in the capacitor 21 flows to the excitation coil 8 for release, and the release is performed and the main electric circuit system can be opened. Further, when this electromagnetic contactor is used as an electromagnetic switch, an overcurrent relay 19 is provided so that the contacts 13 and 14 can be opened by the same action as described above.

次に本発明の自己保持型電磁接触器の接触子開
閉方法の実施例について記載する。
Next, an embodiment of the contact opening/closing method for a self-holding electromagnetic contactor according to the present invention will be described.

第1図に例示の構造の自己保持型電磁接触器に
おいて、ソレノイドのプランジヤー3の材質
S15C、直径12φ、長さ50mmとし、また永久磁石6
としてSmCO5からなる希土類永久磁石で磁気特
性(BH)max=20MGOeのものを使用した、自
己保持の状態においてプランジヤー3の磁束密度
は14KGであつた。この場合、接触子の開閉と
も商用交流100Vで完全に作動し、又開状態にす
る為には商用交流70〜160Vの印加で加能となり、
商用交流電圧の変割巾内で誤動作なく確実に作動
した。他の実施例ではコイル設計を適切化するこ
とにより接触子の開閉ともに単一コイルにて行う
ことが可能であつた。
In the self-holding electromagnetic contactor having the structure illustrated in Fig. 1, the material of the plunger 3 of the solenoid
S15C, diameter 12φ, length 50mm, and permanent magnet 6
A rare earth permanent magnet made of SmCO 5 with a magnetic property (BH) max = 20 MGOe was used, and the magnetic flux density of the plunger 3 was 14 KG in a self-holding state. In this case, the contactor opens and closes completely with a commercial AC of 100V, and in order to open the contact, a commercial AC of 70 to 160V is applied.
It operated reliably without malfunction within the range of commercial AC voltage. In other embodiments, by optimizing the coil design, it was possible to open and close the contact with a single coil.

上述の如く、本発明の自己保持型電磁接触器の
接触子開閉方法は、従来の直流を用いる自己保持
型電磁接触器の接触子開閉方法と同様に電気回路
の閉状態においても電力消費がなく省エネルギー
化が可能であり、又うなりの発生、温度上昇等に
よる励磁コイル損傷の恐れを解消することも可能
であり、さらに交流にて開閉を行う為、整流回
路、電源極性変更スイツチ等を必要としない。従
つて本発明の自己保持型電磁接触器の接触子開閉
方法は、従来の電磁石のみを使用した電磁接触器
を用いた場合の長所と、永久磁石を使用した自己
保持型電磁接触器を用いた場合の長所とを併有し
た極めて工業的価値の大きなものである。
As mentioned above, the contact opening/closing method for a self-holding magnetic contactor of the present invention consumes no power even when the electric circuit is closed, similar to the conventional contact opening/closing method for a self-holding magnetic contactor using direct current. It is possible to save energy, and it is also possible to eliminate the risk of damage to the excitation coil due to generation of beats and temperature rises.Furthermore, since switching is performed using alternating current, a rectifier circuit, a power supply polarity change switch, etc. are not required. do not. Therefore, the contact opening/closing method for a self-holding electromagnetic contactor of the present invention has the advantages of using a conventional electromagnetic contactor that uses only electromagnets, and the advantages of using a self-holding electromagnetic contactor that uses permanent magnets. It is of extremely great industrial value as it has the advantages of

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法を適用する自己保持型電
磁接触器の一実施例を示す縦断正面図。第2図は
ソレノイドのプランジヤーの磁化曲線図。第3図
は同じくプランジヤーに発生する吸着力と時間と
の関係を示す曲線図。第4図は停電対策用の付属
電気回路例図である。 3:プランジヤー、4:固定コア、6:永久磁
石、7:吸引用励磁コイル、8:釈放用励磁コイ
ル、10:スプリング、13:可動接触子、1
4:固定接触子、19:過電流継電器、20:ダ
イオード、21:コンデンサー。
FIG. 1 is a longitudinal sectional front view showing an embodiment of a self-holding electromagnetic contactor to which the method of the present invention is applied. Figure 2 is a magnetization curve diagram of a solenoid plunger. FIG. 3 is a curve diagram showing the relationship between the adsorption force generated in the plunger and time. FIG. 4 is an example of an attached electric circuit for power outage countermeasures. 3: Plunger, 4: Fixed core, 6: Permanent magnet, 7: Attraction excitation coil, 8: Release excitation coil, 10: Spring, 13: Movable contact, 1
4: Fixed contact, 19: Overcurrent relay, 20: Diode, 21: Capacitor.

