JPS6354784B2 - - Google Patents

Info

Publication number
JPS6354784B2
JPS6354784B2 JP58237468A JP23746883A JPS6354784B2 JP S6354784 B2 JPS6354784 B2 JP S6354784B2 JP 58237468 A JP58237468 A JP 58237468A JP 23746883 A JP23746883 A JP 23746883A JP S6354784 B2 JPS6354784 B2 JP S6354784B2
Authority
JP
Japan
Prior art keywords
plating
aluminum
molten solder
solder
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58237468A
Other languages
Japanese (ja)
Other versions
JPS60128255A (en
Inventor
Sadaji Hamaguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tatsuta Electric Wire and Cable Co Ltd
Original Assignee
Tatsuta Electric Wire and Cable Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tatsuta Electric Wire and Cable Co Ltd filed Critical Tatsuta Electric Wire and Cable Co Ltd
Priority to JP58237468A priority Critical patent/JPS60128255A/en
Publication of JPS60128255A publication Critical patent/JPS60128255A/en
Publication of JPS6354784B2 publication Critical patent/JPS6354784B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/08Tin or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/003Apparatus
    • C23C2/0035Means for continuously moving substrate through, into or out of the bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Coating With Molten Metal (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は電子機器部品に使用される半田付性の
良好な耐酸化性を有するアルミニウム入りの溶融
半田メツキ銅線の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for manufacturing an aluminum-containing molten solder-plated copper wire having good solderability and oxidation resistance for use in electronic device parts.

従来技術 従来から電子機器の端子リード線には半田付け
の良好なことから溶融半田メツキ銅線が使用され
ているが、回路部品を製造する工程において苛酷
な熱処理条件にさらされる場合、その後のリード
線の半田付性が著しく低下し、回路接続の信頼性
を十分達成させることが困難であつた。
Conventional technology Melt-solder plated copper wire has traditionally been used for terminal lead wires in electronic devices because of its good soldering properties, but when exposed to harsh heat treatment conditions in the process of manufacturing circuit components, the subsequent lead The solderability of the wire was significantly reduced, making it difficult to achieve sufficient reliability in circuit connection.

その理由は一般に半田メツキ線の半田組成は鉛
と錫との二元合金が使用されており、これらの合
金組成を種々変更しても、外部からの強制的な熱
処理を受けるとその表面酸化がまぬがれ得なくな
るためである。
The reason for this is that the solder composition of solder-plated wire is generally a binary alloy of lead and tin, and even if these alloy compositions are changed in various ways, the surface oxidation occurs when subjected to forced external heat treatment. This is so that you cannot escape.

これらの問題点を解消するために、特公昭45―
1333号公報に示されるアルミニウム入り溶融半田
メツキ銅線が公表されている。しかしながら、半
田メツキ層の偏肉を少なくし、均一なメツキ組成
を施し且つ長尺のメツキができる溶融半田メツキ
銅線の製造方法を確立し、安定させないかぎり、
その有効な耐酸化性による半田付の信頼性と良好
な仕上外観を発揮させることができない。
In order to solve these problems,
An aluminum-containing molten solder-plated copper wire shown in Publication No. 1333 has been published. However, unless a method for manufacturing molten solder-plated copper wire that reduces uneven thickness of the solder-plated layer, has a uniform plating composition, and can be plated in long lengths is established and stabilized,
It is not possible to achieve soldering reliability and good finished appearance due to its effective oxidation resistance.

一般に溶融半田メツキ銅線を製造する方法は、
供給ロールから繰出された銅線を、先づ酸性フラ
ツクス槽に浸漬して表面処理を行ない、次いで溶
融半田メツキ槽中に浸漬し、引上げて槽外に設け
た仕上ダイスを通して横引きでメツキするか、ま
たは溶融半田メツキ槽上に浮遊若しくは固着させ
た仕上ダイスを通して垂直に引上げてメツキする
かの何れかの方法によつて行われている。
Generally, the method of manufacturing molten solder-plated copper wire is as follows:
The copper wire fed out from the supply roll is first dipped into an acid flux tank for surface treatment, then dipped into a molten solder plating tank, pulled up and passed through a finishing die installed outside the tank, and plated by horizontal drawing. Alternatively, plating may be carried out by vertically pulling up through a finishing die floating or fixed on a molten solder plating tank.

また、銅線表面への半田の付着を良好にし、付
着量を増加させるために、仕上メツキと同一の半
田組成または異なる半田組成の半田メツキ槽を更
に設けて、銅線上に予め下地の半田メツキを施し
た後、仕上用の溶融半田メツキ槽中を通して仕上
メツキを施すことが行われている。
In addition, in order to improve the adhesion of solder to the surface of the copper wire and increase the adhesion amount, a solder plating tank with the same solder composition as the final plating or a different solder composition is installed, and the base solder plating is applied to the copper wire in advance. After applying this, it is passed through a molten solder plating tank for finishing and then subjected to finishing plating.

ここに、前記の槽外に設けた仕上ダイスを通し
て横引きでメツキする方法は、メツキに偏肉を生
じて好ましくないが、溶融半田メツキ槽上に浮遊
させた仕上ダイスを通して垂直に引上げてメツキ
する方法はメツキの偏肉が緩和されるので好まし
く、且つリード線の半田付性の効果もよい。
Here, the method of plating by horizontal pulling through a finishing die set outside the tank is undesirable as it causes uneven thickness in the plating, but it is also possible to perform plating by pulling vertically through a finishing die suspended above the molten solder plating tank. This method is preferable because it reduces uneven thickness of the plating, and also has a good effect on the solderability of the lead wire.

しかしながら、上記した製造方法によつてもア
ルミニウム入り溶融半田メツキ銅線を容易に製造
することはできない。
However, even with the above-described manufacturing method, aluminum-containing molten solder-plated copper wire cannot be easily manufactured.

その理由は、銅線を酸性フラツクス槽に浸漬
し、表面処理した後、アルミニウム入り溶融半田
メツキ槽中に浸漬してメツキすると、該半田メツ
キ槽中のアルミニウムは酸性フラツクスと反応し
て急速にその含有量を減少し、遂にはアルミニウ
ムが消費されて皆無になるためである。
The reason for this is that when a copper wire is immersed in an acid flux bath for surface treatment, and then immersed in a molten solder plating bath containing aluminum for plating, the aluminum in the solder plating bath reacts with the acid flux and rapidly deoxidizes. This is because the aluminum content is reduced and eventually all of the aluminum is consumed.

この弊害を避けるために、アルミニウムを含有
しない所望の半田組成にした半田メツキ槽を設け
て、銅線上に予め下地メツキを施した後、次いで
アルミニウム入り溶融半田メツキ槽中に浸漬し、
該メツキ槽の溶融半田面上に浮遊させた仕上ダイ
スを通して垂直に引上げて仕上メツキを行つた
が、メツキの偏肉を少なくし、均一なメツキ組成
で長尺にわたつてメツキ作業を行なうことができ
ず、且つメツキ組成の変化によつて半田付性が大
きく低下し、不良を生ずる問題があつた。
In order to avoid this problem, a solder plating tank with a desired solder composition that does not contain aluminum is provided, and after base plating is applied on the copper wire in advance, the copper wire is then immersed in a molten solder plating tank containing aluminum.
Finish plating was carried out by vertically pulling it through a finishing die floating on the molten solder surface of the plating tank, but it is possible to reduce the uneven thickness of the plating and perform the plating work over a long length with a uniform plating composition. Moreover, changes in the plating composition caused a significant decrease in solderability, resulting in defects.

