JPS6355485A - Liquid scintillation counter device - Google Patents

Liquid scintillation counter device

Info

Publication number
JPS6355485A
JPS6355485A JP61197986A JP19798686A JPS6355485A JP S6355485 A JPS6355485 A JP S6355485A JP 61197986 A JP61197986 A JP 61197986A JP 19798686 A JP19798686 A JP 19798686A JP S6355485 A JPS6355485 A JP S6355485A
Authority
JP
Japan
Prior art keywords
circuit
systems
signal
multipliers
simultaneous counting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61197986A
Other languages
Japanese (ja)
Other versions
JPH0616107B2 (en
Inventor
Koichi Tsuda
孝一 津田
Hiroshi Maekawa
前川 洋
Tatsuo Yamamoto
立夫 山本
Seiji Omashi
御座 精二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OYO KOKEN KOGYO KK
Japan Atomic Energy Agency
Original Assignee
OYO KOKEN KOGYO KK
Japan Atomic Energy Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OYO KOKEN KOGYO KK, Japan Atomic Energy Research Institute filed Critical OYO KOKEN KOGYO KK
Priority to JP19798686A priority Critical patent/JPH0616107B2/en
Publication of JPS6355485A publication Critical patent/JPS6355485A/en
Publication of JPH0616107B2 publication Critical patent/JPH0616107B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of Radiation (AREA)

Abstract

PURPOSE:To permit high-accuracy measurement of trace radioactivity by disposing three pieces of photoelectron multipliers so as to face a vial and using simultaneous counting circuits for 2 system operations and 3 system operations among 3 systems. CONSTITUTION:Three pieces of the quartz window photoelectron multipliers 1 are disposed horizontally at 120 deg. intervals so as to face the vial 3. The timing signal 4 formed to 15+1sec pulse width in a constant fraction discriminator circuit after amplification of the outputs from the multipliers 1 with a preamplifier is introduced to a simultaneous counting circuit 13 which can select the operations of the simultaneous counting circuit 11 for the 2 system operations among 3 systems and the simultaneous counting circuit 12 for the 3 system operations among 3 systems by a selector switch 14. On the other hand, waveform signals 5 from the multipliers 1 are applied to a sum amplifier 6 and after said signals are amplified with a linear amplifier, the signals are inputted to a linear signal input part 9 of a linear gate circuit 7. The output signal from the circuit 13 is inputted through a gate and delay circuit for timing adjustment to a gate signal input part 8 of the circuit 7. The radiation signal tuned thereto is inputted to a multiplex pulse height analyzer 10.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は液体シンチレーション計数装置に関する。詳し
くは、本発明は、光電子増倍管の配置と電気回路に工夫
をこらすことにより、主として低エネルギーβ線放出放
射性核種・三重水素(トリチウム)の放射能測定におい
て、高効率測定と化学発光(ケミカルルミネッセンス)
除去測定ができて微量放射能を高精度測定するために利
用される液体シンチレーション計数装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a liquid scintillation counting device. Specifically, the present invention achieves high efficiency measurement and chemiluminescence (tritium) radioactivity measurement mainly for low-energy β-ray emitting radionuclides and tritium by devising the arrangement of photomultiplier tubes and electric circuits. chemical luminescence)
This invention relates to a liquid scintillation counting device that is capable of removal measurement and is used for highly accurate measurement of trace amounts of radioactivity.

(従来の技術) 従来の液体シンチレーション計数装置においては、2本
の光電子増倍管をバイアル瓶に面するように180°に
対向して配置し、各光電子増倍管からのタイミング信号
を2系統中2系統作動計数回路で計数する方法が採られ
て来た。(参考文献:南山堂発行、石川寛昭著「液体シ
ンチレーション測定法」の第5章「計数装置の機構」)
(発明が解決しようとする問題点) 本発明は次の3点を解決せんとするものである。
(Prior Art) In a conventional liquid scintillation counting device, two photomultiplier tubes are arranged facing each other at 180 degrees so as to face a vial, and timing signals from each photomultiplier tube are transmitted through two systems. A method of counting using a counting circuit operating in two systems has been adopted. (Reference: Chapter 5 “Mechanism of counting device” in “Liquid Scintillation Measurement Method” by Hiroaki Ishikawa, published by Nanzando)
(Problems to be Solved by the Invention) The present invention attempts to solve the following three points.

