JPS6355495A - Core for nuclear reactor - Google Patents

Core for nuclear reactor

Info

Publication number
JPS6355495A
JPS6355495A JP61198860A JP19886086A JPS6355495A JP S6355495 A JPS6355495 A JP S6355495A JP 61198860 A JP61198860 A JP 61198860A JP 19886086 A JP19886086 A JP 19886086A JP S6355495 A JPS6355495 A JP S6355495A
Authority
JP
Japan
Prior art keywords
fuel
core
high conversion
region
orifice
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61198860A
Other languages
Japanese (ja)
Inventor
松本 知行
博見 丸山
肇男 青山
幸治 藤村
貞夫 内川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61198860A priority Critical patent/JPS6355495A/en
Publication of JPS6355495A publication Critical patent/JPS6355495A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、軽水減速型原子炉に係り、特に、燃料棒密度
が異なる燃料集合体を炉心半径方向に配した沸騰水型原
子炉に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a light water-moderated nuclear reactor, and particularly to a boiling water reactor in which fuel assemblies having different fuel rod densities are arranged in the radial direction of the core.

〔従来の技術〕[Conventional technology]

核燃料の有効利用をはかる方法として、ワンススル一方
式がある。これは親核物質ウラン238からプルトニウ
ム239への転換を多くし、再処理をせずに続いてプル
トニウム239を焼す方法である。この例として、高転
換バーナ型炉心(特開昭61−129594号公報)が
ある。この炉心は二種類の燃料集合体で構成されており
、各領域の水素原子数密度対燃料原子数密度比(以下H
/Uと記す)を変更している。
One method for effectively utilizing nuclear fuel is the once-through method. This is a method that increases the conversion of the nucleophile uranium-238 to plutonium-239 and then burns the plutonium-239 without reprocessing. An example of this is a high conversion burner type core (Japanese Patent Application Laid-open No. 129594/1983). This core is composed of two types of fuel assemblies, and the ratio of hydrogen atomic number density to fuel atomic number density (hereinafter referred to as H
/U) has been changed.

高転換領域では中性子の平均エネルギを高くするためH
/Uを小さくする必要がある。このため、稠密格子燃料
を用いる。また、バーナ領域では逆にH/Uを大きくす
る必要があり、疎格子燃料を用いる。こ炉心では、現行
炉心と同様に燃料集合体入ロオリフ不スロ径として−様
な口径を用いて゛いる。沸騰水型高転換バーナ炉では二
つの領域の燃料格子間隔が異なるため、−様なオリフィ
ス口径の場合にも、稠密格子燃料は出力が高く沸騰によ
る気泡体積率(以下ボイド率とする)が疎格子燃料に比
べて高い。このため、H/Uは高転換領域で小さく、バ
ーナ領域で大きくなり各領域の特性が改善されている。
In the high conversion region, H
/U needs to be made small. For this reason, dense lattice fuel is used. Moreover, in the burner region, it is necessary to increase H/U, and sparse lattice fuel is used. In this core, similar to the current core, various diameters are used as the diameters of the flow valves entering the fuel assemblies. In a boiling water type high conversion burner furnace, the fuel lattice spacing in the two regions is different, so even if the orifice diameter is -, dense lattice fuel has a high output and a low bubble volume ratio (hereinafter referred to as void ratio) due to boiling. Higher than lattice fuel. Therefore, H/U is small in the high conversion region and large in the burner region, improving the characteristics of each region.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来技術における一様オリフイスを高転換バーナ炉に適
用した場合、稠密格子燃料があるため、炉心圧損が増大
するという問題があった。
When the uniform orifice in the prior art is applied to a high conversion burner furnace, there is a problem in that the core pressure drop increases due to the presence of dense lattice fuel.

本発明の目的は、稠密格子燃料や疎格子燃料を並用した
多領域炉心から構成された沸騰水型高転換バーナ炉にお
いて、圧損を小さくする炉心を提供することにある。
An object of the present invention is to provide a core that reduces pressure loss in a boiling water type high conversion burner furnace configured with a multi-zone core that uses both dense lattice fuel and sparse lattice fuel.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的を達成すめため、本発明では燃料棒密度が高い
稠密格子燃料の入口オリフィス口径を、燃料棒密度が低
い疎格子燃料に比べて小さくしている。
In order to achieve the above object, the present invention makes the inlet orifice diameter of a dense lattice fuel with a high fuel rod density smaller than that of a sparse lattice fuel with a low fuel rod density.