本発明者は、これらの問題を解決するために、
仕上ダイスを通して垂直に引上げてメツキする場
合について検討した結果、以下に示す問題が未解
決であることがわかつた。
In order to solve these problems, the inventors
As a result of studying the case of plating by pulling the material vertically through a finishing die, it was found that the following problems remain unsolved.

アルミニウム入り溶融半田メツキ槽を温度調
整機器を用いた単なる加熱によつて溶融半田を
静止状態で使用すると、溶融半田中のアルミニ
ウムの比重は鉛および錫のそれに比して極端に
小さいため、時間の経過と共にアルミニウムが
溶融半田面上に浮上し、溶融半田の上層部と下
層部とでは半田組成中のアルミニウム含有量に
濃淡を生ずる。
When using a molten solder plating tank containing aluminum in a static state by simply heating it with a temperature control device, the specific gravity of aluminum in the molten solder is extremely small compared to that of lead and tin, so it takes a long time. As time passes, aluminum floats onto the surface of the molten solder, and the aluminum content in the solder composition varies between the upper and lower layers of the molten solder.

特にアルミニウムの含有量が多いとその傾向
は強くなる。上層部にアルミニウム含有量が多
くなると、溶融半田の粘度が増加すると共に空
気によつてアルミニウムが酸化され、その酸化
生成物(ドロス)が浮遊させた仕上ダイスに目
詰りを起し、長尺のメツキ作業ができなくな
る。
This tendency becomes particularly strong when the aluminum content is high. When the aluminum content in the upper layer increases, the viscosity of the molten solder increases and the aluminum is oxidized by the air, and the oxidation products (dross) clog the suspended finishing die, resulting in long Plating work becomes impossible.

銅線上に予め下地半田メツキを施した後、ア
ルミニウム入り溶融半田メツキ槽中に浸漬する
とき、僅かながらも空気を溶融半田中に持込む
ため、アルミニウム、鉛、錫の各々が一体とな
つたドロスが形成される。そして形成されたド
ロスは、その比重差によつて溶融半田の内部か
らその面上に浮上し、比重差のない微細なドロ
スは溶融半田中に分散される。一方、線材は連
続的にメツキ槽に入線され、浸漬されるため、
溶融半田面上に浮上したドロスを再び溶融半田
中に引入れ、持込むことを繰返す。
After applying base solder plating to the copper wire, when it is immersed in an aluminum-containing molten solder plating bath, a small amount of air is brought into the molten solder, so that dross is formed by combining aluminum, lead, and tin. is formed. The formed dross floats from the inside of the molten solder onto the surface due to the difference in specific gravity, and the fine dross with no difference in specific gravity is dispersed in the molten solder. On the other hand, since the wire is continuously fed into the plating tank and immersed,
The dross floating on the molten solder surface is drawn into the molten solder again and the process of bringing it in is repeated.

その結果、浮遊させた仕上ダイスの下部まで
持込まれた一部のドロスは浮上して仕上ダイス
の下面に集積し、溶融半田中に分散されたドロ
スと共に仕上ダイスに目詰りを起し、長尺のメ
ツキ作業を阻害することになる。
As a result, some of the dross brought to the bottom of the floating finishing die floats up and accumulates on the bottom surface of the finishing die, causing clogging of the finishing die together with the dross dispersed in the molten solder. This will hinder the plating work.

実際のメツキ作業にはとが関与することが
わかつた。従つて、安定した長尺のメツキ作業を
行うには、アルミニウム入り溶融半田の粘度を均
一に保ち、形成されるドロスによつて浮遊仕上ダ
イスに目詰りを起させないような対策が必要とな
る。その対策には、仕上メツキ槽中のアルミニウ
ム入り溶融半田を撹拌装置を用いて撹拌する方
法、または浸漬型の噴流撹拌装置を該仕上メツキ
槽中に設置し、撹拌すると共に形成されるドロス
をメツキ行程外に捕捉して、メツキ作業に障害を
起させない方法によつて解決することができる。
しかしながら、下地メツキ線を連続的に仕上メツ
キ槽中に入線し、浸漬するとき、アルミニウム入
り溶融半田は空気酸化を受けてドロスが形成され
るが、一般の溶融半田(鉛と錫の二元合金)と異
なり、アルミニウムが鉛および錫に比し、より選
択的に酸化され、その含有量はメツキ作業におい
て経時的に減少するために、仕上メツキ層の半田
組成もそれに伴つて大きく変化する。そのため半
田付性が著しく低下し、時には不良を生ずること
がわかつた。
It was found that the actual plating work involves a slag. Therefore, in order to perform stable long plating work, it is necessary to take measures to keep the viscosity of the aluminum-containing molten solder uniform and to prevent the floating finishing die from being clogged by the formed dross. As a countermeasure, there is a method of stirring the molten solder containing aluminum in the final plating tank using a stirring device, or a method of installing an immersion type jet stirring device in the final plating tank and plating the dross that is formed during stirring. This can be solved by a method that does not interfere with the plating work by catching it outside the process.
However, when the base plating wire is continuously introduced into the finish plating tank and immersed, the aluminum-containing molten solder undergoes air oxidation and dross is formed. ), aluminum is oxidized more selectively than lead and tin, and its content decreases over time during the plating operation, so the solder composition of the final plating layer changes accordingly. It was found that this resulted in a marked decrease in solderability, sometimes resulting in defects.

発明の目的 本発明は上記の状況に鑑みてなされたもので、
均一なメツキ組成でメツキ層を形成させ、偏肉の
少ない長尺のメツキ作業ができると共に、半田付
性にすぐれた耐酸化性のアルミニウム入り溶融半
田メツキ銅線の製造方法を提供することを目的と
するものである。
Purpose of the invention The present invention has been made in view of the above situation, and
The purpose of the present invention is to provide a method for producing a molten solder plated aluminum-containing copper wire that forms a plating layer with a uniform plating composition, enables long plating work with little unevenness in thickness, and has excellent solderability and oxidation resistance. That is.

発明の構成 本発明は、銅線を酸性フラツクの槽で表面処理
し、アルミニウムを含有しない溶融半田メツキ槽
で下地メツキを施し、次いでアルミニウム入り溶
融半田が撹拌されている仕上メツキ槽中に通し、
該仕上メツキ槽の溶融半田面上に浮遊させた仕上
ダイスを通過させて垂直に引上げて仕上メツキさ
れたメツキ層を冷却凝固させるメツキ線の製造方
法において、前記仕上メツキ槽中のアルミニウム
入り溶融半田のアルミニウム含有量のメツキ作業
時間の経過に伴うアルミニウム減少量を補給する
ために、該仕上メツキ槽中にアルミニウム含有量
の多い半田母合金を間欠的または連続的に仕上メ
ツキ槽中に補給して、アルミニウム含有量を
0.007〜0.025重量%の範囲に調整してメツキする
ことを特徴とする溶融半田メツキ銅線の製造方法
である。
Structure of the Invention The present invention involves surface-treating a copper wire in an acidic flux tank, applying base plating in a molten solder plating tank that does not contain aluminum, and then passing it through a finish plating tank in which molten solder containing aluminum is stirred.
In the method for producing a plating wire, the molten solder containing aluminum in the final plating tank is passed through a finishing die suspended on the molten solder surface of the final plating tank and vertically pulled up to cool and solidify the final plating layer. In order to replenish the amount of aluminum that decreases with the passage of plating work time, a solder master alloy with a high aluminum content is intermittently or continuously replenished into the final plating tank. , aluminum content
This is a method for producing molten solder-plated copper wire, which is characterized in that the plating is adjusted to a range of 0.007 to 0.025% by weight.