(1)低効率 従来型の液体シンチレーション計数装置は三重水素(ト
リチウム)に対する計数効率が低い。
(1) Low efficiency Conventional liquid scintillation counting devices have low counting efficiency for tritium.

(10〜30%) (2)化学発光(ケミカルルミネッセンス)による疑似
計数 化学発光とは液体シンチレータ−と測定試料を混合した
時化学的励起によって生じる発光のことで、アルカリ性
測定試料では、この化学発光が高頻度で長時間持続し、
誤差要因となる。
(10-30%) (2) Pseudo-counting due to chemiluminescence Chemiluminescence refers to the luminescence produced by chemical excitation when a liquid scintillator and a measurement sample are mixed. is frequent and lasts for a long time,
This becomes a cause of error.

(3)測定モード選択の煩雑さ 化学発光のないサンプルは高効率だけを目標にした測定
モード、他方、化学発光のあるサンプルは化学発光を除
去する測定モードと言うように、サンプルの性質に応じ
て測定モードを選ぶ必要がある。
(3) Complications in selecting measurement modes Depending on the nature of the sample, for example, a sample without chemiluminescence may be placed in a measurement mode that aims only at high efficiency, whereas a sample with chemiluminescence may be placed in a measurement mode that removes chemiluminescence. You need to select the measurement mode.

(問題点を解決するための手段) +11効率について 本発明においては、3本の光電子増倍管をバイアル瓶に
面するように配置し、2本を用いる従来型装置よりバイ
アル瓶を見込む立体角を大きくするとともに、3系統中
2系統作動同時計数回路を使用することによって、従来
法の2系統中2系統作動同時計測回路で落とされる事象
も観測でき、これにより従来型よりも高効率が得られる
。ここに、2系統中2系統作動同時計測回路とは、三つ
の信号入力部(A、B、C)を有し、そのうちの少なく
とも二つのの信号入力部(八とB、 BとCI CとA
(Means for solving the problem) Regarding the +11 efficiency, in the present invention, three photomultiplier tubes are arranged so as to face the vial, and the solid angle looking into the vial is lower than that of the conventional device using two photomultiplier tubes. In addition to increasing the number of systems, by using a simultaneous counting circuit that operates on two of the three systems, it is possible to observe events that would be missed by the simultaneous counting circuit that operates on two of the two systems in the conventional method, thereby achieving higher efficiency than the conventional type. It will be done. Here, the simultaneous measurement circuit for two out of two systems has three signal input sections (A, B, C), and at least two of them have signal input sections (8 and B, B and CI, C and A
.

AとBとC)に決められた時間幅(分解時間)内にパル
ス入力が起これば、同時計数信号パルスが出力するもの
である。なおまた、3系統中3系統作動同時計数回路と
は三つの信号入力部を有し、三つの信号入力部全てにパ
ルス入力が分解時間内に起きれば同時計数信号パルスを
出力するものである。これらにおける電気回路は既存の
電子技術で製作可能で、N1Mモジュールとして市販さ
れている。
If a pulse input occurs within the time width (resolution time) determined by A, B, and C), a coincidence signal pulse is output. Furthermore, a coincidence counting circuit operating in three of the three systems has three signal input sections, and outputs a coincidence signal pulse if a pulse input occurs to all three signal input sections within the resolution time. The electrical circuits in these can be fabricated using existing electronic technology and are commercially available as N1M modules.

(2)化学発光による疑似計数について化学発光は単一
光子の偶発放出現象であるので、3個の光電子増倍管へ
同時に化学発光の光子が入射する確率は、2個の光電子
増倍管へ同時に入射する確率に比べて格段に小さい。そ
こで、本発明においては、従来法より光電子増倍管を増
やして3本とし、3系統中3系統作動同時計数回路を用
いることにより化学発光除去測定ができるようにした。
(2) Pseudo-counting due to chemiluminescence Since chemiluminescence is a phenomenon of accidental emission of single photons, the probability that chemiluminescent photons will simultaneously enter three photomultiplier tubes is as follows: The probability of both being incident at the same time is much smaller. Therefore, in the present invention, the number of photomultiplier tubes is increased to three compared to the conventional method, and three of the three systems are operated using coincidence circuits, thereby making it possible to perform chemiluminescence removal measurement.

