JPS635475B2 - - Google Patents

Info

Publication number
JPS635475B2
JPS635475B2 JP5244883A JP5244883A JPS635475B2 JP S635475 B2 JPS635475 B2 JP S635475B2 JP 5244883 A JP5244883 A JP 5244883A JP 5244883 A JP5244883 A JP 5244883A JP S635475 B2 JPS635475 B2 JP S635475B2
Authority
JP
Japan
Prior art keywords
zinc
pores
aluminum
water
corrosion resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5244883A
Other languages
Japanese (ja)
Other versions
JPS59179798A (en
Inventor
Yoshio Harada
Takeshi Hatsutori
Kazumi Saito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP5244883A priority Critical patent/JPS59179798A/en
Publication of JPS59179798A publication Critical patent/JPS59179798A/en
Publication of JPS635475B2 publication Critical patent/JPS635475B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/24Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing hexavalent chromium compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrochemical Coating By Surface Reaction (AREA)
  • Chemical Treatment Of Metals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は水濡れ性、耐食性のすぐれたアルミニ
ウム製品を得るためのアルミニウム又はその合金
部材に関するものである。 アルミニウム及びその合金(以下アルミ)は密
度が小さいうえ、適当な表面処理を施せば耐食性
が向上し、電気及び熱伝達性能にも優れているた
め、建築用材、航空機用材はもとより重工業製
品、一般家庭用品などに汎用されているのは周知
の通りである。特に優れた熱伝達と軽量という特
性は、製品の重量減少につながり、省エネルギに
もなるので、今後益々その利用分野が拡大される
気運にある。この方面の利用分野の一つに熱交換
器管とこれに付属するフイン類があり、すでに実
用化されているものも少なくない。 一般に大気環境中で使用する熱交換器管(以下
フインも含む)では、環境中に含まれる水分、海
塩粒子、NOx,SOxなどの酸性ガスの作用によ
つて腐食されるので、その表面を何らかの方法で
表面処理を施し耐食性を向上させるのが普通であ
る。ただ塗膜のようなものを厚く塗る方法は、耐
食性向上には役立つが熱伝達を重視するものには
好ましくなく、通常クロム酸や重クロム酸塩を含
む各種の化成液による処理が行なわれている。し
かし、これらの方法は次に示すような理由によつ
て熱交換器管用の防食処理として十分な性能を発
揮していない。 すなわち、 いずれの化成処理でも塗装を併用しなけば長
期間の耐食性は期待できない。 熱交換器管上に水分が凝縮するような温度環
境では、凝縮水の付着形状が次に示すように伝
熱特性や腐食環境の構成及び使用環境の快適さ
などに大きな影響を与える。 凝縮水が滴状に付着する状態では、その表
面を流れる空気の流速が大なる場合、これに
連れさられる現象が起り、下流側では冷水の
飛散による不具合が発生する。 凝縮水が膜状に付着する状態ではの現象
はないが、水と管の接触面積が大きくなるた
め大気中の腐食成分の供給が大となり化成処
理膜の耐食性寿命を早期に劣化させる。 の欠点を補うために化成処理した表面にア
ルカリ金属化合物(例えばNa2SiO3)を含む親
水性能を有する化合物を塗布する方法が実施さ
れているが、親水性であるが故に凝縮水中への
溶解が起り、使用期間が長くなるに従つて次第
に消耗し(凝縮水の離脱に伴なつて消耗する)、
その効果がなくなる欠点がある。 以上のようなとの現象は熱交換器(特に
空調用)として好ましいものではないが、を
改善すればの性能が劣化し、又の性能を向
上させればの現象が避けられないなどの矛循
がある。このため現在の技術ではこの両者を同
時に長期間にわたつて解決する方法は見出され
ていない。 前述の化成処理以外の耐食性付与方法として、
アルミの表面に薄く亜鉛を拡散浸透させる方法が
知られているが、この方法では前記の問題が発
生する。 又、熱伝達があまり問題とならないところに使
用するアルミ部材に対しては、陽極酸化処理(ア
ルマイト処理)を行なつた後、その表面を塗装す
ることが行なわれているが、この方法では熱交換
器管用としては伝熱特性が悪く利用できない。 さらに陽極酸化処理した後クロム酸塩もしくは
硅酸ソーダなどの水溶液中に浸漬して加熱し、酸
化皮膜の耐食性を向上させる方法が知られてい
る。この処理は多孔質な酸化皮膜をクロム酸の酸
化力によつて不動態化させたり、細孔内に硅酸塩
を充填させることによつて耐食性を向上させよう
とするものであるが、この方法を用いても十分な
耐食性は期待できない。 又、陽極酸化皮膜形成後、沸騰水中に浸漬した
り、水蒸気中に暴して水分の作用によつて細孔中
にアルミニウム水和物を生成させ、細孔を充填さ
せる方法(通常シーリング処理と呼ぶ)も実用化
されている。シーリング処理を施さないものに比
べると優れた耐食性を示すが、この処理だけでも
十分でない。 耐食性が不十分な場合、この種のアルミ材料で
は、白さび(アルミの水和物が主成分)を発生す
るが、このような部分では凝縮水が滴状となり更
に問題を起す原因となる。 本発明者等は高性能、高耐食性を有し居住性に
も優れた室内及び車輛用冷(暖)房機の開発を目
的とし、防食及び水濡れの両性能に優れたアルミ
製品を提供すべく研究を重ねた結果、アルミの耐
食処理としての陽極酸化皮膜に注目し、皮膜が保
有する無数の細孔を利用してこの中に親水性と耐
食性を有する化合物を充填することによつて伝熱
特性を損わずに水濡れ性及び耐食性の両特性に優
れた性能を付与させ得ることを見出し、本発明に
到達したものである。 すなわち本発明は、その表面に陽極酸化法によ
り形成された酸化皮膜を有し、該皮膜の細孔中に
亜鉛―硅素化合物が充填されてなる、アルミニウ
ム又はその合金部材。 その表面に陽極酸化法により形成された酸化皮
膜を有し、該皮膜の細孔中に亜鉛―硅素化合物が
充填され、更に細孔中に重クロム酸塩もしくはク
ロム酸塩を保持してなる、アルミニウム又はその
合金部材に関するものである。 以下、本発明について具体的に説明する。 蓚酸、クロム酸、硫酸などの水溶液中でアルミ
を陽極として電解し、その表面に酸化皮膜を形成
させる。この皮膜には直径100〜500Å程度の細孔
が無数に生成しているため、このままでは耐食性
に乏しい欠点がある。 本発明ではこの細孔中に耐食性と親水性に富む
化合物を充填することによつて目的を達成するも
ので、先ず細孔中に亜鉛を含む硅素化合物を充填
した後水分を蒸発させるが、この結果、細孔内に
存在する亜鉛を含む硅素化合物はゲル状となつて
その中に固定化される。亜鉛を含む硅素化合物は
細孔内を充填して固形異物の侵入を物理的に防
ぎ、また凝縮水が付着した場合、亜鉛イオンを放
出して水の腐食性を抑制する。一方、既知の亜鉛
を含まない硅素処理だけでは硅素化合物がゲル状
となつて存在しているので吸着性を有し、水が付
着した場合、これを保持する傾向が強く、このた
め水分の存在による腐食反応が起り耐食性が劣化
する。 本発明で用いる亜鉛を含む硅素化合物として
は、金属亜鉛又は酸化亜鉛粉末を硅酸ソーダ水溶
液に添加したものや、メチルシリケート等の有機
硅素化合物と亜鉛を含む苛性ソーダや硅酸ソーダ
水溶液との組合せ(この場合はアルミを有機硅素
化合物で処理後、亜鉛を含む苛性ソーダや硅酸ソ
ーダ水溶液に浸漬する)があり、硅素化合物とし
ては溶媒が蒸発、揮散した後に固形物として硅素
化合物が残留するものであればよく、硅酸カリ、
硅酸リチウム、硅酸アミン等も使用できる。 本発明では上記のように酸化皮膜の細孔中に亜
鉛を含む硅素化合物を充填後、好ましくはこれを
乾燥させて後、更にクロム酸塩もしくは重クロム
酸塩を含む化成処理液に浸漬させて耐食性をより
増大させることもできる。この場合、細孔内に存
在する亜鉛を含む硅素化合物はゲル状となつてそ
の中に固定化されると共に、クロム酸塩もしくは
重クロム酸塩を吸着する作用を示し、両者の共存
によりそれぞれ単独のシーリング処理に比べはる
かに大きな耐食性を発揮するものである。すなわ
ち亜鉛を含む硅素化合物は細孔内を充填して固形
異物の侵入を物理的に防ぐとともに重クロム酸塩
を吸着する作用を有する。このため凝縮水が付着
した場合亜鉛イオンを放出して水の腐食性を抑制
すると共に、親水性を示すクロム酸を放出してこ
れを膜状付着水とさせその水濡れ性能を向上させ
る。一方、クロム酸塩もしくは重クロム酸塩は水
分の侵入に対しその水濡れ性能を向上させるとと
もに、水分による腐食作用を防止するが、亜鉛を
含む硅素化合物によつて物理的に強く吸着される
ので細孔内に多量に含まれることとなりその作用
は長期間にわたつて持続する。クロム酸塩もしく
は重クロム酸塩としてはクロム酸ソーダ、クロム
酸カリ、重クロム酸ソーダ、重クロム酸カリ等が
挙げられ、また中性の状態で使用してもよく、要
はクロムがCr3+,C6+の状態でイオン化している
ことが必要である。なお、Cr6+はCr3+よりも酸化
力(不働態作用)が大である。 なお本発明では亜鉛を含む硅素化合物を酸化皮
膜中に含浸させた後、好ましくはこれを100℃以