〔作用〕[Effect]

第7図に二つの領域のオリフィス口径を変えた場合の領
域間のボイド率差に対する圧損の変化を示す。高転換領
域の稠密格子燃料は燃料棒本数が多いため、一般に流路
面積が狭く出力が高い。逆に、バーナ領域の疎格子燃料
は燃料棒本数が少ないため、一般に流路面積が広く、出
力が低い。従つて、稠密格子燃料側は流動抵抗が大きい
ため、冷却水が入りにくく、容易に沸騰してボイド率が
高くなる。逆に、疎格子燃料はボイド率が低くなる。
FIG. 7 shows the change in pressure drop with respect to the void ratio difference between the two regions when the orifice diameters of the two regions are changed. Dense lattice fuel in the high conversion region has a large number of fuel rods, so it generally has a narrow flow path area and high output. Conversely, sparse lattice fuel in the burner region has a small number of fuel rods, so generally has a wide flow path area and low output. Therefore, since the flow resistance is large on the dense lattice fuel side, it is difficult for cooling water to enter the fuel side, and it boils easily, resulting in a high void ratio. Conversely, sparse lattice fuel has a lower void fraction.

二つの領域のオリフィス口径を等しくした状態から高転
換領域のオリフィス口径を小さくし、バーナ領域のオリ
フィス口径を大きくした場合、第7図の矢印の方向に変
化し、二領域のボイド率の差が広がり、炉心の圧損が低
下する。
If the orifice diameter in the high conversion region is made smaller and the orifice diameter in the burner region is increased from the state in which the orifice diameters of the two regions are made equal, the orifice diameter changes in the direction of the arrow in Fig. 7, and the difference in void ratio between the two regions increases. It spreads and the pressure drop in the core decreases.

このように稠密格子燃料を用いた高転換領域の入口オリ
フィス口径を小さくし、疎格子燃料を用いたバーナ領域
の入口オリフィス口径を大きくすることにより、全体の
圧損を低下させることができる。
In this manner, by reducing the diameter of the inlet orifice in the high conversion region using dense lattice fuel and increasing the diameter of the inlet orifice in the burner region using sparse lattice fuel, the overall pressure drop can be reduced.

〔実施例〕〔Example〕

以下、本発明の詳細な説明する。 The present invention will be explained in detail below.

第1図は本発明の一実施例である炉心の概略横断面図で
ある。炉心中心領域1には稠密格子の燃料集合体61A
が配置されており、その周囲領域2には疎格子の燃料集
合体61Bが配置されている。燃料集合体61A、61
B内部には図中黒丸で示した位置にクラスタ型制御棒6
4が挿入できるようにシングル管5が置かれている。ま
た、疎格子燃料集合体61Bには中性子の減速効果を良
くするために、内部に気泡を含まない水ロッド6が配置
されている。
FIG. 1 is a schematic cross-sectional view of a core that is an embodiment of the present invention. A dense lattice fuel assembly 61A is located in the core center region 1.
is arranged, and in the surrounding area 2 a sparsely lattice fuel assembly 61B is arranged. Fuel assembly 61A, 61
Inside B, there is a cluster type control rod 6 at the position indicated by the black circle in the figure.
A single tube 5 is placed so that 4 can be inserted. Moreover, in order to improve the neutron moderating effect, water rods 6 that do not contain air bubbles are arranged inside the sparse lattice fuel assembly 61B.

燃料集合体61A及び61Bの下端にオリフィス孔12
を有するオリフィス板14がそれぞれ取付けられている
。燃料集合体61Aに設けられたオリフィス板14のオ
リフィス孔12は、燃料集合体61Bのそれに比べて小
さい。
Orifice holes 12 are provided at the lower ends of the fuel assemblies 61A and 61B.
An orifice plate 14 having a diameter is attached to each of the orifice plates 14. The orifice hole 12 of the orifice plate 14 provided in the fuel assembly 61A is smaller than that in the fuel assembly 61B.

第2図ないし第4図に本発明で用いる燃料集合体の一実
施例を示す。燃料集合体は複数の燃料棒15、下部タイ
プレート16.上部タイプレート17及びスペーサ18
をもつ。21は搬送用ハンドルである。下部タイプレー
ト16及び上部タイプレート17は、正六角形をしてい
る。燃料棒15は、その両端が下部タイプレート16及
び上部タイプレート17にそれぞれ保持される。燃料棒
15はチャンネルボックス23内に正六角形になるよう
に配置されている。燃料棒15のうち何本かはタイロッ
ド15Aであり、その両端は下部タイプレート16及び
上部タイプレート17に固定されている。
An embodiment of the fuel assembly used in the present invention is shown in FIGS. 2 to 4. The fuel assembly includes a plurality of fuel rods 15, a lower tie plate 16. Upper tie plate 17 and spacer 18
have. 21 is a transportation handle. The lower tie plate 16 and the upper tie plate 17 have a regular hexagonal shape. The fuel rods 15 are held at both ends by a lower tie plate 16 and an upper tie plate 17, respectively. The fuel rods 15 are arranged in a regular hexagon in the channel box 23. Some of the fuel rods 15 are tie rods 15A, and both ends thereof are fixed to a lower tie plate 16 and an upper tie plate 17.