発明の実施態様 第1図は本発明を実施する溶融半田メツキ銅線
の製造方法に係る一実施例の概略説明図である。
第2図、第3図、第4図はそれぞれ本発明に用い
る撹拌装置の一例の浸漬型噴流撹拌装置の一実施
態様の概略平面図、概略正面図、概略側面図であ
る。第5図は第1図の仕上メツキ槽7の概略拡大
図である。本発明の実施態様を述べるに当つて、
先づ第1図における主要なメツキ条件を以下に説
明しておく。
Embodiment of the Invention FIG. 1 is a schematic explanatory diagram of an embodiment of a method for manufacturing molten solder-plated copper wire according to the present invention.
FIG. 2, FIG. 3, and FIG. 4 are a schematic plan view, a schematic front view, and a schematic side view, respectively, of an embodiment of an immersion type jet stirring device, which is an example of a stirring device used in the present invention. FIG. 5 is a schematic enlarged view of the finish plating tank 7 shown in FIG. 1. In describing embodiments of the present invention,
First, the main plating conditions in FIG. 1 will be explained below.

(1) 下地メツキ槽3:錫15±1%、鉛85±1%の
半田約400Kgを下地メツキ槽に入れて加熱し、
330±5℃の温度に調節して下地メツキを行う。
(1) Base plating tank 3: Approximately 400 kg of solder containing 15±1% tin and 85±1% lead was placed in the base plating tank and heated.
Undercoat plating is performed at a temperature of 330±5℃.

(2) 仕上メツキ槽7:アルミニウム0.025%、錫
15±1%、残部鉛とするアルミニウム入り半田
の約900Kgを仕上メツキ槽に入れて加熱し、300
±5℃の温度に調節して仕上メツキを行う。
(2) Finish plating tank 7: 0.025% aluminum, tin
Approximately 900 kg of aluminum-containing solder with 15 ± 1% lead and the balance was placed in a finishing plating tank and heated to 300 kg.
Finish plating is performed by adjusting the temperature to ±5℃.

(3) 浮遊仕上ダイス9:仕上メツキ槽7の溶融半
田面上に浮遊させる仕上ダイスは四角孔であつ
て、使用される銅線径例えば、0.50mmφ、0.65
mmφ、0.80mmφに対して、その一辺はそれぞれ
0.56mm、0.72mm、0.87mmとする四角孔であるこ
とが好ましい。
(3) Floating finishing die 9: The finishing die floating on the molten solder surface of the finishing plating tank 7 has a square hole and has a diameter of the copper wire used, e.g. 0.50mmφ, 0.65mm.
For mmφ and 0.80mmφ, each side is
Preferably, the holes are square holes with dimensions of 0.56 mm, 0.72 mm, and 0.87 mm.

(4) メツキ線速:50m/分の定速とする。(4) Metsuki line speed: Constant speed of 50 m/min.

(5) メツキの線条数:8条掛の並列とし、連続的
なメツキ作業をする。いずれも、前記にこだわ
るものでないことはいうまでもない。
(5) Number of plating lines: 8 lines in parallel and continuous plating work. It goes without saying that neither of these is limited to the above.

以下、本発明の製造方法の実施態様を図面にも
とづいて説明する。
Hereinafter, embodiments of the manufacturing method of the present invention will be described based on the drawings.

第1図において、銅線供給リール1から繰出さ
れた銅線1aはガイドロール44aおよびガイド
支持棒5を通り、酸性フラツクの槽2に浸漬し、
メツキ前の表面処理を行う。次いでガイドロール
4bガイド支持棒5aを通して下地メツキ槽3で
所望の下地半田メツキを施した後、引き上げ絞り
ダイス6で余剰な半田を除去して、適当なメツキ
厚、例えば2〜4μmに調整する。
In FIG. 1, a copper wire 1a fed out from a copper wire supply reel 1 passes through a guide roll 44a and a guide support rod 5, and is immersed in an acidic flux tank 2.
Perform surface treatment before plating. Next, a desired base solder plating is applied in the base plating tank 3 through the guide roll 4b and the guide support rod 5a, and then excess solder is removed with a drawing die 6 to adjust the plating thickness to an appropriate thickness, for example, 2 to 4 μm.

絞りダイス6を通した線材は空冷または強制冷
却(図では示していない)によつて半田メツキ層
を凝固または半凝固させた後、案内ダイス8、ガ
イド支持棒5bを通して仕上メツキ槽に浸漬す
る。仕上メツキを施す前に、アルミニウム入り溶
融半田の組成を均一にするため、仕上メツキ槽7
中に設置された浸漬型の噴流撹拌装置12を予め
作動しておく。作動とその機能については後述す
る。仕上メツキ槽7に浸漬された線材はアルミニ
ウム入り溶融半田面上に浮遊させた仕上ダイス9
を通して垂直に引上げ、冷却器10で仕上メツキ
層を強制的に冷却して凝固させ、ガイドロール1
1を経てメツキ線材を巻取機18で巻取る。
The wire passed through the drawing die 6 is air cooled or forced cooled (not shown) to solidify or semi-solidify the solder plating layer, and then passed through the guide die 8 and guide support rod 5b and immersed in a finish plating tank. Before finishing plating, in order to make the composition of aluminum-containing molten solder uniform, finish plating tank 7 is used.
The immersion type jet stirring device 12 installed inside is activated in advance. The operation and its functions will be described later. The wire rod immersed in the finishing plating tank 7 is passed through a finishing die 9 floating on the aluminum-containing molten solder surface.
The finish plating layer is forcibly cooled and solidified by the cooler 10, and then the guide roll 1 is pulled up vertically through the guide roll 1.
1, the wire rod is wound up by a winding machine 18.

メツキ線の仕上外径または(および)調質加工
を必要とするときは、ガイドロール11から水溶
性潤滑剤槽13のガイドロール14,15,16
を通して線材に潤滑液を付着させ、仕上用または
調質用ダイス17の1個または複数個を通したの
ち巻取機18で巻取る。次に、浸漬型の噴流撹拌
装置12の作動とその機能について、第2図から
第5図にもとづいて簡単に説明する。
When the finished outer diameter of the plated wire or (and) thermal processing is required, the guide rolls 14, 15, 16 from the guide roll 11 to the water-soluble lubricant tank 13 are
A lubricating liquid is applied to the wire through the wire rod, and after passing through one or more finishing or heat refining dies 17, the wire is wound up by a winder 18. Next, the operation and function of the immersion type jet agitation device 12 will be briefly explained based on FIGS. 2 to 5.