上の温度に加熱して水分を揮散させることがよ
い、この操作によつて亜鉛を含む硅素化合物が細
孔内に固着し、その後の重クロム酸処理を施した
際、再溶出する現象を防止することができる。又
100℃以上の加熱として水蒸気雰囲気を用いても
効果がある。 本発明はアルミ製熱交換器、アルミ製品全般に
適用して有効である。 実施例 使用したアルミ材料はJIS H4000(1982)規格
の合金番号1050,2014,3003,5005,7075の5種
で、それぞれ巾50×長100×厚1mmの寸法に切断
した。 本発明の効果を調べるために実施した表面処理
の種類とその条件及び比較のために用いた既存の
表面処理を表1に示した。又本発明の処理方法の
詳細は次の通りである。 (1) 5〜10%硅酸ソーダ水溶液中に微粉末の金属
亜鉛又は酸化亜鉛粉末を1〜5%添加して加熱
する。硅酸ソーダ水溶液の水素イオン濃度は苛
性ソーダあるいは炭酸ソーダによつて制御する
が、溶液中のSiO2/Na2Oモル比が5位迄は清
澄を示す。しかしこれを引上げて乾燥すると硅
酸化合物が析出する。又、モル比が高くなると
SiO2がコロイド状となつて溶液中に懸濁し、
さらに高くなるとゾル状、ゲル状となる。この
ような環境に亜鉛が存在しているとこの硅酸ゾ
ルやゲルに亜鉛が水和物の一種となつて付着し
両者の混合物のゾルあるいはゲル状物質が生成
する。当然のことながらSiO2/Na2Oモル比5
以下の場合でも溶液から引上げると硅酸化合物
に亜鉛が含まれることとなる。本発明はこのよ
うな亜鉛を含む硅酸化合物を陽極酸化皮膜の細
孔内に充填した後水分の存在下で加熱するか、
あるいは水分のない環境で乾燥した後、場合に
よつて重クロム酸塩やクロム酸塩を含む化成液
中で処理するものである。なお水分の存在下で
加熱すると、含浸させた亜鉛を含む硅素化合物
に加え、アルミそのものも水和物となつて細孔
を充填することとなるので、充填密度が向上す
る効果がある。 (2) メチルシリケートのような有機の硅素化合物
中に陽極酸化処理を施した試験片を浸漬する
と、メチルシリケートは表面張力が小さいため
細孔内へ容易に侵入する。その後試験片を引上
げると有機物は揮散して酸化硅素の微粉末が残
る。そこでこの試験片を亜鉛を含む苛性ソーダ
水溶液中に浸漬したり前記(1)の亜鉛を含む硅酸
ソーダ中に浸漬しても目的を達成することが可
能である。
The present invention relates to aluminum or aluminum alloy members for obtaining aluminum products with excellent water wettability and corrosion resistance. Aluminum and its alloys (hereinafter referred to as aluminum) have a low density, improve corrosion resistance with appropriate surface treatment, and have excellent electrical and heat transfer performance, so they are used not only as construction materials and aircraft materials, but also in heavy industrial products and general households. As is well known, it is widely used for supplies and the like. In particular, its excellent heat transfer and light weight properties lead to reduced product weight and energy savings, so its use is likely to continue to expand in the future. One field of use in this field is heat exchanger tubes and associated fins, and many of them are already in practical use. Generally, heat exchanger tubes (hereinafter also referred to as fins) used in the atmospheric environment are corroded by the action of moisture, sea salt particles, and acid gases such as NOx and SOx contained in the environment, so the surface It is common to use some method of surface treatment to improve corrosion resistance. However, the method of applying a thick layer of paint is useful for improving corrosion resistance, but is not preferable for products where heat transfer is important, and treatment with various chemical solutions containing chromic acid or dichromate is usually performed. There is. However, these methods do not exhibit sufficient performance as anticorrosive treatment for heat exchanger tubes for the following reasons. In other words, long-term corrosion resistance cannot be expected with any chemical conversion treatment unless painting is also used. In a temperature environment where moisture condenses on the heat exchanger tubes, the shape of the condensed water adhesion has a great effect on heat transfer characteristics, the composition of the corrosive environment, and the comfort of the usage environment, as shown below. When the condensed water adheres in droplets, if the flow velocity of air flowing on the surface becomes large, a phenomenon occurs that is accompanied by this, and problems occur on the downstream side due to the scattering of cold water. Although this phenomenon does not occur when condensed water adheres in the form of a film, the contact area between the water and the pipe becomes larger, which increases the supply of corrosive components in the atmosphere, which prematurely deteriorates the corrosion resistance life of the chemical conversion film. In order to compensate for this drawback, a method has been implemented in which a hydrophilic compound containing an alkali metal compound (e.g. Na 2 SiO 3 ) is applied to the chemically treated surface; occurs, and as the period of use increases, it gradually wears out (wears out as condensed water leaves),
There is a drawback that the effect is lost. The above-mentioned phenomena are not desirable for heat exchangers (especially for air conditioning), but there are some problems such as improving performance will degrade performance, and improving performance will inevitably lead to other phenomena. There is a cycle. Therefore, with the current technology, no method has been found to solve both problems simultaneously over a long period of time. As a method of imparting corrosion resistance other than the above-mentioned chemical conversion treatment,
A method is known in which a thin layer of zinc is diffused into the surface of aluminum, but this method causes the above-mentioned problem. In addition, for aluminum parts used in areas where heat transfer is not a problem, the surface is painted after anodizing (alumite treatment), but this method It cannot be used for exchanger tubes because of its poor heat transfer properties. Furthermore, there is a known method of improving the corrosion resistance of the oxide film by immersing it in an aqueous solution of chromate or sodium silicate and heating it after anodizing treatment. This treatment attempts to improve corrosion resistance by passivating the porous oxide film using the oxidizing power of chromic acid and filling the pores with silicate. Even if this method is used, sufficient corrosion resistance cannot be expected. In addition, after the anodized film is formed, it is immersed in boiling water or exposed to steam to form aluminum hydrate in the pores by the action of moisture, filling the pores (usually with sealing treatment). ) has also been put into practical use. Although it exhibits superior corrosion resistance compared to those without sealing treatment, this treatment alone is not sufficient. If corrosion resistance is insufficient, this type of aluminum material will develop white rust (mainly composed of hydrated aluminum), and condensed water will form droplets in such areas, causing further problems. The inventors of the present invention aim to develop a cooling (heating) unit for indoor and vehicle use that has high performance, high corrosion resistance, and excellent livability, and provides an aluminum product that has excellent corrosion resistance and water resistance. As a result of repeated research, we focused on anodic oxide coating as a corrosion-resistant treatment for aluminum, and developed a method to improve transmission by filling a hydrophilic and corrosion-resistant compound into the coating by making use of its numerous pores. The present invention was achieved by discovering that it is possible to impart excellent performance in both water wettability and corrosion resistance without impairing thermal properties. That is, the present invention provides an aluminum or alloy member thereof, which has an oxide film formed on its surface by anodic oxidation, and the pores of the film are filled with a zinc-silicon compound. It has an oxide film formed on its surface by anodic oxidation, the pores of the film are filled with a zinc-silicon compound, and the pores further hold dichromate or chromate. It relates to aluminum or its alloy members. The present invention will be explained in detail below. Aluminum is electrolyzed as an anode in an aqueous solution of oxalic acid, chromic acid, sulfuric acid, etc. to form an oxide film on its surface. This film has countless pores with a diameter of about 100 to 500 Å, so it has the disadvantage of poor corrosion resistance if left as is. In the present invention, the purpose is achieved by filling the pores with a compound that is highly corrosion resistant and hydrophilic. First, the pores are filled with a silicon compound containing zinc, and then water is evaporated. As a result, the silicon compound containing zinc present in the pores becomes gel-like and is immobilized therein. A silicon compound containing zinc fills the inside of the pores to physically prevent the intrusion of solid foreign matter, and when condensed water adheres, releases zinc ions to suppress the corrosive nature of water. On the other hand, in the known silicon treatment that does not contain zinc, the silicon compound exists in the form of a gel, so it has adsorption properties, and if water adheres to it, it has a strong tendency to retain it. A corrosion reaction occurs and corrosion resistance deteriorates. Examples of the zinc-containing silicon compound used in the present invention include metal zinc or zinc oxide powder added to a sodium silicate aqueous solution, and a combination of an organosilicon compound such as methyl silicate and a zinc-containing caustic soda or a sodium silicate aqueous solution. In this case, the aluminum is treated with an organic silicon compound and then immersed in a caustic soda or sodium silicate aqueous solution containing zinc. Babok, potassium silicate,
Lithium silicate, amine silicate, etc. can also be used. In the present invention, after filling the pores of the oxide film with a silicon compound containing zinc as described above, it is preferably dried, and then further immersed in a chemical conversion treatment solution containing chromate or dichromate. Corrosion resistance can also be further increased. In this case, the silicon compound containing zinc present in the pores becomes a gel and is fixed therein, and also acts to adsorb chromate or dichromate, and due to the coexistence of the two, each can act independently. It exhibits far greater corrosion resistance than other sealing treatments. That is, the silicon compound containing zinc fills the inside of the pores to physically prevent the intrusion of solid foreign matter, and has the effect of adsorbing dichromate. Therefore, when condensed water adheres, zinc ions are released to suppress the corrosivity of the water, and chromic acid, which exhibits hydrophilicity, is released to form a film of adhered water to improve its water-wetting performance. On the other hand, chromate or dichromate improves its wettability against moisture intrusion and prevents the corrosion caused by moisture, but it is strongly physically adsorbed by silicon compounds containing zinc. A large amount of it is contained in the pores, and its action continues for a long period of time. Examples of chromate or dichromate include sodium chromate, potassium chromate, sodium dichromate, potassium dichromate, etc., and they may also be used in a neutral state, meaning that chromium is Cr 3 It is necessary to be ionized in the + and C 6+ states. Note that Cr 6+ has a greater oxidizing power (passivity effect) than Cr 3+ . In the present invention, after the silicon compound containing zinc is impregnated into the oxide film, it is preferably heated to a temperature of 100°C or higher to volatilize the moisture. It is possible to prevent the phenomenon in which particles are fixed in the pores and re-eluted during subsequent dichromic acid treatment. or
It is also effective to use a steam atmosphere for heating to 100°C or higher. The present invention is effective when applied to aluminum heat exchangers and aluminum products in general. Examples The aluminum materials used were five types of alloy numbers 1050, 2014, 3003, 5005, and 7075 according to the JIS H4000 (1982) standard, and each was cut into dimensions of width 50 x length 100 x thickness 1 mm. Table 1 shows the types and conditions of surface treatments carried out to examine the effects of the present invention, as well as existing surface treatments used for comparison. Further, details of the processing method of the present invention are as follows. (1) Add 1 to 5% of finely powdered metal zinc or zinc oxide powder to a 5 to 10% sodium silicate aqueous solution and heat. The hydrogen ion concentration of the sodium silicate aqueous solution is controlled by caustic soda or sodium carbonate, but the solution exhibits clarity when the SiO 2 /Na 2 O molar ratio in the solution is up to the 5th position. However, when this is pulled up and dried, a silicic acid compound is precipitated. Also, as the molar ratio increases
SiO 2 becomes a colloid and is suspended in the solution.
When the temperature rises further, it becomes sol-like or gel-like. When zinc is present in such an environment, zinc adheres to the silicic acid sol or gel as a type of hydrate, producing a sol or gel-like substance that is a mixture of the two. Naturally, the SiO 2 /Na 2 O molar ratio is 5.
Even in the following cases, the silicic acid compound will contain zinc when pulled out of the solution. The present invention involves filling the pores of an anodic oxide film with such a silicic acid compound containing zinc and then heating it in the presence of moisture;
Alternatively, after drying in a moisture-free environment, the material may be treated in a dichromate or a chemical solution containing chromate. Note that when heated in the presence of moisture, in addition to the impregnated silicon compound containing zinc, the aluminum itself becomes a hydrate and fills the pores, which has the effect of improving the packing density. (2) When an anodized specimen is immersed in an organic silicon compound such as methyl silicate, methyl silicate easily penetrates into the pores because of its low surface tension. When the test piece is then pulled up, the organic matter is evaporated and a fine powder of silicon oxide remains. Therefore, it is possible to achieve the objective by immersing this test piece in a caustic soda aqueous solution containing zinc or in the above-mentioned (1) sodium silicate containing zinc.

【表】 〓備考〓 ◎:異常なし、○:変色するも白さびの発
生なし、△:白さび発生、×:白さび及び孔食
発生
本発明の効果の判定を次のようにして行つた。 (1) 塩水噴霧試験:JIS Z2371に規定されている
方法で連続1000h試験した。 (2) 水濡れ状況の観察:表面処理した直後、第1
図に示すような装置を用いて行つた。 すなわちガラス製フラスコ1中にイオン交換水
2を入れてヒータ3によつて加熱する。2の沸騰
に伴なつて水蒸気が発生するが、これを保温した
ガラス製の細管4を通してアルミで製作した試験
片取付箱5へ導入する。4の取付部の反対の位置
に試験片6を取付箱5の壁面に密着させて設置
し、その取付箱の壁面を外部から水導水7を注い
で冷却する。この結果、試験片の表面には、4か
ら発生する水蒸気が凝縮8し、この量が次第に多
くなると下方へ落下することとなるが、結露時間
1時間その後試験片を取付箱から撤去して室温で
乾燥3時間のサイクルを20回繰返した後の水滴の
試験片に対する付着状況を観察した。 塩水噴霧試験後の試験片の外観を調査し、それ
ぞれの耐食性を判定した結果は表1に併記した通
りである。この結果、比較品のうち1050に処理し
た試験片Fの処理は比較的良好な耐食性を示した
が、その他のものは白さびが発生したり局部的に
孔食の発生が認められた。これに対し、本発明の
処理はすべて全く異常は認められなかつた。単に
陽極酸化処理したC、これを沸騰水中に浸漬して
アルミ水和物を細孔中に充填したD、水ガラスを
充填したものE、及び1015以外の材料の重クロム
酸浸漬Fなどの処理を施したものはすべて白さび
の発生ならびに時には孔食が認められた。 次に水濡れ調査の結果を表2に示す。この試験
には1050材料のみを用いた。
[Table] Notes: ◎: No abnormality, ○: Discoloration but no white rust, △: White rust, ×: White rust and pitting corrosion
Occurrence The effectiveness of the present invention was evaluated as follows. (1) Salt spray test: Tested continuously for 1000 hours using the method specified in JIS Z2371. (2) Observation of water wetness: Immediately after surface treatment,
This was carried out using the apparatus shown in the figure. That is, ion-exchanged water 2 is placed in a glass flask 1 and heated by a heater 3. As water vapor 2 boils, water vapor is generated, which is introduced into a test specimen mounting box 5 made of aluminum through a thin glass tube 4 kept warm. A test piece 6 is installed in close contact with the wall surface of a mounting box 5 at a position opposite to the mounting portion 4, and the wall surface of the mounting box is cooled by pouring water 7 from the outside. As a result, the water vapor generated from 4 condenses 8 on the surface of the test piece, and as this amount gradually increases, it falls downward. After 1 hour of condensation time, the test piece is removed from the mounting box and left at room temperature. After repeating the 3-hour drying cycle 20 times, the state of adhesion of water droplets to the test piece was observed. The appearance of the test pieces after the salt spray test was investigated and the corrosion resistance of each test piece was determined. The results are shown in Table 1. As a result, among the comparative products, test specimen F treated with 1050 showed relatively good corrosion resistance, but white rust and local pitting corrosion were observed in the other specimens. In contrast, no abnormalities were observed in all treatments of the present invention. Treatments such as C that is simply anodized, D that is immersed in boiling water and the pores are filled with aluminum hydrate, E that is filled with water glass, and F that is immersed in dichromic acid for materials other than 1015. All of the specimens treated with this method exhibited white rust and sometimes pitting corrosion. Next, the results of the water wetness investigation are shown in Table 2. Only 1050 material was used for this test.

【表】 この結果から明らかなように、本発明のものは
処理直後はもとより長時間結露試験を実施した後
でも極めて良好な水濡れ性能を示していることが
判明した。これに比べ既存技術による比較品は耐
食性が比較的良好なものでも、水濡れ性能が悪く
両性能を兼ね備えたものは見当らない。又これら
の結果から、本発明の処理は供試した材質の種類
にはほとんど影響を受けず、良好な耐食性と水濡
れ性が得られることが判明した。 なお本発明の効果として陽極酸化処理を5%硫
酸中及び3%クロム酸中で行なつた後表1の工程
に従つて二次処理、三次処理を実施したものにつ
いて、塩水噴霧試験と水濡れ性能試験を行なつ
た。又、この試験で重クロム酸ソーダの代りにク
ロム酸ソーダを用いた場合についても試験を行な
つた。この試験には供試材料として3003を用い
た、その結果は表3に示す通りでありいずの場合
でも良好な耐食性と水濡れ性が認められ陽極酸化
処理液の種類を変えたり、重クロム酸の代りにク
ロム酸を用いても効果のあることが判明した。
[Table] As is clear from the results, it was found that the products of the present invention exhibited extremely good water wetting performance not only immediately after treatment but also after conducting a long-term dew condensation test. In comparison, although comparative products made by existing technology have relatively good corrosion resistance, they have poor water wettability and there is no product that has both of these properties. These results also revealed that the treatment of the present invention was hardly affected by the type of material tested, and good corrosion resistance and water wettability could be obtained. As an effect of the present invention, after anodizing in 5% sulfuric acid and 3% chromic acid, secondary treatment and tertiary treatment were performed according to the steps in Table 1. Performance tests were conducted. In addition, in this test, a test was also conducted in which sodium chromate was used instead of sodium dichromate. 3003 was used as the test material in this test, and the results are shown in Table 3. Good corrosion resistance and water wettability were observed in all cases. It has been found that using chromic acid instead of acid is also effective.

【表】 さらに本発明の処理における亜鉛の効果を知る
ために亜鉛を含まない硅酸ソーダ溶液に浸漬した
ものについて、前記同様の塩水噴霧試験を実施し
た。その結果は表4に示す通りであり亜鉛を含ま
ないものに比べはるかに良好な耐食性を示した。
この効果は亜鉛を含むことによる防食作用の向上
と、三次処理時に実施する重クロム酸塩による不
働態化処理時においてもその作用を効果的にする
ためと考えられる。すなわち細孔内における亜鉛
は重クロム酸処理によつてその一部は防食作用に
すぐれたクロム酸亜鉛を形成するものである。又
表4の本発明の処理について水濡れ性能試験を実
施した結果は表2に示した本発明と同様いずれも
良好な成績を示した。
[Table] Furthermore, in order to determine the effect of zinc in the treatment of the present invention, a salt water spray test similar to that described above was carried out on specimens immersed in a sodium silicate solution containing no zinc. The results are shown in Table 4, and showed much better corrosion resistance than those containing no zinc.
This effect is thought to be due to the improvement of the anticorrosion effect due to the inclusion of zinc, and the effect of making the effect effective even during the passivation treatment with dichromate carried out during the tertiary treatment. In other words, a portion of the zinc in the pores forms zinc chromate, which has excellent anticorrosion properties, by treatment with dichromic acid. Furthermore, the results of a water wetting performance test for the treatment of the present invention shown in Table 4 showed good results, similar to the results of the present invention shown in Table 2.

【表】【table】

【表】 〓備考〓 ◎:異常なし、○:変色するも白さびの発
生なし、△:白さび発生、×:白さび及び孔食
発生
[Table] Notes: ◎: No abnormality, ○: Discoloration but no white rust, △: White rust occurred, ×: White rust and pitting corrosion occurred.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明によるアルミ製品の水濡れ性を
みるために用いた試験装置を示す図である。
FIG. 1 is a diagram showing a test apparatus used to examine the water wettability of aluminum products according to the present invention.

Claims (1)

【特許請求の範囲】 1 その表面に陽極酸化法により形成された酸化
皮膜を有し、該皮膜の細孔中に亜鉛―硅素化合物
が充填されてなる、アルミニウム又はその合金部
材。 2 その表面に陽極酸化法により形成された酸化
皮膜を有し、該皮膜の細孔中に亜鉛―硅素化合物
が充填され、更に細孔中に重クロム酸塩もしくは
クロム酸塩を保持してなる、アルミニウム又はそ
の合金部材。
[Scope of Claims] 1. An aluminum or aluminum alloy member having an oxide film formed on its surface by an anodic oxidation method, the pores of the film being filled with a zinc-silicon compound. 2 It has an oxide film formed on its surface by anodic oxidation, the pores of the film are filled with a zinc-silicon compound, and the pores further hold dichromate or chromate. , aluminum or its alloy members.
JP5244883A 1983-03-30 1983-03-30 Aluminum and its alloy member Granted JPS59179798A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5244883A JPS59179798A (en) 1983-03-30 1983-03-30 Aluminum and its alloy member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5244883A JPS59179798A (en) 1983-03-30 1983-03-30 Aluminum and its alloy member

Publications (2)

Publication Number Publication Date
JPS59179798A JPS59179798A (en) 1984-10-12
JPS635475B2 true JPS635475B2 (en) 1988-02-03

Family

ID=12915003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5244883A Granted JPS59179798A (en) 1983-03-30 1983-03-30 Aluminum and its alloy member

Country Status (1)

Country Link
JP (1) JPS59179798A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997005302A1 (en) * 1995-07-28 1997-02-13 Electro Chemical Engineering Gmbh Process for depôtsols into microporous coating layers
US20100282455A1 (en) * 2007-07-27 2010-11-11 Mitsubishi Electric Corporation Heat exchanger and manufacturing method of the same

Also Published As

Publication number Publication date
JPS59179798A (en) 1984-10-12

Similar Documents

Publication Publication Date Title
US4828616A (en) Surface treatment chemical for forming a hydrophilic coating
US4462842A (en) Surface treatment process for imparting hydrophilic properties to aluminum articles
US4726886A (en) Aluminum heat exchanger coating
BR112015018249B1 (en) AQUEOUS CHROME FREE SURFACE TREATMENT AGENT, CHROME FREE SURFACE TREATMENT METHOD OF ONE STEEL SHEET AND ELECTROGALVANIZED SINGLE SIDED STEEL SHEET
JP3264667B2 (en) Surface protection method using silicate compound
Atz-Dick et al. Aluminum anodizing with simultaneous silanization for increased hydrophobicity and corrosion protection
US4908075A (en) Surface treatment chemical for forming a hydrophilic coating
JPS635475B2 (en)
US5962145A (en) Aluminum surface treatment agent, treatment method, and treated aluminum
JP5620870B2 (en) Aluminum fin material for heat exchanger
CA1319571C (en) Treatment method for imparting antimicrobial and hydrophilic properties to aluminum surfaces
JP2000256579A (en) Hydrophilic coating material composition and hydrophilic coating film formed from the same composition
JP2004025715A (en) Metal substrate having polyaniline-containing film provided thereon
JPH04254197A (en) Heat exchanger made of aluminum
JP2019073749A (en) Hydrophilic surface treatment aluminum containing metal material and heat exchanger
JP2006509106A (en) Aqueous coating solution and method for treating metal surface
JPS58126989A (en) Surface treatment and surface treatment liquid that give hydrophilic property to aluminium product
JPS59202398A (en) Aluminum made fin for heat exchanger
JPS61264040A (en) Treatment solution for forming hydrophilic film
JP2000256580A (en) Hydrophilic coating material composition and hydrophilic coating film formed from the same composition
JPS63262238A (en) Heat-exchanger fin material
WO2021162061A1 (en) Aluminum fin material, heat exchanger, and method for producing aluminum fin material
JPH0312152B2 (en)
US4968392A (en) Treatment of condenser tubes
JPH1088367A (en) Surface treatment of aluminum material