燃料集合体下端には、下部炉心支持板56に挿入し、保
持するための円筒部16Aがあり、下部タイプレート1
6と放射状に配置された複数の連結板16Bで結合され
ている。円筒部16Aの内部には、冷却材の流量を制御
するための入口オリフィス孔12と制御棒が通るための
孔13をもったオリフィス板14が取付けられている。
At the lower end of the fuel assembly, there is a cylindrical part 16A for inserting into and holding the lower core support plate 56, and the lower tie plate 1
6 and a plurality of connecting plates 16B arranged radially. An orifice plate 14 having an inlet orifice hole 12 for controlling the flow rate of the coolant and a hole 13 through which a control rod passes is mounted inside the cylindrical portion 16A.

第5図は本発明による炉心を用いたことによる効果を示
した図である。横軸に高転換領域のH/Uを縦軸に高転
換バーナ炉全体の中性子無限増倍率をとり、バーナ領域
のH/Uをパラメータとした時の関係を示している。高
転換領域のH/Uを小さくすると炉心全体の中性子無限
増倍率が増大して、炉心の反応度が高くなり、特性が改
善される0図中に示した矢印は、始点が二領域のボイド
率を等しくした時の状態で、終点が本発明によつて得ら
れた状態を示している。高転換領域のボイド率が増大し
H/ Uが小さくなったことにより、この効果が得られ
たものである。
FIG. 5 is a diagram showing the effect of using the reactor core according to the present invention. The horizontal axis represents H/U in the high conversion region, the vertical axis represents the neutron infinite multiplication factor of the entire high conversion burner furnace, and the relationship is shown when H/U in the burner region is used as a parameter. When H/U in the high conversion region is reduced, the infinite neutron multiplication factor of the entire core increases, the reactivity of the core increases, and the characteristics are improved. The end point shows the state obtained by the present invention when the ratios are made equal. This effect was obtained by increasing the void ratio in the high conversion region and decreasing H/U.

第6図は本発明の他の実施例を示す炉心の横断面図であ
る。本実施例ではバーナ領域2で用いられている疎格子
燃料集合体61Bでは水ロッド6が多数挿入されている
ため、流路面積は高転換領域1の燃料集合体61Aの流
路面積と等しい、これは水ロンドを増やすことにより、
H/Uを増やすように改良したものである。本実施例で
高転換領域のオリフィス口径を小さくし、バーナ領域の
オリフィス口径を大きくした場合には、バーナ領・域の
ボイド率が低くなるため、オリフィス口径を変えない場
合に比べてH/Uの改善効果が大きい。
FIG. 6 is a cross-sectional view of a core showing another embodiment of the present invention. In this embodiment, since a large number of water rods 6 are inserted in the sparse grid fuel assembly 61B used in the burner region 2, the flow path area is equal to the flow path area of the fuel assembly 61A in the high conversion region 1. This is done by increasing water rondo.
This has been improved to increase H/U. In this example, if the orifice diameter in the high conversion region is made smaller and the orifice diameter in the burner region is increased, the void ratio in the burner region will be lower, so H/U will be lower than in the case where the orifice diameter is not changed. The improvement effect is large.

また、流量配分により、稠密格子燃料ではボイド率が高
くなるため、H/Uが低くなり、反応度を抑え、逆に疎
格子燃料ではボイド率が低くなるためH/ Uが高くな
り、反応度を増やして高燃焼度を達成することができ、
炉心の経済性を高めることができる。また、本発明によ
り沸騰水型高松換バーナ炉の高転換領域での高転換特性
、バーナ領域での高いバーナ効率を達成することができ
る。
In addition, due to flow distribution, dense lattice fuel has a high void ratio, which lowers H/U and suppresses reactivity, whereas sparse lattice fuel has a low void ratio, which increases H/U and reduces reactivity. can achieve high burnup by increasing
The economic efficiency of the reactor core can be improved. Further, according to the present invention, it is possible to achieve high conversion characteristics in the high conversion region and high burner efficiency in the burner region of the boiling water type Takamatsu exchange burner furnace.