なお、放射線発光は複数個の光子が同時に全方向に放出
されるので、本発明の装置でも計数することができ、実
用的効率が得られる。
Note that since a plurality of photons are simultaneously emitted in all directions in radiation emission, the device of the present invention can also be counted, and practical efficiency can be obtained.

(3)測定モード選択の煩雑さについて前項(1)及び
(2)において注意すべきことは、高効率化と化学発光
除去測定が同時に行い得ないことである。すなわち、前
項(1)において示された手段は化学発光に関しては改
善策にはならないし、また前項(2)において示された
手段は効率の改善策とはならない。従って、サンプルの
性質に応じて、化学発光のないものは前項(l)の手段
で、化学発光のあるものは前項(2)の手段と言うよう
に測定手法を適宜選択する必要がある。
(3) Regarding the complexity of selecting a measurement mode What should be noted in the previous sections (1) and (2) is that high efficiency and chemiluminescence removal measurement cannot be performed at the same time. That is, the means shown in the preceding section (1) do not serve as a measure for improving chemiluminescence, and the means shown in the preceding section (2) do not serve as a measure for improving efficiency. Therefore, depending on the nature of the sample, it is necessary to appropriately select the measurement method, such as using the method described in (l) above for samples without chemiluminescence, and using the method described in (2) above for samples with chemiluminescence.

本発明においては、3本の光電子増倍管が、どの場合で
も、共用できることに着目し、1台の液体シンチレーシ
ョン計数装置に3本の光電子増倍管、3系統中2系統作
動同時計数回路及び3系統中3系統作動同時計数回路を
具備させることによって、1台で2種の機能を備えた液
体シンチレーション計数装置を達成することができた。
In the present invention, we focused on the fact that three photomultiplier tubes can be used in common in any case, and one liquid scintillation counting device includes three photomultiplier tubes, two out of three systems operating coincidence circuit, and By equipping three of the three systems with simultaneous counting circuits, it was possible to achieve a liquid scintillation counting device with two types of functions in one device.

本発明の液体シンチレーション計数装置は、3本の光電
子増倍管を共用し、1台の装置で、化学発光のないサン
プルに対しては、3系統中2系統作動同時計数回路で高
効率測定が、また化学発光のあるサンプルに対しては、
3系統中3系統作動同時計数回路で化学発光除去測定が
極めて簡便に行うことができる。
The liquid scintillation counting device of the present invention uses three photomultiplier tubes in common, and can perform high-efficiency measurements for samples without chemiluminescence using two out of three systems operating coincidence circuits. , and for chemiluminescent samples,
Chemiluminescence removal measurement can be performed extremely easily with three out of three systems operating simultaneous counting circuits.

(実施例) 本発明の液体シンチレーション計数装置の作用効果を検
証するために、実施例1 (第1図)及び実施例2(第
2図)で示される本発明の2形式の液体シンチレーショ
ン計数装置を市販の従来型の装置と比較実験を行った。
(Example) In order to verify the effect of the liquid scintillation counting device of the present invention, two types of liquid scintillation counting device of the present invention shown in Example 1 (FIG. 1) and Example 2 (FIG. 2) were prepared. We conducted a comparative experiment with a commercially available conventional device.

1)実験装置概要 実施例1、実施例2とも、100 mlバイアル3を測
定対象とし、内径50 +1IIlφの反射筒2(内面
に反射材として酸化マグネシウム粉を塗布した)に光電
子増倍管結合用貫通孔を設けた口径46IllIIlφ
の石英窓光電子増倍管1をバイアル瓶3に面するように
水平に120°間隔で3本配置した。
1) Overview of experimental equipment In both Examples 1 and 2, a 100 ml vial 3 was measured, and a photomultiplier tube was coupled to a reflector tube 2 with an inner diameter of 50 + 1IIlφ (the inner surface of which was coated with magnesium oxide powder as a reflective material). Diameter 46IllIIlφ with through hole
Three quartz window photomultiplier tubes 1 were arranged horizontally at 120° intervals so as to face the vial 3.

