JPS6354912A - Method for reducing water content in sludge - Google Patents

Method for reducing water content in sludge

Info

Publication number
JPS6354912A
JPS6354912A JP61198240A JP19824086A JPS6354912A JP S6354912 A JPS6354912 A JP S6354912A JP 61198240 A JP61198240 A JP 61198240A JP 19824086 A JP19824086 A JP 19824086A JP S6354912 A JPS6354912 A JP S6354912A
Authority
JP
Japan
Prior art keywords
gas
sludge
treated water
submerged
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61198240A
Other languages
Japanese (ja)
Other versions
JPH0651090B2 (en
Inventor
Nobuo Fukushima
福島 演雄
Yasubumi Serizawa
芹沢 保文
Kazuhiko Yoshida
和彦 吉田
Shigeyasu Suzuki
鈴木 重康
Masanobu Masukawa
匡伸 増川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP19824086A priority Critical patent/JPH0651090B2/en
Publication of JPS6354912A publication Critical patent/JPS6354912A/en
Publication of JPH0651090B2 publication Critical patent/JPH0651090B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Separation Of Particles Using Liquids (AREA)
  • Treatment Of Sludge (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To reduce the water content in sludge separated from gas treating water in a wet dust collector to increase the hydroxides and carbonates in the sludge, and controlling the pH of the gas treating water to 7.5-9.5. CONSTITUTION:The dust-contg. gas generated in a ferromanganese refining vertical furnace is passed through a dry dust collector 12, a cyclone 13, a submerged vessel 14, a submerged venturi scrubber 15, a submerged vessel 16, and an electrostatic precipitator 17, and purified. the submerged vessels 14 and 16, the venturi scrubber 15, and the electrostatic precipitator 17 constitute the wet dust collector 18 using gas treating water for purifying the gas. The gas is brought into contact with the gas treating water and agitated in one or >=2 devices constituting the wet dust collector 18 to increase the hydroxides and carbonates in sludge, and the pH of the gas treating water is controlled to 7.5-9.5.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、合金鉄製錬用竪型炉等の冶金炉による冶金過
程で発生するガスの清浄化のために用いられるガス処理
水から分離除去されるスラジ中の水分を低減させるスラ
ジ中水分の低減方法に関するφ 〔従来の技術] 冶金過程で発生するガスは、鉱石、コークス等の粉より
なるダストを含むので、このダストを集塵除去して精浄
化した状態で排気する必要がある。特に、フェロマンガ
ン等の合金鉄を製造する竪型炉による製錬過程では、鉱
石粉化率が高くガス発生量が多いことから、ダスト発生
量が多い。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is directed to separating and removing gases from gas treatment water used for purifying gases generated in metallurgical processes in metallurgical furnaces such as vertical furnaces for smelting ferroalloys. [Prior art] The gas generated in the metallurgical process contains dust made of powder of ore, coke, etc., so this dust is collected and removed. It is necessary to exhaust the air in a thoroughly purified state. In particular, in the smelting process using a vertical furnace for producing ferro-alloys such as ferromanganese, a large amount of dust is generated due to the high ore pulverization rate and the amount of gas generated.

ガス清浄装置としては、乾式除塵器、サイクロ7 (7
) 他に、ベンチュリスクラバ、湿式電気集塵器等の湿
式除塵装置が用いられる。この湿式除塵装置は、ガス処
理水を用いてダストを処理している。第6図は、従来の
ベンチュリスクラバ1による集塵状態を示す模式図であ
り、2はガス入口、3はベンチュリ管出口、4はガス出
口、5はスラジ排出口、6はガス処理水を示し、ベンチ
ュリ管出口3とガス処理水6の水面とは離隔している(
h>O)、(h=(ベンチュリ管下端レベル)−(ガス
処理水水面レベル))。
As a gas purifier, dry dust remover, Cyclo 7 (7
) In addition, wet dust removal devices such as Venturi scrubbers and wet electrostatic precipitators are used. This wet type dust removal device processes dust using gas-treated water. FIG. 6 is a schematic diagram showing the state of dust collection by a conventional venturi scrubber 1, in which 2 indicates a gas inlet, 3 indicates a venturi pipe outlet, 4 indicates a gas outlet, 5 indicates a sludge discharge port, and 6 indicates gas treated water. , the Venturi pipe outlet 3 and the water surface of the gas-treated water 6 are separated (
h>O), (h=(Venturi tube lower end level)−(gas treatment water surface level)).