また、高転換バーナ炉の高転換領域ではボイド率が高く
なるため水力不安定が起こりやすいが、入口オリフィス
口径を小さくすることにより、単相流部の圧損を増やす
ことになり、水力安定性を高めることができる。
In addition, hydraulic instability is likely to occur in the high conversion region of a high conversion burner furnace due to the high void ratio, but by reducing the inlet orifice diameter, the pressure drop in the single-phase flow section will increase, which will improve hydraulic stability. can be increased.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、燃料棒密度が異なる燃料集合体を用い
た沸騰水型高転換バーナ炉において、稠密格子燃料を用
いた場合にも、炉心圧損を増加させない様にすることが
できる。
According to the present invention, in a boiling water type high conversion burner furnace using fuel assemblies with different fuel rod densities, it is possible to prevent core pressure loss from increasing even when dense lattice fuel is used.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の炉心の横断面図、第2図な
いし第4図は第1図の炉心で使用する燃料集合体の構造
図、第5図は本発明による効果の説明図、第6図は本発
明の他の実施例の炉心の横断面図、第7図は二領域の平
均ボイド率の差に対する炉心圧損の関係を示す特性図で
ある。 61A・・・稠密格子燃料集合体、61B・・・疎格子
燃料集合体。
FIG. 1 is a cross-sectional view of a core according to an embodiment of the present invention, FIGS. 2 to 4 are structural diagrams of fuel assemblies used in the core of FIG. 1, and FIG. 5 is an explanation of the effects of the present invention. 6 is a cross-sectional view of a core according to another embodiment of the present invention, and FIG. 7 is a characteristic diagram showing the relationship between the core pressure drop and the difference in average void fraction between two regions. 61A: dense lattice fuel assembly, 61B: sparse lattice fuel assembly.

Claims (1)

【特許請求の範囲】 1、複数の燃料棒を束ね筒状のチャンネルボックス内に
入れたものを燃料集合体とし、前記燃料棒の密度が異な
る前記燃料集合体を半径方向に配置した炉心において、 前記燃料棒の密度が大きい前記燃料集合体の入口オリフ
ィス口径を密度が小さい前記燃料集合体の前記入口オリ
フィス口径に比べて小さくしたことを特徴とする原子炉
の炉心。
[Claims] 1. In a reactor core in which a plurality of fuel rods are bundled and placed in a cylindrical channel box as a fuel assembly, and the fuel assemblies having different fuel rod densities are arranged in the radial direction, A core for a nuclear reactor, characterized in that the diameter of the inlet orifice of the fuel assembly in which the density of the fuel rods is high is smaller than the diameter of the inlet orifice of the fuel assembly in which the density of the fuel rods is low.
JP61198860A 1986-08-27 1986-08-27 Core for nuclear reactor Pending JPS6355495A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61198860A JPS6355495A (en) 1986-08-27 1986-08-27 Core for nuclear reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61198860A JPS6355495A (en) 1986-08-27 1986-08-27 Core for nuclear reactor

Publications (1)

Publication Number Publication Date
JPS6355495A true JPS6355495A (en) 1988-03-09

Family

ID=16398122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61198860A Pending JPS6355495A (en) 1986-08-27 1986-08-27 Core for nuclear reactor

Country Status (1)

Country Link
JP (1) JPS6355495A (en)

Similar Documents

Publication Publication Date Title
JPH07234293A (en) Fuel assembly and nuclear reactor
US5572560A (en) BWR fuel assembly having fuel rods with variable fuel rod pitches
JPS62184389A (en) Fuel rod for reactor fuel aggregate
US4717527A (en) Fuel assembly
JPS60239696A (en) Nuclear fuel aggregate and method of arranging fuel rod assembly thereof
JPS6355495A (en) Core for nuclear reactor
JPS63235891A (en) Fuel aggregate
US4626405A (en) Cruciform skeleton and water cross for a BWR fuel assembly
JP2543930B2 (en) Reactor
JPS5913981A (en) Fuel assembly
JP3036129B2 (en) Fuel assembly
JP3402142B2 (en) Fuel assembly
JPH04294294A (en) Core of nuclear reactor
JPS6138490A (en) Fuel aggregate
JPS60127489A (en) Fuel aggregate
EP0230613A2 (en) Nuclear fuel assembly
JP3212744B2 (en) Fuel assembly
JPS6120887A (en) Core for boiling water type reactor
JPH05346473A (en) Fuel assembly
JP2000111679A (en) Mox fuel assembly
JPH0694871A (en) Fuel assembly for nuclear reactor
JPS6321589A (en) Fuel aggregate
JPS6275290A (en) Core for boiling water type reactor
JPH0452912B2 (en)
JPH04113296A (en) Nuclear reactor and fuel assembly