叉1班−1 光電子増倍管1からの出力をプリアンプ(図では省略)
で増幅後、コンスタントフラクションディスクリシネ−
ター回路(図では省略)でパルス巾を15ナノ秒に成形
したタイミング信号4を、3系統中2系統作動同時計数
回路11と3系統中3系統作動同時計数回路12の動作
選択が切替スイッチ14によって行える同時計数回路1
3に導いた。一方、スペクタル分析(波高分析)を行う
ため、各光電子増倍管1からの波形(リニア)信号5を
サムアンプで加え、リニアアンプ(図では省略)で増幅
後、リニアゲート回路7のリニア信号入力部9に入力し
た。同時計数回路13からの出力信号をタイミング調整
用ゲートアンドディレ7のゲート信号入力部8に入力し
、それと同調した放射線信号のみを多重波高分析器(マ
ルチチャンネルアナライザー)10に入力した。
Fork 1 Group-1 Preamplifies the output from photomultiplier tube 1 (omitted in the diagram)
After amplification, constant fraction discretization
The timing signal 4, which has a pulse width of 15 nanoseconds in a pulse circuit (not shown), is selected by a switch 14 to select the operation of the coincidence circuit 11 that operates on two of the three systems and the coincidence circuit 12 that operates on three of the three systems. Coincidence circuit 1 that can be performed by
It led to 3. On the other hand, in order to perform spectral analysis (wave height analysis), the waveform (linear) signal 5 from each photomultiplier tube 1 is added by a sum amplifier, and after being amplified by a linear amplifier (not shown), the linear signal is input to the linear gate circuit 7. I entered it in section 9. The output signal from the coincidence circuit 13 was input to the gate signal input section 8 of the timing adjustment gate and delay 7, and only the radiation signal synchronized therewith was input to the multiple wave height analyzer (multichannel analyzer) 10.

尖胤桝−1 3系統中2系統作動同時計数回路11と3系統中3系統
作動同時計数回路12を同時に作動させるために、分岐
回路13でタイミング信号4を分岐して両回路11.1
2に入力した。その他の回路系は実施例1と同じである
Chitanemasu-1 In order to simultaneously operate two of the three systems operating coincidence circuit 11 and three of the three systems operating coincidence circuit 12, the timing signal 4 is branched at the branch circuit 13 and both circuits 11.1
I entered 2. The other circuit systems are the same as in the first embodiment.

2)実験及び結果 (1)効率の比較 バイアル瓶に市販の液体シンチレータ−(アクアゾルI
f) 100 ml、標準トリチウム水1+nl及び微
量の四塩化炭素を加えた試料7本を作った。この際、四
塩化炭素の量を増減し、それぞれに効率の異なる液体シ
ンチレーションサンプルとした。
2) Experiments and results (1) Comparison of efficiency A commercially available liquid scintillator (Aquasol I) was placed in a vial.
f) Seven samples were prepared by adding 100 ml of standard tritiated water (1+nl) and a trace amount of carbon tetrachloride. At this time, the amount of carbon tetrachloride was increased or decreased to create liquid scintillation samples with different efficiencies.

これらのサンプルを用いて、従来型との比較を行った。Using these samples, a comparison was made with the conventional type.

結果は第3図に示す。The results are shown in Figure 3.

第3図において、横軸は四塩化炭素の量に関係する外部
標準線源比、縦軸は効率である。
In FIG. 3, the horizontal axis is the external standard source ratio related to the amount of carbon tetrachloride, and the vertical axis is the efficiency.

この結果より、例えば外部標準線源比が最小のサンプル
(四塩化炭素含有量が最大のもの)の効率は、従来型で
は10%で、本発明では15%と1.5倍に改善され、
また、外部標準線源比が最大のサンプル(四塩化炭素含
有量が最小のもの)でも、効率は、従来型では35%、
本発明では46%と1.3倍に改善されており、本発明
が、効率の点において、従来型より優れていることが実
証された。
From this result, for example, the efficiency of the sample with the minimum external standard source ratio (the one with the maximum carbon tetrachloride content) was 10% with the conventional method, but with the present invention it was 15%, an improvement of 1.5 times.
In addition, even for the sample with the highest external standard source ratio (the one with the lowest carbon tetrachloride content), the efficiency was 35% for the conventional type,
The present invention showed an improvement of 1.3 times to 46%, demonstrating that the present invention is superior to the conventional type in terms of efficiency.

なお、実施例1と実施例2の効率には、優劣は見られな
かった。
Note that no superiority or inferiority was observed between the efficiency of Example 1 and Example 2.