噴流撹拌装置12は溶融半田の液面下に設置さ
れ、駆動モータのプーリー(図では示していな
い)と該噴流撹拌装置のプーリー20とをVゴム
ベルトでつなぐ。プーリー20と変速器19とは
機械的に連動され、Vゴムベルトの張り具合によ
つて耐熱性軸受21で支持されたインペラー軸体
25の回転数を適当に調整し得るようになつてい
る。
The jet stirring device 12 is installed below the surface of the molten solder, and the pulley of the drive motor (not shown) and the pulley 20 of the jet stirring device are connected by a V-rubber belt. The pulley 20 and the transmission 19 are mechanically interlocked, and the rotation speed of the impeller shaft 25 supported by the heat-resistant bearing 21 can be adjusted appropriately depending on the tension of the V-rubber belt.

溶融半田は水車型インペラー23の回転にとも
なつて、吸込窓22aから吸込穴22に入り、箱
体部aから箱体部bに至り、多数の吐出孔24よ
り溶融半田を放射状に噴流する。かくしてアルミ
ニウム入り溶融半田は連続的に撹拌され、その組
成と粘度は均一に保持される。噴流撹拌装置12
は第5図から明らかなように、吐出孔24は垂直
に引上げられる線材に向つて傾の上方に開口さ
れ、且つ吐出する溶融半田を浮遊仕上ダイス9の
底部付近に放射状に噴流させることにしているか
ら、アルミニウム入り溶融半田を用いて線材をメ
ツキする場合、従来技術では解決し得なかつた前
記の未解決の問題点とを同時に解決し得るこ
とになる。
As the waterwheel-type impeller 23 rotates, the molten solder enters the suction hole 22 from the suction window 22a, reaches the box body part a from the box body part b, and is jetted radially from the many discharge holes 24. In this way, the aluminum-containing molten solder is continuously stirred and its composition and viscosity are maintained uniform. Jet stirring device 12
As is clear from FIG. 5, the discharge hole 24 is opened upwardly toward the vertically pulled wire rod, and the discharged molten solder is jetted radially near the bottom of the floating finishing die 9. Therefore, when plating a wire using aluminum-containing molten solder, it is possible to simultaneously solve the above-mentioned unresolved problems that could not be solved with the prior art.

すなわち、仕上メツキ槽7中に噴流撹拌装置1
2を設置することにより、線材に伴なわれて仕上
ダイス9の底部に集積される傾向にあるドロスを
噴流により排除するので仕上ダイス9の目詰りを
未然に防止し、更に線材に伴つて仕上メツキ槽7
中に持込まれる空気によつて、溶融半田中で形成
され、分散された微細なドロスは箱体部aおよび
箱体部bに自然的に捕捉されるので、清浄且つ均
一な組成でもつてメツキを行ない得るので仕上ダ
イス9に目詰りを起すことなく、長尺のメツキ作
業ができる。
That is, the jet stirring device 1 is installed in the finish plating tank 7.
2, the jet stream removes dross that tends to accumulate at the bottom of the finishing die 9 along with the wire rod, thereby preventing clogging of the finishing die 9, and further preventing the finishing die 9 from clogging with the wire rod. Plating tank 7
The fine dross formed and dispersed in the molten solder is naturally trapped in the box parts a and b by the air brought into the molten solder, so plating can be done with a clean and uniform composition. Therefore, long plating work can be performed without clogging the finishing die 9.

なお、吐出孔24のパイプを長くすることもよ
く、噴流撹拌装置12をプロペラ式撹拌機に代え
て複数用いてもよいが、溶融半田中で形成され、
分散された微細なドロスの捕捉効果はない。しか
し、メツキ作業において仕上メツキ槽中のアルミ
ニウム含有量を均一に保ち、本発明の製造方法に
係る仕上メツキ槽中にアルミニウム含有量の多い
半田母合金を間欠的または連続的に添加し、溶解
撹拌してアルミニウム含有量を均一にさせる目的
は達成される。
Note that the pipe of the discharge hole 24 may be made longer, and a plurality of jet agitators 12 may be used instead of a propeller type agitator, but the jet agitator 12 may be formed in molten solder,
There is no effect of capturing dispersed fine dross. However, in plating work, the aluminum content in the finish plating tank is kept uniform, and a solder master alloy with a high aluminum content is intermittently or continuously added to the finish plating tank according to the manufacturing method of the present invention, and the solder master alloy is melted and stirred. The purpose of making the aluminum content uniform is achieved.

以上の実施態様によつて行われる溶融半田メツ
キ銅線の製造方法において、線材に伴つて仕上メ
ツキ槽中に持込まれる微量の空気によつてアルミ
ニウム入り溶融半田のアルミニウム含有量がメツ
キの作業時間に対してどのように減少するかを調
べた結果を第6図に示す。第6図のA、B、Cは
それぞれ0.65mmφ、0.80mmφ、0.50mmφの銅線を
用いた場合のアルミニウム含有量の減少直線であ
る。A、B、C減少直線の傾斜から、時間当たり
のアルミニウム減少量はそれぞれ平均1.7×10-3
%/hr、1.9×10-3%/hr、1.5×10-3%/hrであ
る。すなわち、下地メツキを施した後、線材を仕
上メツキ槽に浸漬すると、僅かながらも空気を溶
融半田中に持込むためドロスが形成される。特に
アルミニウムは鉛および錫よりも選択的に酸化さ
れ、その半田中における含有量は経時的に減少す
る。
In the method for producing molten solder-plated copper wire according to the embodiment described above, the aluminum content of the aluminum-containing molten solder is reduced by the minute amount of air brought into the finish plating tank with the wire rod, which reduces the plating work time. Fig. 6 shows the results of investigating how it decreases. A, B, and C in FIG. 6 are straight lines of decreasing aluminum content when using copper wires of 0.65 mmφ, 0.80 mmφ, and 0.50 mmφ, respectively. From the slopes of the decreasing lines A, B, and C, the amount of aluminum decreased per hour is 1.7×10 -3 on average.
%/hr, 1.9×10 −3 %/hr, and 1.5×10 −3 %/hr. That is, when the wire rod is immersed in a finish plating tank after base plating, dross is formed because a small amount of air is brought into the molten solder. In particular, aluminum is oxidized more selectively than lead and tin, and its content in solder decreases over time.

第6図から明らかなように、アルミニウムの初
期含有量を約0.02%付近に保つて、6〜7時間の
連続メツキ作業を行うと、アルミニウム含有量は
約0.01%に減少する。アルミニウム含有量の低下
とメツキ作業時間との関係はメツキ条件、すなわ
ち、仕上メツキ槽に仕込まれるアルミニウム入り
溶融半田量、鉛と錫との配合割合、メツキ温度、
線径とその掛条数などによつて異なるが、直線的
に低下する関係にあることがわかつた。したがつ
て、そのまま継続して長時間メツキ作業を行う
と、遂にはアルミ含有量は0となり、該半田は耐
酸化性の効果を失つて半田付性も低下するから、
アルミニウム含有量が0.01%近くに低下すると、
メツキによつて消費された溶融半田の補給とアル
ミニウム含有量の修正配合を同時に行つてアルミ
ニウム量を初期含有量にもどすことが必要であ
る。
As is clear from FIG. 6, when the initial aluminum content is maintained at about 0.02% and continuous plating work is performed for 6 to 7 hours, the aluminum content decreases to about 0.01%. The relationship between the decrease in aluminum content and the plating work time depends on the plating conditions: the amount of aluminum-containing molten solder charged into the final plating tank, the blending ratio of lead and tin, the plating temperature,
Although it varies depending on the wire diameter and the number of wires, it was found that there is a linear decreasing relationship. Therefore, if the plating work is continued for a long time, the aluminum content will eventually reach zero, and the solder will lose its oxidation resistance and its solderability will decrease.
When the aluminum content drops to close to 0.01%,
It is necessary to simultaneously replenish the molten solder consumed by plating and correct the aluminum content to return the aluminum content to the initial content.