Claims (1)

【特許請求の範囲】[Claims] 1 電気回路開閉を行なう自己保持型電磁接触器
の接触子開閉方法において、該自己保持型電磁接
触器が固定接触子に対設する可動接触子を担持す
る支持部材と永久磁石を使用する自己保持型ソレ
ノイドのプランジヤーとを連結してなり、前記プ
ランジヤーの磁束密度を自己保持状態で飽和ある
いは略々飽和となし、かつ前記ソレノイドの励磁
コイルに交流を印加することによつて接触子の開
閉を行なうことを特徴とする自己保持型電磁接触
器の接触子開閉方法。
1. In a contact opening/closing method for a self-holding electromagnetic contactor that opens and closes an electric circuit, the self-holding electromagnetic contactor uses a permanent magnet and a support member that carries a movable contact that faces a fixed contact. The contactor is connected to a plunger of a type solenoid, and the magnetic flux density of the plunger is saturated or almost saturated in a self-holding state, and the contactor is opened and closed by applying alternating current to the excitation coil of the solenoid. A contact opening/closing method for a self-holding electromagnetic contactor, characterized in that:
JP14955582A 1982-08-27 1982-08-27 Self-holding type electromagnetic contactor Granted JPS5940429A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14955582A JPS5940429A (en) 1982-08-27 1982-08-27 Self-holding type electromagnetic contactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14955582A JPS5940429A (en) 1982-08-27 1982-08-27 Self-holding type electromagnetic contactor

Publications (2)

Publication Number Publication Date
JPS5940429A JPS5940429A (en) 1984-03-06
JPS6355743B2 true JPS6355743B2 (en) 1988-11-04

Family

ID=15477721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14955582A Granted JPS5940429A (en) 1982-08-27 1982-08-27 Self-holding type electromagnetic contactor

Country Status (1)

Country Link
JP (1) JPS5940429A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62215373A (en) * 1986-03-14 1987-09-22 Seishi Watanabe Apparatus for removing bubble generated in laver-production process

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4817646B1 (en) * 1969-02-01 1973-05-31
JPS5139807U (en) * 1974-09-20 1976-03-25
JPS5185452A (en) * 1975-01-22 1976-07-27 Omron Tateisi Electronics Co KIDORIREE
JPH0213199U (en) * 1988-07-01 1990-01-26

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4817646U (en) * 1971-07-06 1973-02-28

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4817646B1 (en) * 1969-02-01 1973-05-31
JPS5139807U (en) * 1974-09-20 1976-03-25
JPS5185452A (en) * 1975-01-22 1976-07-27 Omron Tateisi Electronics Co KIDORIREE
JPH0213199U (en) * 1988-07-01 1990-01-26

Also Published As

Publication number Publication date
JPS5940429A (en) 1984-03-06

Similar Documents

Publication Publication Date Title
US20190341214A1 (en) Electromagnetic relay
TW432129B (en) Device for manufacturing single crystals
JP2002289430A (en) Electromagnet and switchgear operating mechanism using it
JP4667664B2 (en) Power switchgear
US5703550A (en) Magnetic latching relay
US6906605B2 (en) Electromagnet system for a switch
JPS6355743B2 (en)
JPS5882754U (en) Electromagnetic device for electromagnetic switch
JPH01302707A (en) Electromagnet
JPH0129290B2 (en)
JP3035864B2 (en) Magnetic adsorption device
JPH0239849B2 (en) EIDEN JISHAKU
CN213092958U (en) Energy-saving self-holding position electromagnet
JPS5943349Y2 (en) lifting magnet
JPS6324604Y2 (en)
JPH0453646A (en) Magnetic chuck
JPH0220004A (en) Electromagnet
JPS5810847B2 (en) Shyakuhougatadenjishayakuuchi
JPS6229882B2 (en)
JPS643157Y2 (en)
JPH04345498A (en) Permanent electromagnetic lifting device which can regulate its attraction force
JPS5938012Y2 (en) electromagnetic solenoid device
JPS60131174A (en) Wall-surface walking machine
JPH0290503A (en) Polarized electromagnet
JPS63156308A (en) Electromagnetic actuator