(2)化学発光除去性能の比較 市販の液体シンチレータ−(アクアゾル■)、過酸化水
素水ll1l、水酸化ナトリウム20χ水lll1lを
バイアル瓶にて混合し、放射能を含有しない化学発光サ
ンプルを調整した。この化学発光サンプルを市販の従来
型装置と本実施例の装置で測定した。結果を第4図に示
す。
(2) Comparison of chemiluminescence removal performance A commercially available liquid scintillator (Aquasol ■), 1 liter of hydrogen peroxide solution, and 1 liter of sodium hydroxide 20× water were mixed in a vial to prepare a chemiluminescent sample containing no radioactivity. . This chemiluminescence sample was measured using a commercially available conventional device and the device of this example. The results are shown in Figure 4.

第4図において、横軸はサンプル調整績の経過時間、縦
軸は化学発光計数率である。
In FIG. 4, the horizontal axis represents the elapsed time of the sample preparation results, and the vertical axis represents the chemiluminescence count rate.

サンプル調整5分後における化学発光計数率が従来型で
は2000 cps (counts per m1n
ute 、毎分当りのカウント数)以上であるのに対し
て、本発明の装置ではOcp+*  であった。この結
果から本発明の装置は、化学発光除去性能の点において
従来型よりも格段に優れていることが判明した。
The chemiluminescence count rate after 5 minutes of sample preparation is 2000 cps (counts per m1n) with the conventional model.
ute, counts per minute), whereas in the device of the present invention it was Ocp+*. These results revealed that the device of the present invention was significantly superior to the conventional type in terms of chemiluminescence removal performance.

なお、実施例1と実施例2の化学発光除去性能には、優
劣は見られなかった。
Note that no superiority or inferiority was observed between the chemiluminescence removal performance of Example 1 and Example 2.