修正配合を行うには、予め溶融半田中のアルミ
ニウム含有量を原子吸光分析法などによつて迅速
に定量し、その定量値から仕上メツキ槽中の鉛、
錫含有量と同一組成の半田にアルミニウムを添加
した母合金(以下、アルミニウム・半田母合金と
いう)、例えば鉛70±1%、錫30±1%、アルミ
ニウム0.25〜0.30%を用いて調整すればよい。
In order to carry out the corrected formulation, the aluminum content in the molten solder is quickly determined in advance by atomic absorption spectrometry, etc., and based on the quantitative value, lead, lead, and
If adjusted using a master alloy made by adding aluminum to solder with the same composition as the tin content (hereinafter referred to as aluminum/solder master alloy), for example, 70 ± 1% lead, 30 ± 1% tin, and 0.25 to 0.30% aluminum. good.

原子吸光分析は次のように行う。先づアルミニ
ウム入り溶融半田から試料約1〜2grを採取秤量
し、200mlのビーカに入れ、硝酸溶液(1+1)
40mlを加え加熱し、試料を溶解する。この溶液を
100mlのメスフラスコに入れ蒸溜水で正確に希釈
する。そして分析に必要な量を過してアルミニ
ウムの原子吸光分析を行う。分析に所要する時間
は1時間以内である。
Atomic absorption spectrometry is performed as follows. First, take a sample of about 1 to 2g from the molten solder containing aluminum, weigh it, put it in a 200ml beaker, and add nitric acid solution (1+1).
Add 40ml and heat to dissolve the sample. This solution
Place in a 100ml volumetric flask and dilute accurately with distilled water. Then, atomic absorption spectrometry of aluminum is performed after passing through the amount necessary for analysis. The time required for analysis is within 1 hour.

次に、アルミニウム入り溶融半田中のアルミニ
ウム含有量とメツキの作業性および製造されたメ
ツキ線材の加熱試験後の半田付性を調べた結果を
第1表に示す。
Next, Table 1 shows the results of examining the aluminum content in the aluminum-containing molten solder, the workability of plating, and the solderability of the manufactured plating wire after a heating test.

第1表から、アルミニウム含有量が0.025%を
こえるときは、溶融半田を撹拌しても、溶融粘度
が増加するためか、浮遊ダイスに目詰りを起す傾
向がみられ、メツタ線における所要のメツキ厚
(例えば7〜15μm)を長尺にわたつて得ることが
困難となる。アルミニウム含有量が0.025%以下
のときは、メツキ線における所望のメツキ厚を長
尺にわたつて得ることができる。しかし、アルミ
ニウム含有量が0.005%未満になると、得られた
メツキ線材は耐酸化性効果を失つて、その半田付
性は急激に低下する。したがつて、仕上メツキ槽
に使用する溶融半田のアルミニウム含有量として
は、0.005〜0.025%の範囲がよいが、アルミニウ
ム含有量を0.007〜0.02%の範囲に保つてメツキ
作業を行うことが好ましい。一方、鉛と錫との主
半田組成において、錫を増加させればアルミニウ
ム含有量も増加させ得るが、リード線の半田付性
には変化はなく、錫の増加に伴つてコストも上昇
し、溶融温度も低下する。従つて高温熱処理され
るリード線として使用するとき、その融点低下が
好ましくない場合もあるので、錫を25〜30%にす
るのが好ましい。
From Table 1, when the aluminum content exceeds 0.025%, even if the molten solder is stirred, there is a tendency for the floating die to become clogged, probably due to an increase in melt viscosity. It becomes difficult to obtain a long thickness (for example, 7 to 15 μm). When the aluminum content is 0.025% or less, the desired plating thickness in the plating line can be obtained over a long length. However, when the aluminum content is less than 0.005%, the resulting plated wire loses its oxidation-resistant effect and its solderability rapidly decreases. Therefore, the aluminum content of the molten solder used in the final plating tank is preferably in the range of 0.005 to 0.025%, but it is preferable to perform the plating operation while keeping the aluminum content in the range of 0.007 to 0.02%. On the other hand, in the main solder composition of lead and tin, if the tin content is increased, the aluminum content can also be increased, but the solderability of the lead wire will not change, and the cost will increase as the tin content increases. The melting temperature also decreases. Therefore, when used as a lead wire to be subjected to high-temperature heat treatment, the lowering of the melting point may be undesirable, so it is preferable that the tin content be 25 to 30%.

しかしながらリード線の使用において、高温の
熱処理はされないが、摩耗防止のためにメツキ層
の表面硬度を向上させ、且つ長期保存のための耐
酸化性を要求される場合は、錫を増加させたアル
ミニウム入り半田組成にするのが好ましい。
However, when using lead wires, high-temperature heat treatment is not performed, but if the surface hardness of the plating layer is improved to prevent wear and oxidation resistance is required for long-term storage, aluminum with increased tin content may be used. It is preferable to use a solder composition.

次に、仕上メツキ槽に比重10.22、アルミニウ
ム0.02%、錫30±1%、残部鉛からなる溶融半田
を900Kgを入れ、先に説明した実施態様のメツキ
条件で0.65mmφの溶融半田メツキ銅線を製造する
場合において、仕上メツキ槽の溶融半田中のアル
ミニウム含有量の減少を、アルミニウム・半田母
合金を用いて調整する例を以下に説明する。
Next, 900 kg of molten solder consisting of specific gravity 10.22, aluminum 0.02%, tin 30±1%, and the balance lead was put into the finish plating bath, and 0.65 mmφ molten solder plated copper wire was made using the plating conditions of the embodiment described above. In the case of manufacturing, an example will be described below in which the reduction in aluminum content in the molten solder in the finish plating tank is adjusted using an aluminum/solder master alloy.

(例 1) 0.65mmφ銅線の場合、溶融半田中のアルミニウ
ム含有量の減少は平均1.7×10-3%/hrであるか
ら、0.3%アルミニウム・半田母合金から製造し
た長尺の3mmφアルミニウム・半田母合金線を準
備し、メツキ作業の開始と共に該母合金線を
70.63m/時間の線速で、仕上メツキ槽中に浸漬
された噴流撹拌装置の吸込窓22a近くのC位置
(第5図参照)に設けたガイド用ステンレス管
(図では示していない)中に連続的に入線し、溶
解しながらメツキ作業を行う。しかるとき、入線
される3mmφのアルミニウム・半田母合金線の供
給量は時間当り約5.1Kgである。
(Example 1) In the case of 0.65 mmφ copper wire, the average decrease in aluminum content in molten solder is 1.7 Prepare the solder master alloy wire, and at the start of plating work, remove the master alloy wire.
At a linear speed of 70.63 m/hour, a stainless steel guide tube (not shown) was installed at position C (see Figure 5) near the suction window 22a of the jet agitator immersed in the finish plating tank. The wire is continuously inserted and the plating work is performed while melting. At this time, the feed rate of 3 mmφ aluminum/solder master alloy wire is approximately 5.1 kg per hour.

一方、メツキ線に付着し経時的に消費されるア
ルミニウム入り溶融半田量は平均12μm厚のメツ
キが施されるから時間当たり約5.1Kgとなる。
On the other hand, the amount of aluminum-containing molten solder that adheres to the plating wire and is consumed over time is approximately 5.1 kg per hour because plating is applied to an average thickness of 12 μm.

従つて、前記の供給量と消費量とは平衡に保た
れると共に、仕上メツキ槽中の溶融半田のアルミ
ニウム含有量を0.02%の初期含有量のまま維持し
て長尺のメツキ作業をすることができる。
Therefore, the above-mentioned supply amount and consumption amount are kept in equilibrium, and long plating work is performed while maintaining the aluminum content of the molten solder in the final plating tank at the initial content of 0.02%. Can be done.

(例 2) 例2は0.3%アルミニウム・半田母合金を縦40
cm×横10cmの鋳造金型に約10Kgの薄板状に鋳造
し、該鋳造板を用いて仕上メツキ槽の溶融半田中
のアルミニウム含有量の減少を調整する例であ
る。
(Example 2) In Example 2, 0.3% aluminum/solder mother alloy is
This is an example in which a thin plate weighing approximately 10 kg is cast in a casting mold measuring cm x width 10 cm, and the cast plate is used to adjust the decrease in aluminum content in molten solder in a finish plating tank.

すなわち、メツキ作業の開始後、2時間毎に10
Kgの0.3%アルミニウム・半田母合金板の1枚を、
例1で述べた仕上メツキ槽のC位置またはC位置
に静かに投入し、溶解しながらメツキ作業を連続
的に行う。結果的には例1と同じであつて、メツ
キ作業によつて消費されるアルミニウム入り溶融
半田量を0.3%アルミニウム・半田母合金板を間
欠的に投入溶解することにより溶融半田の消費量
と供給量との平衡を保ち、仕上メツキ槽中の溶融
半田のアルミニウム含有量を0.02%の初期含有量
のまま維持して長尺のメツキ作業をすることがで
きる。
That is, after the beginning of the plating operation, 10
One piece of 0.3% aluminum/solder mother alloy plate weighing 1 kg,
Gently put it into the C position or C position of the final plating tank mentioned in Example 1, and perform the plating work continuously while melting. The result is the same as Example 1, and the amount of molten solder containing aluminum consumed by plating work is reduced by intermittently introducing and melting a 0.3% aluminum/solder mother alloy plate to reduce the amount of molten solder consumed and supplied. It is possible to perform long plating work by maintaining the aluminum content of the molten solder in the final plating tank at the initial content of 0.02%.

(例 3) 例3は約6時間のメツキ作業後、仕上メツキ槽
の溶融半田中のアルミニウム含有量が0.01%と減
少したとき、10Kgの0.3%アルミニウム・半田母
合金板を用いてアルミニウム減少量を調整する例
である。この場合、酸化による溶融半田中のアル
ミニウムの消費量は0.09Kgとなるから、上記アル
ミニウムの消費量を回復させるには、10Kgの3%
アルミニウム・半田母合金板、3枚を補給する必
要がある。従つて1枚づつ仕上メツキ槽のC.d位
置に静かに投入して、溶解しながらメツキ作業を
連続的に行う。一方、メツキ線に付着し経時的に
消費されるアルミニウム入り溶融半田量は30.24
Kgである。
(Example 3) In Example 3, after about 6 hours of plating work, when the aluminum content in the molten solder in the final plating tank was reduced to 0.01%, the amount of aluminum reduced was measured using a 10 kg 0.3% aluminum/solder master alloy plate. This is an example of adjusting. In this case, the consumption of aluminum in the molten solder due to oxidation is 0.09Kg, so in order to recover the above aluminum consumption, 3% of 10Kg is required.
It is necessary to supply three aluminum/solder mother alloy plates. Therefore, the sheets are gently placed one by one into the Cd position of the finish plating tank, and the plating work is performed continuously while melting. On the other hand, the amount of aluminum-containing molten solder that adheres to the plating wire and is consumed over time is 30.24
Kg.

従つて、例3の場合も溶融半田の消費量と0.3
%アルミニウム・半田母合金板の供給量が平衡を
保ち、仕上メツキ槽中の溶融半田のアルミニウム
含有量を0.02%の初期含有量に回復させて長尺の
メツキ作業をすることができる。
Therefore, in the case of Example 3, the consumption of molten solder and 0.3
% aluminum/solder mother alloy plate is kept in equilibrium, the aluminum content of the molten solder in the final plating tank is restored to the initial content of 0.02%, and long plating work can be performed.

(例 4) 例4は約8時間のメツキ作業後、仕上メツキ槽
の溶融半田中のアルミニウム含有量が0.0065%と
減少したとき、10Kgの0.3%アルミニウム・半田
母合金板を用いてアルミニウム減少量を調整する
ものである。この場合、酸化による溶融半田中の
アルミニウムの消費量は0.122Kgとなるから、上
記アルミニウムの消費量を回復させるには、10Kg
の3%アルミニウム・半田母合金板4枚が必要で
ある。従つて1枚づつ仕上メツキ槽のC.d位に投
入し、溶解しながらメツキ作業を継続して行へば
よい。
(Example 4) In Example 4, after about 8 hours of plating work, when the aluminum content in the molten solder in the final plating tank decreased to 0.0065%, the amount of aluminum reduction was calculated using a 10 kg 0.3% aluminum/solder master alloy plate. This is to adjust the In this case, the consumption of aluminum in the molten solder due to oxidation is 0.122Kg, so in order to recover the above aluminum consumption, 10Kg is required.
Four 3% aluminum/solder mother alloy plates are required. Therefore, it is sufficient to put the sheets one by one into the Cd position of the final plating tank and continue the plating work while melting them.

メツキ線に付着し経時的に消費されるアルミニ
ウム入り溶融半田量は40.32Kgである。8時間の
メツキ作業で操業を停止するときは、仕上メツキ
槽のアルミニウム入り溶融半田を冷却凝固させ、
再びメツキ作業を行う場合に、仕上メツキ槽を
300±50℃に加熱したのち10Kgの0.3%アルミニウ
ム・半田母合金板を1枚づつ4枚仕上メツキ槽に
投入し溶解してメツキ作業を行へばよい。
The amount of aluminum-containing molten solder that adheres to the plating wire and is consumed over time is 40.32 kg. When stopping operations after 8 hours of plating work, the molten solder containing aluminum in the final plating tank is cooled and solidified.
When performing plating work again, use the finish plating tank.
After heating to 300±50°C, four 10 kg 0.3% aluminum/solder master alloy plates are placed one by one into a finish plating tank, melted, and plated.

次に本発明の方法を実施例にもとづき説明す
る。
Next, the method of the present invention will be explained based on examples.