上記湿式除塵装置に用いられるガス処理水中のスラジは
、ガス処理水のリサイクル使用時における処理効率を向
上したり、配管閉塞を防止するため、シックナー等で凝
集剤、分散剤等を使用して分離除去され、産業廃棄物と
して処理される。
The sludge in the gas treated water used in the above wet dust removal equipment is separated using a thickener, etc. using flocculants, dispersants, etc. in order to improve treatment efficiency when recycling the gas treated water and to prevent pipe clogging. It is removed and treated as industrial waste.

[発明が解決しようとする問題点] しかしながら、冶金炉の操業条件により、スラジの発生
量、性状、成分等が変化し、フラジ中水分が増加する場
合には、スラジの取扱いに困難をともなうこととなる。
[Problems to be solved by the invention] However, if the amount of sludge generated, properties, components, etc. change depending on the operating conditions of the metallurgical furnace, and the moisture in the flange increases, it becomes difficult to handle the sludge. becomes.

本発明は、フラジ中水分を可及的に低減し、スラジの取
扱い性を向上することを目的とする。
The purpose of the present invention is to reduce the moisture content in the sludge as much as possible and improve the handling properties of the sludge.

c問題点を解決するための手段] 本発明は、冶金過程で発生するガスを清浄化するための
湿式除塵装置に用いられるガス処理水から分離除去され
るフラジ中水分の低減方法において、(A)ガスとガス
処理水とを湿式除塵装置で現状以上に接触させ、スラジ
中の水酸化物および炭酸塩を増加させるとともに、(B
)ガス処理水のPHを7.5〜3.5に制御するように
したものである。
Means for Solving Problems] The present invention provides a method for reducing moisture in a flange that is separated and removed from gas treated water used in a wet dust removal device for cleaning gas generated in a metallurgical process. ) Gas and gas-treated water are brought into contact with each other more than the current level using a wet dust remover, increasing hydroxides and carbonates in the sludge, and (B
) The pH of the gas treated water is controlled to 7.5 to 3.5.

[作用] 本発明者による実験の結果によれば、■スラジ中の水酸
化物および炭酸塩が増加すると、第4図に示すようにフ
ラジ中水分が低減すること、■ガス処理水のpHが7.
5〜9.5であると、第5図に示すようにフラジ中水分
が低減することが認められた。したがって、本発明によ
れば、上記■、■を実現することとなり、フラジ中水分
を可及的に低減し、スラジの取扱い性を向上することが
できる。
[Function] According to the results of experiments conducted by the present inventor, (1) when the hydroxides and carbonates in the sludge increase, the water content in the sludge decreases as shown in Figure 4; (2) the pH of the gas-treated water decreases; 7.
5 to 9.5, it was recognized that the water content in the flage was reduced as shown in FIG. Therefore, according to the present invention, the above-mentioned items (1) and (2) are achieved, the moisture in the sludge can be reduced as much as possible, and the handling properties of the sludge can be improved.

[実施例] 第1図は本発明の実施に用いられる冠水型ベンチュリス
クラバの一例を示す模式図、第2図は本発明の実施に用
いられる冠水槽の一例を示す模式図、wIJ3図は竪型
炉のガス処理ラインを示す模式図、第4図はスラジ中の
水酸化物および炭酸塩の量がフラジ中水分に及ぼす影響
を示す線図、第5図はガス処理水のpHがフラジ中水分
に及ぼす影響を示す線図である。
[Example] Fig. 1 is a schematic diagram showing an example of a submerged venturi scrubber used in the implementation of the present invention, Fig. 2 is a schematic diagram showing an example of a submerged tank used in the implementation of the present invention, and wIJ3 is a vertical A schematic diagram showing the gas treatment line of the mold furnace. Figure 4 is a diagram showing the influence of the amount of hydroxide and carbonate in the sludge on the moisture content in the sludge. Figure 5 is a diagram showing the influence of the pH of the gas treated water in the sludge. It is a diagram showing the influence on moisture.