(3)測定モード選択の煩雑さ 実施例1、実施例2とも、化学発光のあるサンプルも、
化学発光のないサンプルも一台の装置で計数できるので
、測定モード選択の煩雑さはなかった。実施例2では回
路選択スイッチ切替えの手間が省け、より便利であった
(3) Complexity of measurement mode selection In both Examples 1 and 2, even samples with chemiluminescence
Since even samples without chemiluminescence can be counted with one device, there is no need to choose a measurement mode. In the second embodiment, the trouble of switching the circuit selection switch was saved, and it was more convenient.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の液体シンチレーション計数装置の一
興体例(実施例1)の構造回路図である。 図において、 ■ 光電子増倍管    2 反射筒 3 バイアル瓶     4 タイミング信号5 波形
(リニア信号)  6 サムアンプ7 リニアゲート回
路 8 ゲート信号入力部 9 リニア信号入力部 10 多電波高分析器 (マルチチャンネルアナライザー) 11 3系統中2系統作動同時計数回路123系統中3
系統作動同時計数回路 13 同時計数回路 14 切替スイッチ 第2図は、本発明の液体シンチレーション計数装置の他
の具体例(実施例2)の構造回路図である。 図において、 1 光電子増倍管    2 反射筒 3 バイアル瓶     4 タイミング信号5 波形
(リニア信号) 6 サムアンプ7 リニアゲート回路 B ゲート信号入力部 9 リニア信号入力部 10 多重波高分析器 (マルチチャンネルアナライザー) 11 3系統中2系統作動同時計数回路123系統中3
系統作動同時計数回路 13 分岐回路 第3図は、従来型と本発明の装置の効率を比較した実験
結果を示すグラフである。 図において、 横軸は外部標準線源比、縦軸は効率で、I%I11は従
来型、線2は本発明の装置の結果を示す。 第4図は、従来型と本発明の装置の化学発光除去性能を
比較した実験結果を示すグラフである。 図において、 横軸は経過時間(分)、縦軸は化学発光計数率で、線1
は従来型、線2は本発明の装置の結果を示す。 #3 図 −A 秦4凹 手続補正書印釦 昭和61年10月2011 特許庁長官  黒 1)明 雄  殿 1、事件の表示 昭和61年特許願第197986号 2、発明の名称 液体シンチレーション計数装置 3、補正をする者 事件との関係  特許出願人 東京都千代田区内幸町二丁目2番2号 日本原子力研究所 (IV、/’I’+)4、代理人 住所 ■104東京都中央区銀座8丁目15番10号手
続補正書 昭和61年12月26日 特許庁長官 黒 1)明 雄 殿 1、事件の表示 昭和61年特許願第197986号 2、発明の名称 液体シンチレーション計数装置 3、補正をする者 事件との関係  特許出願人 住所 東京都千代田区内幸町二丁目2番2号名称 (4
09) 日本原子力研究所 4、代理人 住所 ■104東京都中央区銀座8丁目15番10号銀
座ダイヤハイツ410号 明細書の〔特許請求の範囲〕及び〔発明の詳細な説明〕
の欄明細書の〔特許請求の範囲〕を下記のとおり訂正す
る。 「バイアル瓶に面するように配置された3本の光電子増
倍管(a)、各光電子増倍管の三つのタイミング信号を
同時計数するための3系統中2系統作動同時計数回路(
b)及び各光電子増倍管の三つのタイミング信号を同時
計数するための3系統中3系統作動同時計数回路(c)
から成る液体シンチレーション計数装置(ここに、3系
統中2系統作動同時計数回路とは、三つの信号入力部(
A。 B、C)を有し、そのうちの少なくとも二つの信号入力
部(AとB、BとC,CとA、AとBとC)に決められ
た時間幅(分解時間)内にパルス入力が起これば、同時
計数信号パルスが出力するものであり、3系統中3系統
作動同時計数回路とは、三つの信号入力部を有し、三つ
の信号入力部会てにパルス入力が分解時間内に起きれば
、同時計数信号パルスが出力するものである。」 明細書第3頁9行目の「混合した時化学的励起」を「混
合した時、化学的励起jに訂正する。 明細書第7頁15行目の「スペクタル分析」をrスペク
トル分析」に訂正する。 ”AmW5h ’1 j+’−ij tJ ej /J
’す”AIMW5F+ 4741 +J IJ E:I
で下記のとおり訂正する。 r作動同時計数回路で落とされる事象も観測でき、これ
により従来型よりも高効率が得られる。ここに、3系統
中2系統作動同時計数回路とは、三つの信号入力部(A
、B、C)を有し、そのうちの少なくとも二つの信号入
力部(AとB、BとC1CとA。
FIG. 1 is a structural circuit diagram of a liquid scintillation counting device according to the present invention (Example 1). In the figure: ■ Photomultiplier tube 2 Reflector tube 3 Vial bottle 4 Timing signal 5 Waveform (linear signal) 6 Sum amplifier 7 Linear gate circuit 8 Gate signal input section 9 Linear signal input section 10 Multi-radio wave height analyzer (multi-channel analyzer) 11 2 out of 3 systems operating coincidence circuit 3 out of 123 systems
System operation coincidence circuit 13 Coincidence circuit 14 Changeover switch FIG. 2 is a structural circuit diagram of another specific example (Example 2) of the liquid scintillation counting device of the present invention. In the figure, 1 photomultiplier tube 2 reflector tube 3 vial bottle 4 timing signal 5 waveform (linear signal) 6 sum amplifier 7 linear gate circuit B gate signal input section 9 linear signal input section 10 multiple wave height analyzer (multichannel analyzer) 11 2 out of 3 systems operating coincidence circuit 3 out of 123 systems
System Operated Coincidence Circuit 13 Branch Circuit FIG. 3 is a graph showing the results of an experiment comparing the efficiency of the conventional type and the device of the present invention. In the figure, the horizontal axis shows the external standard source ratio, the vertical axis shows the efficiency, I%I11 shows the conventional type, and line 2 shows the results of the device of the present invention. FIG. 4 is a graph showing the results of an experiment comparing the chemiluminescence removal performance of the conventional type and the device of the present invention. In the figure, the horizontal axis is the elapsed time (minutes), the vertical axis is the chemiluminescence count rate, and line 1
Line 2 shows the results of the conventional device and line 2 shows the results of the device of the present invention. #3 Figure-A Qin 4 concave procedure amendment seal button October 1986 2011 Commissioner of the Patent Office Black 1) Akio Yu 1, Display of the case 1986 Patent Application No. 197986 2, Name of the invention Liquid scintillation counting device 3. Relationship with the case of the person making the amendment Patent applicant Japan Atomic Energy Research Institute, 2-2-2 Uchisaiwai-cho, Chiyoda-ku, Tokyo (IV, /'I'+) 4, Agent's address: ■104 8, Ginza, Chuo-ku, Tokyo Chome 15-10 Procedural Amendment December 26, 1985 Commissioner of the Patent Office Kuro 1) Akio Yu 1, Indication of the case 1986 Patent Application No. 197986 2, Name of the invention Liquid scintillation counting device 3, Amendment Relationship with the case of the person who filed the patent application Address of the patent applicant: 2-2-2 Uchisaiwai-cho, Chiyoda-ku, Tokyo Name (4)
09) Japan Atomic Energy Research Institute 4, Agent Address ■104 Ginza Dia Heights 410, 8-15-10, Ginza, Chuo-ku, Tokyo [Claims] and [Detailed Description of the Invention]
The [Claims] of the description in column 2 is corrected as follows. ``Three photomultiplier tubes (a) arranged to face the vial, two out of three systems operating coincidence circuit for simultaneously counting the three timing signals of each photomultiplier tube (
b) and a coincidence circuit (c) for simultaneous counting of the three timing signals of each photomultiplier tube.
A liquid scintillation counting device (herein, a simultaneous counting circuit that operates on two of the three systems is a liquid scintillation counting device that consists of three signal input sections (
A. B, C), and at least two of them (A and B, B and C, C and A, A, B and C) have a pulse input within a determined time width (resolution time). If this occurs, a coincidence signal pulse is output.A three-system operating coincidence circuit has three signal input sections, and the pulse input to the three signal input sections is output within the resolution time. If this happens, a coincidence signal pulse will be output. ” "Chemical excitation when mixed" on page 3, line 9 of the specification is corrected to "chemical excitation when mixed.""Spectralanalysis" on page 7, line 15 of the specification is changed to "r spectral analysis." Correct. ”AmW5h '1 j+'-ij tJ ej /J
'S'AIMW5F+ 4741 +J IJ E:I
Please make the following corrections. Events dropped in the r-actuated coincidence circuit can also be observed, resulting in higher efficiency than conventional types. Here, the simultaneous counting circuit that operates on two of the three systems means three signal input sections (A
, B, C), of which at least two signal input sections (A and B, B and C1C and A.