実施例 1 本実施例は第1図に示す装置を用いて行つた。
0.640mmφの硬銅線を8本、線速50m/分で室温
の酸性フラツクス槽を通した後、メツキ温度330
±5℃の錫15±1%、鉛85±1%からなる半田の
下地メツキ槽を通過させ、メツキ厚2〜4μmの下
地メツキ層を形成させた。その後、300±5℃の
アルミニウム0.023%、錫30±1%、残部鉛から
なる溶融半田を噴流撹拌機で撹拌している仕上メ
ツキ槽を通し、1辺0.71mmの四角孔を有する浮遊
ダイスを通過させて垂直に引上げ、仕上メツキ層
を形成させて0.652mmφの仕上ダイスを通して巻
取機に巻取(以下、実施例1のメツキ作業条件と
いう)る。
Example 1 This example was carried out using the apparatus shown in FIG.
Eight hard copper wires of 0.640 mmφ were passed through an acid flux bath at room temperature at a wire speed of 50 m/min, and the plating temperature was 330.
The sample was passed through a solder base plating bath consisting of 15±1% tin and 85±1% lead at ±5°C to form a base plating layer with a plating thickness of 2 to 4 μm. After that, the molten solder consisting of 0.023% aluminum, 30±1% tin, and the balance lead at 300±5°C was passed through a finishing plating tank in which a jet stirrer was used to stir the molten solder, and a floating die with a square hole of 0.71 mm on each side was placed. It is passed through and pulled up vertically to form a finishing plating layer, passed through a finishing die of 0.652 mmφ, and wound up on a winder (hereinafter referred to as the plating work conditions of Example 1).

メツキ作業の開始と共に、3mmφの3%アルミ
ニウム・半田母合金線を70.63m/時間の線速で
仕上メツキ槽中に入線し、溶解しながらメツキ作
業を行つた。
At the start of the plating work, a 3% aluminum/solder master alloy wire of 3 mm diameter was introduced into the finish plating tank at a line speed of 70.63 m/hour, and the plating work was performed while being melted.

実施例 2 仕上メツキ槽の半田組成をアルミニウム0.02
%、錫30±1%、残部鉛とする以外は実施例1の
メツキ作業条件と同様に行う。
Example 2 The solder composition of the finish plating tank is aluminum 0.02
%, tin 30±1%, and the remainder lead, the plating work conditions were the same as in Example 1.

メツキ作業の開始後、2時間毎に10Kgの0.3%
アルミニウム・半田母合金板の1枚を仕上メツキ
槽中に投入し、溶解しながらメツキ作業を行つ
た。
0.3% of 10Kg every 2 hours after the start of plating work
One aluminum/solder mother alloy plate was placed in a final plating tank, and plating was performed while it was being melted.

実施例 3 仕上メツキ槽の半田組成をアルミニウム0.01
%、錫30±1%、残部鉛とする以外は実施例1の
メツキ作業条件と同様に行う。
Example 3 The solder composition of the finish plating tank is aluminum 0.01
%, tin 30±1%, and the remainder lead, the plating work conditions were the same as in Example 1.

メツキ作業開始5分後、10Kgの0.3%アルミニ
ウム・半田母合金板を1枚づつ、3枚を逐次、仕
上メツキ槽に投入し、溶解しながらメツキ作業を
行つた。
Five minutes after the start of the plating work, three 10 kg 0.3% aluminum/solder mother alloy plates were sequentially put into the finish plating tank, and the plating work was performed while melting them.

実施例 4 仕上メツキ槽の半田組成をアルミニウム0.0065
%、錫30±1%、残部鉛とする以外は実施例1の
メツキ作業条件と同様に行う。メツキ作業開始5
分後、10Kgの0.3%アルミニウム・半田母合金板
を1枚づつ、4枚を逐次、仕上メツキ槽に投入
し、溶解しながらメツキ作業を行つた。
Example 4 Solder composition of finish plating tank is aluminum 0.0065
%, tin 30±1%, and the remainder lead, the plating work conditions were the same as in Example 1. Start of plating work 5
After a few minutes, four 10 kg 0.3% aluminum/solder mother alloy plates were sequentially put into the finish plating tank, one by one, and the plating work was performed while melting them.

比較例1および2 仕上メツキ槽の半田組成を比較例1ではアルミ
ニウム0.004%、錫30±1%、残部鉛とし、比較
例2では錫30±1%、鉛70±1%とする以外で、
実施例1のメツキ作業条件と同様とし、仕上メツ
キ槽中にアルミニウム・半田母合金を供給しない
で、メツキ作業を行つた。前記、実施例および比
較例によつて得られたメツキ線のメツキ厚、引張
強さ、伸び、屈曲性ならびに230℃×1時間およ
び165℃×48時間加熱後の半田付性を測定した結
果を表2に示す。なお、半田付性はMIL―STD
―202M、208規定により判定した。また、屈曲性
はJISC6402、JISC6422規格により判定した。
Comparative Examples 1 and 2 The solder composition of the final plating bath was 0.004% aluminum, 30 ± 1% tin, and the balance was lead in Comparative Example 2, and 30 ± 1% tin and 70 ± 1% lead in Comparative Example 2.
The plating work was carried out under the same plating conditions as in Example 1, without supplying aluminum/solder master alloy to the final plating tank. The results of measuring the plating thickness, tensile strength, elongation, flexibility, and solderability after heating at 230°C for 1 hour and at 165°C for 48 hours of the plated wires obtained in the Examples and Comparative Examples are as follows. It is shown in Table 2. In addition, solderability is MIL-STD.
- Determined according to 202M and 208 regulations. In addition, the flexibility was determined according to JISC6402 and JISC6422 standards.

発明の効果 下地メツキ槽で第1層のメツキを施した線材を
アルミニウム入りの溶融半田の仕上メツキ槽でメ
ツキを行う場合、僅かながらも空気を連続的に溶
融半田中に持込むためドロスが形成され、溶融半
田中のアルミニウム含有量は経時的に、直線的に
減少し、長時間のメツキ作業を行うと遂にはアル
ミニウム含有量が0となり、耐酸化性の効果のあ
るアルミニウム入り半田組成で均一なメツキ線を
得ることができない。本発明の製造方法によれ
ば、メツキによつて消費される溶融半田の補給と
経時的なアルミニウム含有量の低下に対する修正
配合とを、アルミニウム・半田母合金を用いて同
時に行う場合、仕上メツキ槽中に浸漬型の噴流撹
拌装置が設けられ、常にアルミニウム溶融半田が
撹拌されているため、必要量のアルミニウム・半
田母合金の線材または板材を仕上メツキ槽の溶融
半田中に連続または間欠的に投入することによ
り、直ちに溶解され、撹拌されて、清浄な均一な
アルミニウム入り溶融半田組成にして安定な仕上
メツキがなされる。それがため、浮遊ダイスに目
詰りを起すこともなく、メツキの偏肉も少なく、
長尺のメツキ作業ができる。更に、メツキ線材が
電子機器部品のリード線として使用される場合、
メツキ層が耐酸化性の効果のある均一なアルミニ
ウム入り半田組成でメツキされているので、高温
熱処理後の半田付性は従来のものと比較して格段
にすぐれ、製造方法の確立と相まつてこの種のメ
ツキ線の需要に寄与する度合は多大である。
Effects of the invention When plating a wire rod that has been plated with the first layer in a base plating tank in a finish plating tank containing molten solder containing aluminum, dross is formed because a small amount of air is continuously brought into the molten solder. The aluminum content in the molten solder decreases linearly over time, and after long plating work, the aluminum content finally reaches zero, making the solder composition uniform with aluminum, which has an oxidation-resistant effect. It is not possible to obtain a perfect metsuki line. According to the manufacturing method of the present invention, when replenishing the molten solder consumed by plating and correcting the composition to correct the decrease in aluminum content over time using an aluminum/solder master alloy, the finish plating tank An immersion-type jet agitation device is installed inside to constantly stir the molten aluminum solder, so the necessary amount of aluminum/solder master alloy wire or plate material can be continuously or intermittently fed into the molten solder in the finish plating tank. By doing so, it is immediately melted and stirred, and a clean and uniform aluminum-containing molten solder composition is obtained, resulting in a stable finish plating. As a result, there is no clogging of the floating die, and there is less uneven thickness of the matsuki.
Can perform long plating work. Furthermore, when the wire rod is used as a lead wire for electronic device parts,
Since the plating layer is plated with a uniform aluminum-containing solder composition that has an oxidation-resistant effect, the solderability after high-temperature heat treatment is much better than that of conventional products. The degree of contribution to the demand for seed wires is significant.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法に用いる装置の一実施態
様を示す概略説明図、第2図〜第4図はそれぞれ
本発明に用いる浸漬型の噴流撹拌装置の一実施態
様の概略平面図、概略正面図、概略側面図、第5
図は第1図に示す仕上メツキ槽の概略拡大図、第
6図は仕上メツキ槽のアルミニウム入り溶融半田
中のアルミニウム含有量の減少とメツキ作業時間
との関係を示す実施例の一例である。図面の主要
な符号は次の通りである。 1a:銅線、2:酸性フラツクス槽、3:下地
メツキ槽、7:仕上メツキ槽、9:浮遊ダイス、
10:冷却器、12:噴流撹拌装置、17:仕上
用ダイス。
FIG. 1 is a schematic explanatory diagram showing one embodiment of the apparatus used in the method of the present invention, and FIGS. 2 to 4 are a schematic plan view and a schematic diagram, respectively, of one embodiment of the immersion type jet stirring apparatus used in the present invention. Front view, schematic side view, fifth
The figure is a schematic enlarged view of the final plating tank shown in FIG. 1, and FIG. 6 is an example of an embodiment showing the relationship between the reduction in aluminum content in the aluminum-containing molten solder of the final plating tank and the plating work time. The main symbols in the drawings are as follows. 1a: Copper wire, 2: Acid flux tank, 3: Base plating tank, 7: Finish plating tank, 9: Floating die,
10: Cooler, 12: Jet stirring device, 17: Finishing die.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 銅線を酸性フラツク槽で表面処理し、アルミ
ニウムを含有しない溶融半田メツキ槽で下地メツ
キを施し、次いでアルミニウム入り溶融半田が撹
拌されている仕上メツキ槽中に通し、該仕上メツ
キ槽の溶融半田面上に浮遊させた仕上ダイスを通
過させて垂直に引上げて仕上メツキされたメツキ
層を冷却凝固させるメツキ線の製造方法におい
て、前記仕上メツキ槽中のアルミニウム入り溶融
半田のアルミニウム含有量のメツキ作業時間の経
過に伴うアルミニウム減少量を補給するために、
該仕上メツキ槽中にアルミニウム含有量の多い半
田母合金を間欠的または連続的に仕上メツキ槽中
に補給して、アルミニウム含有量を0.007〜0.025
重量%の範囲に調整してメツキすることを特徴と
する溶融半田メツキ銅線の製造方法。
1 The surface of the copper wire is treated in an acidic flux bath, the base plating is applied in a molten solder plating bath that does not contain aluminum, and then the wire is passed through a finish plating bath in which molten solder containing aluminum is stirred, and the molten solder in the finish plating bath is In a method for manufacturing a plated wire, in which the plated wire is passed through a finishing die suspended on a surface and vertically pulled up to cool and solidify the plated layer, the plating operation involves reducing the aluminum content of the aluminum-containing molten solder in the finishing plating tank. To replenish the amount of aluminum lost over time,
A solder master alloy with a high aluminum content is intermittently or continuously replenished into the final plating tank to increase the aluminum content to 0.007 to 0.025.
A method for producing molten solder-plated copper wire, which comprises plating the wire by adjusting the weight percentage within the range.
JP58237468A 1983-12-15 1983-12-15 Production of solder hot-dipped copper wire Granted JPS60128255A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58237468A JPS60128255A (en) 1983-12-15 1983-12-15 Production of solder hot-dipped copper wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58237468A JPS60128255A (en) 1983-12-15 1983-12-15 Production of solder hot-dipped copper wire

Publications (2)

Publication Number Publication Date
JPS60128255A JPS60128255A (en) 1985-07-09
JPS6354784B2 true JPS6354784B2 (en) 1988-10-31

Family

ID=17015774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58237468A Granted JPS60128255A (en) 1983-12-15 1983-12-15 Production of solder hot-dipped copper wire

Country Status (1)

Country Link
JP (1) JPS60128255A (en)

Also Published As

Publication number Publication date
JPS60128255A (en) 1985-07-09

Similar Documents

Publication Publication Date Title
DE69923477T2 (en) PROCESS FOR A FIRE SPRAYING AND "GALVANO ALING" PROCESS IN AN ALUMINUM-CONTAINING ZINC BATH
DE60113891T2 (en) Plant for producing continuously cast billets of low-oxygen copper
US4275098A (en) Method and apparatus for continuously hot-dip galvanizing steel strip
JP2016194160A (en) Steel strip coated with metal
JPS6354784B2 (en)
JPS6059299B2 (en) Manufacturing method of molten solder plated copper wire
JP6389864B2 (en) Manufacturing method of hot dip galvanized steel sheet and hot dip aluminum galvanized steel sheet
US2320129A (en) Metal coating
JP2008248353A (en) Method for producing hot dip metal-plated metal sheet, and production equipment therefor
KR102420305B1 (en) Method for manufacturing hot-dip Al-based plated steel sheet, and hot-dip Al-based plated steel sheet
JP4664844B2 (en) Zn-Al alloy plated steel wire having high corrosion resistance, Zn-Al-Mn alloy plated steel wire and method for producing the same
JPH10226864A (en) Production of hot dip galvanized steel sheet
JP6572463B2 (en) Manufacturing method of plated products
JPS61199064A (en) Hot dip coating apparatus
US20040110025A1 (en) Method for adding solid zinc-aluminum to galvanizing baths
JPH08333664A (en) Method for adjusting concentration of plating bath component
WO2020213671A1 (en) Method for manufacturing hot-dip zinc-plated steel sheet, and method for operating molten zinc plating bath
JP2001254162A (en) Method of supplying molten metal into continuous hot dipping coating metal bath and its supplying device
JPH04308071A (en) Method for plating wire with molten tin or solder
JPH04308070A (en) Continuous hot-dipping method
JP3829503B2 (en) Method and apparatus for manufacturing hot dip galvanized steel sheet
JPS5916957A (en) Method for controlling bath level of zinc plating tank
JPS6059058A (en) Continuous hot dipping method
JPS5810984B2 (en) Hot dip metal plating method
JPH07316770A (en) Hot dip coating method under continuously applied vibration