第3図に示すように、フェロマンガン製錬用竪型炉11
で発生する含塵ガスは、乾式除塵器12、サイクロン1
3.冠水槽14、冠水型ベンチュリスクラバ15.冠水
槽16、電気集塵器17を経て、清浄化された状態で排
気される。ここで、冠水槽14.16、ベンチュリスク
ラバ15、電気集塵器17は、ガスを清浄化するために
ガス処理水を用いる湿式除塵装置18を構成している。
As shown in FIG. 3, a vertical furnace 11 for ferromanganese smelting
The dust-containing gas generated in the dry dust remover 12, cyclone 1
3. Submerged tank 14, submerged venturi scrubber 15. It passes through a submergence tank 16 and an electrostatic precipitator 17, and is exhausted in a purified state. Here, the submergence tank 14, 16, the Venturi scrubber 15, and the electrostatic precipitator 17 constitute a wet dust removal device 18 that uses gas-treated water to purify the gas.

しかして、上記実施例においては、湿式除塵装置18を
構成する各機器の1つもしくは2以上において、(A)
ガスとガス処理水とを接触撹拌させ、スラジ中の水酸化
物および炭酸塩を増加させるとともに、(B)ガス処理
水のpHを7.5〜8.5に制御するようにしている。
Therefore, in the above embodiment, in one or more of the devices constituting the wet dust removal device 18, (A)
The gas and the gas-treated water are brought into contact and stirred to increase the hydroxides and carbonates in the sludge, and (B) the pH of the gas-treated water is controlled to 7.5 to 8.5.

ところで、本発明者による実験の結果によれば、■スラ
ジ中の水酸化物および炭酸塩が増加すると、第4図に示
すようにフラジ中水分が低減すること、■ガス処理水の
pHが7.5〜8.5であると、第5図に示すようにフ
ラジ中水分が低減することが認められた。したがって、
上記実施例によれば、上記■、■を実現することとなり
、フラジ中水分を可及的に低減し、スラジの取扱い性を
向上することができる。
By the way, according to the results of experiments conducted by the present inventor, (1) as hydroxides and carbonates in the sludge increase, the water content in the sludge decreases as shown in Figure 4; (2) the pH of the gas-treated water decreases to 7. .5 to 8.5, it was recognized that the water content in the flage was reduced as shown in FIG. therefore,
According to the above-mentioned embodiment, the above-mentioned items (1) and (2) are achieved, and the moisture content in the sludge can be reduced as much as possible, and the handling properties of the sludge can be improved.

ここで、上記湿式除塵装置18において行なわれるガス
とガス処理水の反応について説明すれば以下のとおりで
ある。
Here, the reaction between the gas and the gas-treated water that takes place in the wet dust removing device 18 will be explained as follows.

すなわち、コークス、鉱石等に含まれるアルカリ金属(
K 、 Ha)は、に20.Na2Oの形で炉外に排出
される。また、副原料(石灰、ドロマイト)に含まれる
塩基性酸化物はGap、 MgOの形で炉外に排出され
る。また、炉内で還元されたMnは、炉内高温帯でフユ
ーム化し、Mn、 MnOの形で炉外に排出される。上
記各成分は、湿式除塵装置18の内部でガス処理水と反
応して水酸化物[KO)l、 Na0)1. Ca(O
R)2. Mg(OH)2. Mn(OH)2コを形成
するとともに、ガス処理水を塩基性としてpHを上げる
In other words, alkali metals (
K, Ha) is 20. It is discharged outside the furnace in the form of Na2O. In addition, basic oxides contained in auxiliary raw materials (lime, dolomite) are discharged from the furnace in the form of Gap and MgO. Furthermore, the Mn reduced in the furnace becomes fume in the high temperature zone inside the furnace and is discharged outside the furnace in the form of Mn and MnO. Each of the above components reacts with the gas treated water inside the wet dust removal device 18 to form hydroxides [KO)l, Na0)1. Ca(O
R)2. Mg(OH)2. While forming Mn(OH)2, the gas treated water is made basic to increase the pH.

K20 +  820−+2KOH−*K +0HNa
20 +  H20→2NaOH4Na+0HCaO+
  H20+Ca(OH)2→Ca”+20H−MgO
+  )+20  +8g(O)l)2 +8g”+2
0H−MnO+H20+にn(Ol() 2 + Mn
2++ 20H−他方、副原料中の炭酸塩やガス中のC
O2がガス処理水に溶解すると炭酸を形成し、pHを下
げるとともに、ガス処理水のpHが8前後まで低下する
と、前記水酸化物と炭酸との反応によって炭酸塩(Ca
CO3,8gCO3,)!nGOs、MnHCO+ )
が形成される。
K20 + 820-+2KOH-*K +0HNa
20 + H20→2NaOH4Na+0HCaO+
H20+Ca(OH)2→Ca"+20H-MgO
+ )+20 +8g(O)l)2 +8g”+2
0H-MnO+H20+ n(Ol() 2 + Mn
2++ 20H- On the other hand, carbonate in the auxiliary raw material and C in the gas
When O2 dissolves in the gas-treated water, it forms carbonic acid and lowers the pH. When the pH of the gas-treated water drops to around 8, carbonate (Ca
CO3,8gCO3,)! nGOs, MnHCO+)
is formed.

CO2+  H20→ H2CO3→ 2H+CChC
a(OH) 2 +  H2CO34CaCO3↓+2
H20Mg(OH)2 +  H2COg  →MgC
O3↓ +2H20Mn(OH)2 +  H2CO3
→NnCO5↓ +2H20ここで、ガス処理水のpH
は、炭酸塩やガス中に含まれるCO2の溶解により 9
前後になるため、ガス処理水のpH調整は薬品による微
量調整で十分である。なお、ガス中のC02とガス処理
水のpHの間には第7図のような関係がある。
CO2+ H20→ H2CO3→ 2H+CChC
a(OH) 2 + H2CO34CaCO3↓+2
H20Mg(OH)2 + H2COg →MgC
O3↓ +2H20Mn(OH)2 + H2CO3
→NnCO5↓ +2H20 Here, the pH of the gas treated water
is due to the dissolution of CO2 contained in carbonates and gases 9
Since the pH of the gas-treated water varies, a small amount of chemical adjustment is sufficient to adjust the pH of the gas-treated water. Note that there is a relationship as shown in FIG. 7 between the CO2 in the gas and the pH of the gas treated water.

以下、ベンチュリスクラバ15、冠水槽14.16の具
体的構造について説明する。
The specific structures of the Venturi scrubber 15 and the submerged tank 14, 16 will be described below.

第1図は、ベンチュリスクラバ15の具体的構造を示す
模式図であり、21はガス入口、22はベンチュリ管出
口、23はガス出口、24はスラジ排出口、25はガス
処理水を示し、ベンチュリ管出口22はガス処理水25
の水面下に冠水している(h≦O)、ベンチュリ出口2
2の冠水部の構造としては、Aで示す一般式と、Bで示
す水膜式が考えられる。水膜式は、ベンチュリ出口22
の周辺に断面狭小なガス案内部26を設け、このガス案
内部26を急速に移動するガス流が形成する負圧によっ
てガス処理水25を水膜状に巻き上げ、ガスを水膜に接
触させる状態で通過させ、ガスとガス処理水との接触効
率を向上させるものである。
FIG. 1 is a schematic diagram showing the specific structure of the Venturi scrubber 15, in which 21 is a gas inlet, 22 is a Venturi tube outlet, 23 is a gas outlet, 24 is a sludge outlet, 25 is gas treated water, and 25 is a gas treated water. The pipe outlet 22 is a gas treated water 25
submerged below the water surface (h≦O), Venturi outlet 2
As the structure of the submerged part 2, the general type shown by A and the water film type shown by B can be considered. For water film type, venturi outlet 22
A gas guide section 26 with a narrow cross section is provided around the gas guide section 26, and the gas-treated water 25 is rolled up into a water film by the negative pressure formed by the gas flow rapidly moving through the gas guide section 26, and the gas is brought into contact with the water film. This improves the efficiency of contact between the gas and the gas-treated water.

第2図は冠水槽14.16の具体的構造を示す模式図で
あり、31はガス入口、32はガス案内路、33はガス
出口、34はスラジ排出口、35はガス処理水、36は
エリミネータ、37は水位計を示し、ガス人口31から
ガス出口33に向かうガス通路の一部が冠水している。
FIG. 2 is a schematic diagram showing the specific structure of the submerged tank 14.16, in which 31 is a gas inlet, 32 is a gas guide path, 33 is a gas outlet, 34 is a sludge outlet, 35 is gas treated water, and 36 is a The eliminator 37 indicates a water level gauge, and a part of the gas passage from the gas port 31 to the gas outlet 33 is submerged in water.

ガス案内路32は、ベンチュリスクラバ15のガス案内
路26と同様に水膜を形成する。エリミネータ36は、
ミスト状となっている微粒状のダストを捕捉する。
The gas guide path 32 forms a water film similarly to the gas guide path 26 of the venturi scrubber 15. Eliminator 36 is
Captures fine dust particles in the form of mist.

[発明の効果] 以上のように、本発明は、冶金過程で発生するガスを清
浄化するための湿式除塵装置に用いられるガス処理水か
ら分離除去されるスラジ中木分の低減方法において、(
A)ガスとガス処理水とを湿式除塵装置で接触させ、ス
ラジ中の水酸化物および炭酸塩を増加させるとともに、
(B)ガス処理水のpHを7.5〜9.5に制御するよ
うにしたものである。したがって、フラジ中水分を可及
的に低減し、スラジの取扱い性を向上することができる
[Effects of the Invention] As described above, the present invention provides a method for reducing wood content in sludge that is separated and removed from gas treatment water used in a wet dust removal device for cleaning gas generated in a metallurgical process.
A) Bringing the gas and gas-treated water into contact with a wet dust remover to increase hydroxides and carbonates in the sludge,
(B) The pH of the gas treated water is controlled to 7.5 to 9.5. Therefore, the moisture content in the sludge can be reduced as much as possible, and the handling properties of the sludge can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施に用いられる冠水型ベンチュリス
クラバの一例を示す模式図、第2図は本発明の実施に用
いられる冠水槽の一例を示す模式図、第3図は竪型炉の
ガス処理ラインを示す模式図、第4図はスラジ中の水酸
化物および炭酸塩の量がフラジ中水分に及ぼす影響を示
す線図、第5図はガス処理水のpHがフラジ中水分に及
ぼす影響を示す線図、第6図は従来のベンチュリスクラ
バを示す模式図、第7図はガス中の002とガス処理水
のpi(の関係を示す線図である。 11・・・竪型炉、14.16・・・冠水槽、15・・
・冠水型ベンチュリスクラバ、17・・・電気集塵器、
18・・・湿式除塵装置、25.35・・・ガス処理水
。 代理人 弁理士  塩 川 修 治 第 1 図 第2 図 第3図 第 4 回 第5 図 pH 第 6 図
FIG. 1 is a schematic diagram showing an example of a submerged venturi scrubber used in the implementation of the present invention, FIG. A schematic diagram showing the gas treatment line. Figure 4 is a diagram showing the influence of the amount of hydroxide and carbonate in the sludge on the moisture content in the sludge. Figure 5 is a diagram showing the effect of the pH of the gas treatment water on the moisture content in the flange. A diagram showing the influence, FIG. 6 is a schematic diagram showing a conventional venturi scrubber, and FIG. 7 is a diagram showing the relationship between 002 in the gas and pi of the gas treated water. 11... Vertical furnace , 14.16... submerged tank, 15...
・Submerged venturi scrubber, 17...electrostatic precipitator,
18... Wet dust removal equipment, 25.35... Gas treated water. Agent Patent Attorney Osamu Shiokawa 1 Figure 2 Figure 3 Figure 4 Figure 5 pH Figure 6

Claims (1)

【特許請求の範囲】[Claims] (1)冶金過程で発生するガスを清浄化するための湿式
除塵装置に用いられるガス処理水から分離除去されるス
ラジ中水分の低減方法において、(A)ガスとガス処理
水とを湿式除塵装置で接触させ、スラジ中の水酸化物お
よび炭酸塩を増加させるとともに、(B)ガス処理水の
pHを7.5〜9.5に制御することを特徴とするスラ
ジ中水分の低減方法。
(1) In a method for reducing moisture in sludge that is separated and removed from gas-treated water used in a wet-type dust remover for cleaning gas generated in a metallurgical process, (A) gas and gas-treated water are removed by a wet-type dust remover. A method for reducing moisture in sludge, which comprises increasing the hydroxides and carbonates in the sludge, and (B) controlling the pH of the gas-treated water to 7.5 to 9.5.
JP19824086A 1986-08-26 1986-08-26 Method of reducing water content in sludge Expired - Lifetime JPH0651090B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19824086A JPH0651090B2 (en) 1986-08-26 1986-08-26 Method of reducing water content in sludge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19824086A JPH0651090B2 (en) 1986-08-26 1986-08-26 Method of reducing water content in sludge

Publications (2)

Publication Number Publication Date
JPS6354912A true JPS6354912A (en) 1988-03-09
JPH0651090B2 JPH0651090B2 (en) 1994-07-06

Family

ID=16387833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19824086A Expired - Lifetime JPH0651090B2 (en) 1986-08-26 1986-08-26 Method of reducing water content in sludge

Country Status (1)

Country Link
JP (1) JPH0651090B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103742791A (en) * 2013-12-20 2014-04-23 天津钢铁集团有限公司 Converter steel-making sludge pipeline conveying system and method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5078566A (en) * 1973-10-11 1975-06-26

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5078566A (en) * 1973-10-11 1975-06-26

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103742791A (en) * 2013-12-20 2014-04-23 天津钢铁集团有限公司 Converter steel-making sludge pipeline conveying system and method

Also Published As

Publication number Publication date
JPH0651090B2 (en) 1994-07-06

Similar Documents

Publication Publication Date Title
US6284208B1 (en) Method for removing mercury and sulfur dioxide from gases
EP2481472B1 (en) Carbon dioxide sequestration process for cement manufactoring facilities
TWI271395B (en) Cement kiln chlorine sulfur bypass system
US4552735A (en) Process for removing total reduced sulfur compounds from industrial gases using manganese dioxide
US3984217A (en) Wet gas cleaning system
JPH11179147A (en) Flue gas treating method
US4908195A (en) Process of purifying exhaust gas
JP2009035450A (en) System and method for treating cement kiln extraction gas
JPS6354912A (en) Method for reducing water content in sludge
TWI635892B (en) Method for removing dust and sulphur oxides from process gases
US4113840A (en) Process for the removal of sulfur dioxide from exhaust flue gases
US5624648A (en) Method and apparatus for cleaning flue gas
JP2020089804A (en) Detoxification method of exhaust gas containing sulfur dioxide
CN103868368A (en) Method for purifying tail gas when precious metal is smelted and accumulated in plasma furnace
KR100517175B1 (en) Method for desulfurizing fluegas
JP4014679B2 (en) Wastewater treatment method
JP2000288338A (en) Method and equipment for treating exhaust gas desulfurization waste
CN106582246A (en) Carbide slag wet-method flue gas simultaneous desulfurization and denitrification process
CN109012134A (en) A kind of device and method removing sulfureous in flue gas oxide using pyrolusite fluidisation
CN103868369A (en) Tail gas purifying device used when precious metal is smelted and accumulated in plasma furnace
CN209630972U (en) A kind of intermetallic composite coating emission-control equipment
CN204619643U (en) A kind of metallurgical industry emission-control equipment
CN109813131B (en) Method for treating gypsum calcination flue gas
JP6990308B2 (en) Iron-containing sludge treatment method
JPH05212232A (en) Dry collecting method of solid particles from solid particle-containing gas fluid