Claims (1)

【特許請求の範囲】[Claims] バイアル瓶に面するように配置された3本の光電子増倍
管(a)、各光電子増倍管の三つのタイミング信号を同
時計数するための3系統中2系統作動同時計数回路(b
)及び各光電子増倍管の三つのタイミング信号を同時計
数するための3系統中3系統作動同時計数回路(c)か
ら成る液体シンチレーション計数装置(ここに、2系統
中2系統作動同時計測回路とは、三つの信号入力部(A
、B、C)を有し、そのうちの少なくとも二つのの信号
入力部(AとB、BとC、CとA、AとBとC)に決め
られた時間幅(分解時間)内にパルス入力が起これば、
同時計数信号バルスが出力するものであり、3系統中3
系統作動同時計数回路とは、三つの信号入力部を有し、
三つの信号入力部全てにパルス入力が分解時間内に起き
れば、同時計数信号バルスが出力するものである)。
Three photomultiplier tubes arranged to face the vial (a), two out of three systems operating coincidence circuit (b) for simultaneously counting the three timing signals of each photomultiplier tube
) and a liquid scintillation counting device (c) consisting of a simultaneous counting circuit (c) for simultaneous counting of three timing signals of each photomultiplier tube (two of the two systems operating simultaneously). has three signal input sections (A
. If an input occurs,
This is the output of the coincidence signal pulse, and 3 out of 3 systems.
A grid-operated coincidence circuit has three signal inputs,
If pulse inputs to all three signal inputs occur within the resolution time, a coincidence signal pulse will be output).
JP19798686A 1986-08-26 1986-08-26 Liquid scintillation counter Expired - Fee Related JPH0616107B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19798686A JPH0616107B2 (en) 1986-08-26 1986-08-26 Liquid scintillation counter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19798686A JPH0616107B2 (en) 1986-08-26 1986-08-26 Liquid scintillation counter

Publications (2)

Publication Number Publication Date
JPS6355485A true JPS6355485A (en) 1988-03-09
JPH0616107B2 JPH0616107B2 (en) 1994-03-02

Family

ID=16383609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19798686A Expired - Fee Related JPH0616107B2 (en) 1986-08-26 1986-08-26 Liquid scintillation counter

Country Status (1)

Country Link
JP (1) JPH0616107B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7175457B2 (en) 2003-09-30 2007-02-13 J.S.T. Mfg. Co., Ltd. Fast transmission-use connector
JP2007178336A (en) * 2005-12-28 2007-07-12 Mitsubishi Electric Corp Water monitor
JP2009276317A (en) * 2008-05-19 2009-11-26 Aloka Co Ltd Liquid scintillation counter
JP2012047517A (en) * 2010-08-25 2012-03-08 National Institute Of Advanced Industrial & Technology Radioactivity absolute measurement method by liquid scintillation, and calibration method of radioactivity measuring device
CN107894606A (en) * 2017-11-20 2018-04-10 浙江大学 The test bottle of carbon 14, test device and method, sample sample-preparing system and method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7175457B2 (en) 2003-09-30 2007-02-13 J.S.T. Mfg. Co., Ltd. Fast transmission-use connector
JP2007178336A (en) * 2005-12-28 2007-07-12 Mitsubishi Electric Corp Water monitor
JP4659612B2 (en) * 2005-12-28 2011-03-30 三菱電機株式会社 Water monitor
JP2009276317A (en) * 2008-05-19 2009-11-26 Aloka Co Ltd Liquid scintillation counter
JP2012047517A (en) * 2010-08-25 2012-03-08 National Institute Of Advanced Industrial & Technology Radioactivity absolute measurement method by liquid scintillation, and calibration method of radioactivity measuring device
CN107894606A (en) * 2017-11-20 2018-04-10 浙江大学 The test bottle of carbon 14, test device and method, sample sample-preparing system and method
CN107894606B (en) * 2017-11-20 2019-07-02 浙江大学 Carbon-14 test bottle, test device and method sample sample-preparing system and calculation method

Also Published As

Publication number Publication date
JPH0616107B2 (en) 1994-03-02

Similar Documents

Publication Publication Date Title
Cochran et al. Production of charged pions by 730-MeV protons from hydrogen and selected nuclei
Holder et al. A detector for high-energy neutrino interactions
US9268045B2 (en) Neutron detector
US7095029B2 (en) Scintillators for neutron detection and neutron detectors using the same
Carnoy et al. Limits on nonstandard weak currents from the positron decays of O 14 and C 10
US3944832A (en) Scintillation spectrometer
AU715316B2 (en) Scintillator apparatus
McGervey et al. Correlation between lifetime and momentum for positron annihilations in Teflon
JPS6355485A (en) Liquid scintillation counter device
Azuelos et al. Half-lives and branching ratios of some t= 1 2 nuclei
Maekawa et al. Data collection of fusion neutronics benchmark experiment conducted at FNS/JAERI
Abbondanno et al. Gamma rays resulting from nonelastic processes of 14· 2 MeV neutrons with sodium, magnesium, silicon, sulphur, titanium, chromium and iron
McKlveen et al. Simultaneous alpha and beta particle assay using liquid scintillation counting with pulse-shape discrimination
Muszynski et al. The decay of 69As
Kantele et al. Coincidence summing and non-linearity studies with a two-crystal scintillation gamma spectrometer
Palazzolo et al. A beta spectrometer for monitoring environmental matrices
Garrell et al. Beta-Gamma-Gamma Correlation in Mn 56: A Test of Time-Reversal Invariance
Colby Jr et al. Precision Cailbration of Large 4 Pi Scintillation Crystals for Routine Gamma Counting
Takiue et al. Analytical subtraction of chemiluminescence counts for dual-labeled samples in liquid scintillation measurement
Gerholm et al. Multi coincidence goniometer for angular correlation measurements
De Leo et al. In-plane and out-of-plane angular correlation measurements for the 12c (n, n′ γ) 12C reaction at 13.9 MeV
Pirrie et al. Undergraduate experiments with a 44Ti source
Del Bianco et al. Reduction of cosmic ray background in a NaI crystal with a Čerenkov anticoincidence shield
Wilburn et al. Measurements at Low Energies of the Polarization-Transfer Coefficient for the Reaction H He at
Birk et al. A high efficiency electron pair spectrometer

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees