JPS6354421B2 - - Google Patents

Info

Publication number
JPS6354421B2
JPS6354421B2 JP56195451A JP19545181A JPS6354421B2 JP S6354421 B2 JPS6354421 B2 JP S6354421B2 JP 56195451 A JP56195451 A JP 56195451A JP 19545181 A JP19545181 A JP 19545181A JP S6354421 B2 JPS6354421 B2 JP S6354421B2
Authority
JP
Japan
Prior art keywords
catalyst
benzene
substituted
reaction
alkylation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56195451A
Other languages
Japanese (ja)
Other versions
JPS5898145A (en
Inventor
Sanehiro Yamamoto
Yutaka Kobayashi
Hisaya Miki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Petrochemical Industries Ltd
Original Assignee
Mitsui Petrochemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Petrochemical Industries Ltd filed Critical Mitsui Petrochemical Industries Ltd
Priority to JP56195451A priority Critical patent/JPS5898145A/en
Publication of JPS5898145A publication Critical patent/JPS5898145A/en
Publication of JPS6354421B2 publication Critical patent/JPS6354421B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は、アルキル化たたはトランスアルキル
化觊媒の凊理方法に関する。時に詳しくは、アル
キル化たたはトランスアルキル化反応に甚いられ
た觊媒の觊媒掻性の䜎化を防止するためのそれの
凊理方法に関する。 オレフむンによる芳銙族炭化氎玠のアルキル化
反応の觊媒ずしお、䞉塩化アルミニりムを䜿甚す
るこずは呚知である。この際、䞉塩化アルミニり
ムは、䟋え固䜓状で反応系に仕蟌たれたずしお
も、助觊媒ずしお甚いられるハロゲン化氎玠や氎
の共存䞋では、錯䜓を圢成しお液状で存圚しおい
る。この錯䜓は、レツドオむル、スラリヌ、コン
タクトオむルなどず呌ばれ、䞻ずしお䞉塩化アル
ミニりム、芳銙族化合物およびハロゲン化氎玠な
どから構成されおいるず考えられる。 アルキル化反応に䜿甚される觊媒塩化アルミニ
りム錯䜓は、䜿甚されるに぀れおその觊媒掻性を
急激に䜎䞋させるばかりではなく、反応に䜿甚さ
れなくずも、それを垞枩ずいう非垞に枩和な条件
䞋に攟眮貯蔵しおも、その觊媒掻性が䜎䞋す
るずいう欠点がみられる。このような觊媒錯䜓の
貯蔵は、䟋えばプロピレンによるベンれンのアル
キル化反応でクメンを補造するずき、装眮の定期
点怜による運転の䞭断などの際に䞍可避であり、
その䞭断の期間䞭に觊媒錯䜓の觊媒胜が䜎䞋すれ
ば、操業の再開時などに新たな觊媒を調補する必
芁性を生じ、経枈的な䞍利益を䞎えるこずにな
る。 再䜿甚するアルキル化觊媒ずしおの塩化アルミ
ニりム錯䜓をパラフむン系炭化氎玠で掗浄し、こ
の觊媒錯䜓䞭に含有される觊媒掻性䜎䞋物質を陀
去する方法が、特開昭49−52195号公報に蚘茉さ
れおいる。この掗浄凊理に際し、パラフむン系炭
化氎玠䞭には20重量皋床迄の芳銙族炭化氎玠が
含有されおいおもよく、たたパラフむン系炭化氎
玠による掗浄に先立぀お、芳銙族炭化氎玠で掗浄
しおおくこずもできるずされおいるが、いずれに
しおもパラフむン系炭化氎玠による掗浄を必芁条
件ずしおいる。これは、同特蚱公開公報の各実斜
䟋をみるず、塩化ラりリルたたはドデセン−な
どをアルキル化剀ずしお、高玚アルキル眮換ベン
れンの補造を目的ずしおいるこずずも関連しおい
るようにも考えられる。 しかるに、オレフむンによる䜎玚アルキル眮換
ベンれン補造のためのアルキル化反応に甚いられ
た觊媒塩化アルミニりム錯䜓の堎合には、非眮換
たたは炭玠数〜のアルキル基で眮換されたベ
ンれンずの接觊により、凊理盎埌だけではなく、
その埌比范的長期間垞枩に攟眮貯蔵しおも、
觊媒掻性の䜎䞋がみられないこずが、本発明者ら
によ぀お芋出された、たた、このような觊媒凊理
による觊媒掻性䜎䞋の防止効果は、䜎玚アルキル
眮換ベンれンを䞀方の反応䜓ずするトランスアル
キル化反応に甚いられた觊媒塩化アルミニりム錯
䜓の堎合にも同様に認められる。 埓぀お、本発明はアルキル化觊媒の凊理方法に
係り、この凊理は、炭玠数〜のオレフむンに
よる芳銙族炭化氎玠のアルキル化反応に甚いられ
た補造塩化アルミニりム錯䜓を非眮換たたは炭玠
数〜のアルキル基で眮換されたベンれンず接
觊させるこずにより行われる。 本発明はたた、トランスアルキル化觊媒の凊理
方法に係り、この凊理は、(a)少くずも個の炭玠
数〜のアルキル基で眮換された芳銙族炭化氎
玠ず(b)非眮換たたは炭玠数〜のアルキル基で
眮換された芳銙族炭化氎玠ずのトランスアルキル
化反応に甚いられた觊媒塩化アルミニりム錯䜓を
非眮換たたは炭玠数〜のアルキル基で眮換さ
れたベンれンず接觊させるこずにより行われる。 これらの凊理方法においお、アルキル化觊媒た
たはトランスアルキル化觊媒は、非眮換たたはア
ルキル眮換ベンれンず接觊させたたた、再䜿甚時
迄攟眮するこずができ、あるいは非眮換たたはア
ルキル眮換ベンれンず短時間接觊させ、それを分
離した埌、再䜿甚時迄攟眮するこずができる。 アルキル化反応においおは、炭玠数〜のオ
レフむンずしお゚チレン、プロピレン、−ブテ
ン、−ブテンおよびむ゜ブテンが、たたこれら
によ぀おアルキル化される芳銙族炭化氎玠ずしお
は、ベンれン、トル゚ン、キシレン、クメン、ゞ
む゜プロピルベンれン、゚チルベンれン、゚チル
トル゚ンなどが甚いられ、䟋えばプロピレンによ
るベンれンのアルキル化反応は次匏によ぀お瀺さ
れる。 たた、このようなアルキル化反応によ぀お副生
するポリアルキル眮換ベンれンを目的物たるモノ
アルキル眮換ベンれンなどに倉換させるためなど
の堎合に行われるトランスアルキル化反応におい
おは、(a)少くずも個の炭玠数〜のアルキル
基で眮換された芳銙族化合物ずしお、゚チルベン
れン、ゞ゚チルベンれン、゚チルトル゚ン、クメ
ン、シメン、゚チルクメン、ゞむ゜ブチルベンれ
ン、トリむ゜プロピルベンれン、ブチルベンれ
ン、ブチルトル゚ンなどが、たた(b)非眮換ベンれ
ンず同様に甚いられる炭玠数〜のアルキル基
で眮換された芳銙族化合物ずしおは、䞊蚘(a)のア
ルキル眮換化合物の他にトル゚ン、キシレン、ト
リメチルベンれンなどが甚いられ、䟋えばゞむ゜
プロピルベンれンずベンれンずのトランスアルキ
ル化反応は次匏によ぀お瀺される。 このようなアルキル化反応たたはトランスアル
キル化反応に甚いられた觊媒塩化アルミニりム錯
䜓は、非眮換ベンれンたたは炭玠数〜のアル
キル基で眮換されたベンれン、䟋えばトル゚ン、
キシレン、クメン、シメン、ゞむ゜プロピルベン
れン、゚チルベンれン、゚チルトル゚ン、ブチル
ベンれンなど、奜たしくはベンれンたたはトル゚
ンず接觊せしめる。これらのベンれン類は、觊媒
錯䜓容量郚に察し䞀般に玄0.1容量郚以䞊、奜
たしくは玄〜10容量郚の割合で、玄〜50℃の
枩床、䞀般には垞枩で接觊せしめる。接觊方法
は、単に容噚内においお觊媒錯䜓ずベンれン類ず
を、奜たしくは撹拌䞋に混合するだけで足り、そ
の埌、ベンれン類を分離せず、接觊させたたた再
䜿甚時迄攟眮するこずができ、あるいはベンれン
類を分離した埌、それを再䜿甚時迄攟眮するこず
もできる。攟眮は、玄〜50℃に、䞀般には垞枩
で行われ、あたり高枩に貯蔵するず觊媒掻性の䜎
䞋がみられ、逆にあたり䜎枩に貯蔵するず固化し
たりしお取り扱いが困難ずなる。そしお、䟋えば
このようにベンれン類で凊理された觊媒塩化アル
ミニりム錯䜓を垞枩䞋に60日間皋床貯蔵しおも、
觊媒掻性の䜎䞋はみられず、かえ぀お觊媒掻性が
䞊昇する堎合さえもみられる。 かかる効果がもたらされるこずに぀いお、本発
明者らは次のようにしお掚論しおいる。 䟋えば、クメンず固䜓状䞉塩化アルミニりムず
の混合物に塩化氎玠ガスを撹拌しながら吹き蟌む
ず、そこに比重d20 4玄1.06の淡黄色液状の塩
化アルミニりム錯䜓盞が圢成される。この塩化ア
ルミニりム錯䜓は、Al含有率が玄6.4重量で、
これを氷氎で分解しお埗た油性盞成分の組成は、
䞋蚘衚に瀺される劂くであり、䞉塩化アルミニり
ムモルに察し玄モルの芳銙族炭化氎玠が結合
しおいるような組成を有しおいる。この新芏に調
補した塩化アルミニりム錯䜓を垞枩䞋に攟眮する
ず、Al以倖の成分の組成重量は経時的に
次のように倉化する。
The present invention relates to a method for treating alkylation or transalkylation catalysts. In particular, the present invention relates to a method for treating a catalyst used in an alkylation or transalkylation reaction in order to prevent the catalyst from deteriorating its catalytic activity. The use of aluminum trichloride as a catalyst for alkylation reactions of aromatic hydrocarbons with olefins is well known. At this time, even if aluminum trichloride is charged into the reaction system in a solid state, it forms a complex and exists in a liquid state in the coexistence of hydrogen halide used as a promoter and water. This complex is called red oil, slurry, contact oil, etc., and is thought to be mainly composed of aluminum trichloride, aromatic compounds, hydrogen halides, and the like. The catalyst aluminum chloride complex used in the alkylation reaction not only rapidly decreases its catalytic activity as it is used, but even if it is not used in the reaction, it is left (stored) under very mild conditions at room temperature. ), the drawback is that the catalytic activity decreases. Storage of such catalyst complexes is unavoidable, for example, when producing cumene by the alkylation reaction of benzene with propylene, or during interruptions in operation due to periodic equipment inspections.
If the catalytic ability of the catalyst complex decreases during the period of suspension, it will be necessary to prepare a new catalyst when restarting the operation, resulting in an economic disadvantage. JP-A-49-52195 describes a method of washing an aluminum chloride complex as an alkylation catalyst to be reused with a paraffinic hydrocarbon to remove substances that reduce the catalytic activity contained in the catalyst complex. There is. In this cleaning process, the paraffinic hydrocarbon may contain up to about 20% by weight of aromatic hydrocarbons, and prior to cleaning with the paraffinic hydrocarbon, cleaning with the aromatic hydrocarbon is necessary. However, in either case, cleaning with paraffinic hydrocarbon is a necessary condition. This seems to be related to the fact that, looking at the examples in the same patent publication, the aim is to produce higher alkyl-substituted benzenes using lauryl chloride or dodecene-1 as an alkylating agent. However, in the case of the catalytic aluminum chloride complex used in the alkylation reaction for the production of lower alkyl-substituted benzene with olefin, the treatment can be carried out by contact with benzene that is unsubstituted or substituted with an alkyl group having 1 to 4 carbon atoms. Not only immediately after,
Even if it is left (stored) at room temperature for a relatively long period of time,
The present inventors have found that no decrease in catalytic activity is observed, and the effect of preventing a decrease in catalytic activity due to such catalyst treatment is demonstrated when lower alkyl-substituted benzene is used as one of the reactants. A similar phenomenon is observed in the case of the catalytic aluminum chloride complex used in the transalkylation reaction. Therefore, the present invention relates to a method for treating an alkylation catalyst, and this treatment is carried out by converting the produced aluminum chloride complex used in the alkylation reaction of aromatic hydrocarbons with an olefin having 2 to 4 carbon atoms into unsubstituted or unsubstituted aluminum chloride complexes. This is carried out by contacting with benzene substituted with ~4 alkyl groups. The present invention also relates to a method for treating a transalkylation catalyst, which comprises treating (a) an aromatic hydrocarbon substituted with at least one C2-C4 alkyl group and (b) an unsubstituted or Bringing the catalyst aluminum chloride complex used in the transalkylation reaction with an aromatic hydrocarbon substituted with an alkyl group having 1 to 4 carbon atoms into contact with benzene that is unsubstituted or substituted with an alkyl group having 1 to 4 carbon atoms. This is done by In these processing methods, the alkylation or transalkylation catalyst can be left in contact with the unsubstituted or alkyl-substituted benzene until reuse, or it can be left in contact with the unsubstituted or alkyl-substituted benzene for a short time. After separating it, it can be left until reuse. In the alkylation reaction, olefins having 2 to 4 carbon atoms include ethylene, propylene, 1-butene, 2-butene, and isobutene, and aromatic hydrocarbons alkylated with these include benzene, toluene, and xylene. , cumene, diisopropylbenzene, ethylbenzene, ethyltoluene, etc. are used. For example, the alkylation reaction of benzene with propylene is shown by the following formula. In addition, in the transalkylation reaction that is carried out to convert the polyalkyl-substituted benzene by-produced by such alkylation reaction into the target product such as monoalkyl-substituted benzene, (a) at least 1 Examples of aromatic compounds substituted with alkyl groups having 2 to 4 carbon atoms include ethylbenzene, diethylbenzene, ethyltoluene, cumene, cymene, ethylcumene, diisobutylbenzene, triisopropylbenzene, butylbenzene, butyltoluene, etc. ) In addition to the alkyl-substituted compounds of (a), toluene, xylene, trimethylbenzene, etc. are used as the aromatic compound substituted with an alkyl group having 1 to 4 carbon atoms, which is used in the same way as unsubstituted benzene. The transalkylation reaction between diisopropylbenzene and benzene is shown by the following formula. The catalytic aluminum chloride complex used in such alkylation or transalkylation reactions is unsubstituted benzene or benzene substituted with an alkyl group having 1 to 4 carbon atoms, such as toluene,
Contact with xylene, cumene, cymene, diisopropylbenzene, ethylbenzene, ethyltoluene, butylbenzene, etc., preferably benzene or toluene. These benzenes are generally brought into contact with each part of the catalyst complex at a rate of about 0.1 part by volume or more, preferably about 1 to 10 parts by volume, at a temperature of about 0 to 50°C, generally at room temperature. For the contact method, it is sufficient to simply mix the catalyst complex and benzenes in a container, preferably with stirring, and then the benzenes can be left in contact without being separated until reuse. Alternatively, after separating the benzenes, it can be left as is until reuse. Storing is carried out at about 0 to 50°C, generally at room temperature; if stored at too high a temperature, the catalyst activity will be reduced, and conversely, if stored at too low a temperature, it will solidify and become difficult to handle. For example, even if the catalytic aluminum chloride complex treated with benzenes is stored at room temperature for about 60 days,
No decrease in catalytic activity was observed, and in some cases even an increase in catalytic activity was observed. The present inventors reason that such an effect is brought about as follows. For example, when hydrogen chloride gas is blown into a mixture of cumene and solid aluminum trichloride with stirring, a pale yellow liquid aluminum chloride complex phase with a specific gravity (d 20 4 ) of about 1.06 is formed. This aluminum chloride complex has an Al content of approximately 6.4% by weight,
The composition of the oily phase component obtained by decomposing this with ice water is:
As shown in the table below, it has a composition in which approximately 2 moles of aromatic hydrocarbons are bonded to 1 mole of aluminum trichloride. When this newly prepared aluminum chloride complex is left at room temperature, the composition (wt%) of components other than Al changes over time as follows.

【衚】 物
このように、む゜プロピルトリメチルむンデン
や高沞点物の急激な増加が経時的に認められ、塩
化アルミニりム錯䜓の芋かけ䞊の色盞は、淡黄色
から赀色、次いで赀黒色ぞず倉化し、これはこの
錯䜓の觊媒掻性の䜎䞋に察応した倉化を瀺しおい
る。 本発明者らは、む゜プロピルトリメチルむンデ
ンや高沞点物が觊媒掻性阻害物質であるこず、た
たこれらの觊媒掻性阻害物質は塩基性が非垞に匷
く、埓぀おこれらが䞉塩化アルミニりムず匷力に
結合しお錯䜓の觊媒掻性を䜎䞋させるこずおよび
これらの阻害物質が塩化アルミニりム錯䜓を圢成
しおいるクメン、ゞむ゜プロピルベンれン、トリ
む゜プロピルベンれンなどのアルキル眮換ベンれ
ンから生成するこずを知芋したので、アルキル化
反応たたはトランスアルキル化反応で䜿甚された
觊媒錯䜓をベンれン類ず接觊させるこずにより、
前蚘阻害物質がベンれン類に抜出されお觊媒掻性
を回埩させるず共に、錯䜓䞭から盞圓量のアルキ
ル眮換ベンれンがベンれン類によ぀お抜出されお
くるため、その埌長期間攟眮しおも阻害物質の生
成量が枛少し、觊媒掻性が保持されるものず掚定
しおいる。 なお、このような凊理に甚いられるベンれン類
ずしおはベンれンおよびトル゚ンが奜たしく、ベ
ンれンおよびトル゚ンで凊理したものはその埌の
長期間の貯蔵でもその觊媒掻性を䜎䞋させない。
これに察しお、トル゚ン以倖の䜎玚アルキル眮換
ベンれンで凊理したものは、凊理盎埌には十分な
る觊媒掻性を保持しおいるものの、経時的に觊媒
掻性を䜎䞋させる。ただし、埌蚘実斜䟋に瀺さ
れるように、クメン凊理埌ベンれンたたはトル゚
ンず接觊させ぀぀貯蔵したものは、クメン凊理盎
埌および貯蔵期間埌のいずれにおいおも觊媒掻性
を保持しおいる。 次に、実斜䟋に぀いお本発明を説明する。 参考䟋 プロピレンによるベンれンのアルキル化反応お
よびその反応生成物のトランスアルキル化反応
が、図面のフロヌシヌトに瀺される劂くにしお行
われた。 ラむンからの新たなベンれン170郚重量、
以䞋同じおよび蒞留塔で蒞留、脱氎され、ラ
むンによ぀お埪環されたベンれン330郚が、
アルキル化反応槜ぞ䟛絊される。このアルキル
化反応槜には、プロパン郚を含有するプロピ
レン106郚がラむンより、觊媒分離噚から埪
環される觊媒塩化アルミニりム錯䜓23郚がラむン
およびを経由しお、たた実質的に氎分を
含有しない塩化氎玠ガス0.1郚がラむンおよび
を経由しおそれぞれ䟛絊される。 アルキル化反応槜におけるベンれンずプロピ
レンずの反応は80℃で行われ、反応に関䞎しない
プロパンは、ラむンから系倖に排出させる。
反応生成物は、ラむンによ぀おトランスアル
キル化反応槜に䟛絊され、たた蒞留塔″およ
び″″からラむンおよびをそれぞれ経お
埪環される−ゞむ゜プロピルベンれン、−ゞ
む゜プロピルベンれン、トリむ゜プロピルベンれ
ンなどのポリむ゜プロピルベンれン175郚、觊媒
分離噚からラむンおよびを経お埪環さ
れる觊媒塩化アルミニりム錯䜓219郚、ラむン
およびを経お実質的に氎分を含有しない塩化
氎玠ガス0.45郚、曎にラむンおよびから間
欠的に䟛絊される䞉塩化アルミニりム0.6郚がそ
れぞれ前蚘トランスアルキル化反応槜に䟛絊さ
れる。 このトランスアルキル化反応槜では、アルキ
ル化反応槜からの未反応ベンれンず埪環ポリむ
゜プロピルベンれンずのトランスアルキル化反応
が74℃で行われ、その反応生成物はラむンを
経お觊媒分離噚に䟛絊され、より高比重の觊媒
盞はラむンによ぀お前述の劂くに埪環され、
その䞀郚0.3郚はラむンから系倖に排出
される。反応生成物の油液盞は、ラむンを経
お送られた氎掗䞭和槜で觊媒成分を完党に陀去
した埌、ラむンを経お775郚が蒞留塔に䟛
絊される。なお、氎掗䞭和槜の底郚からは、ラ
むンによ぀お氎掗䞭和液が抜き出される。 蒞留は、蒞留塔′″および
′′′′を甚いお行われるが、特に゚チルベンれン陀
去のための蒞留塔は蚭眮せずに、゚チルベンれン
0.06重量を含有する玔床99.9重量以䞊のクメ
ン240郚を蒞留塔′のラむンから、たた−
ゞむ゜プロピルベンれン26郚を蒞留塔のラむ
ンからそれぞれ補品ずしお取埗し、䞀方ベン
れン留分の党量330郚は蒞留塔からラむン
を経おアルキル化反応槜ぞ埪環され、たた残り
の−ゞむ゜プロピルベンれン留分、−ゞむ゜
プロピルベンれンおよびトリむ゜プロピルベンれ
ン留分の合蚈175郚は蒞留塔″のラむンおよ
び蒞留塔′′′′のラむンを経おトランスアル
キル化反応槜ぞ埪環される。なお、高沞点留分
3.2郚は、ラむンから排出された。 このような二連の反応においお、觊媒分離噚
䞭の觊媒錯䜓の觊媒掻性係数倀を、以䞋のよう
な方法に埓぀お求めるず、90×10-4分の倀が埗
られた。 ここで、觊媒掻性係数倀は、䞋蚘の枬定方法
によ぀お埗られた倀ずしお定矩される。 たず、−ゞむ゜プロピルベンれンずベンれン
ずを、む゜プロピル基ずベンれン栞ずのモル比が
正確に0.6ずなるように混合する。この混合液200
mlを、撹拌機を備えた容量500mlの反応噚に仕蟌
み、50℃に保ちながら、垞圧䞋に也燥塩化氎玠ガ
スを玄300ml分の割合で撹拌䞋に30分間吹き蟌
み、混合液を塩化氎玠で飜和させた状態ずする。
この操䜜においお、ベンれンず−ゞむ゜プロピ
ルベンれンずが系倖に揮散しないように、塩化氎
玠ガス出口ラむンに還流冷华装眮を蚭ける。その
埌、枬定さるべき觊媒塩化アルミニりム錯䜓10ml
を䞀床に滎䞋し、この枩床を保ち぀぀、塩化氎玠
ガスの吹き蟌みを玄10ml分の割合で続行する。
この錯䜓の滎䞋埌、玄1/2〜分間毎に〜10回
皋床反応噚䞭の詊料を抜き出し、各詊料に぀いお
次のような凊理を行ない、觊媒を陀去する。即
ち、各詊料に぀いお、氎酞化ナトリりム氎溶
液による掗浄を行ない、その埌氎掗し、無氎硫酞
ナトリりムによる脱氎を行なう。以䞊の凊理は、
ベンれンの劂き揮発成分が蒞発しお、飛散しない
ように泚意深く行われる。 このような凊理がなされた詊料に぀いお、ガス
クロマトグラフむヌによるクメンの定量を行な
い、クメンの濃床〔CU〕を求める。ここで、
サフむツクスは、時間tiにおける詊料に぀いお
の倀であるこずを意味する。 次に、次匏に埓぀お、Yiの倀を蚈酞す
る。 Yi〔CU〕〔DIPB〕×ln〔CU〕〔CU〕
−〔CU〕    ここで、 〔CU〕平衡クメン濃床モル泚 〔DIPB〕觊媒錯䜓を滎䞋する前のベンれン
ず−ゞむ゜プロピルベンれンずの混合物䞭に
占める埌者の濃床モル泚 次に、詊料採取時間ti分ずYiは詊料の採
取回数ずの倀を、次匏に近䌌させ、最小
自乗法により倀を求める。 Mt定数    このようにしお求められる觊媒掻性定数倀
は、次の反応匏で瀺されるトランスアルキル化反
応の反応速床定数ず正の盞関関係を瀺し、倀
が倧であるずいうこずは觊媒錯䜓の觊媒掻性が倧
であるこずを意味する。 泚 フリ−デルクラフツ觊媒の存圚䞋に、
ベンれン、クメン、ゞむ゜プロピルベンれンな
どを混合するず、トランスアルキル化反応が生
じ、最終的にベンれン、クメン、−ゞむ゜プ
ロピルベンれン、−ゞむ゜プロピルベンれ
ン、−ゞむ゜プロピルベンれン、トリむ゜プ
ロピルベンれンの各成分の組成割合が熱力孊的
に平衡に達し、このずきのクメン濃床を平衡ク
メン濃床ずする。 この平衡クメン濃床は、反応䜓䞭のむ゜プロ
ピル基ずベンれン栞ずのモル比により、あるい
は枩床により倉化するが、前蚘匏に適甚
する倀ずしお、本発明では〔CU〕3.62モ
ルが適甚される。 泚 本発明では、〔DIPE〕2.5モル
の倀ずなる。 実斜䟋  参考䟋で埗られた定垞掻性を有する觊媒塩化ア
ルミニりム錯䜓30mlを容量300mlのフラスコに採
り、これにベンれン200mlを加えお、宀枩で時
間撹拌した。その埌、觊媒盞ず油性盞ベンれン
盞ずを分離するず、觊媒盞は38mlあ぀た。 この觊媒に぀いお觊媒掻性係数倀を枬定する
ず、油性盞ず分離した盎埌のものに぀いおは130
×10-4分、たた凊理埌垞枩䞋に40日間攟眮した
ものに぀いおは120×10-4分の倀がそれぞれ埗
られた。 比范䟋 参考䟋で埗られた觊媒錯䜓を、そのたた宀枩䞋
に40日間攟眮するず、それの觊媒掻性係数倀は
60×10-4分に䜎䞋した。 実斜䟋  実斜䟋においお、ベンれンず時間撹拌埌、
油性盞ず分離せずにそのたた宀枩䞋に50日間攟眮
し、その埌で油性盞ず分離した觊媒錯䜓に぀いお
は、110×10-4分の觊媒掻性係数倀が埗られ
た。 実斜䟋  参考䟋で埗られた觊媒錯䜓30mlを、実斜䟋ず
同様にクメン200mlで凊理するず、觊媒盞は28ml
ずな぀た。この觊媒に぀いお觊媒掻性系数倀を
枬定するず、クメン凊理盎埌のものに぀いおは
120×10-4分、たたこれにベンれン100mlを加
え、40日間攟眮埌油性盞を分離したものに぀いお
は、110×10-4分の倀がそれぞれ埗られた。 実斜䟋  参考䟋で埗られた觊媒錯䜓30mlを、実斜䟋ず
同様にトル゚ン200mlで凊理するず、觊媒盞は33
mlずな぀た。これに、新たなトル゚ン50mlを加え
たものを40日間攟眮し、その埌油性盞を分離した
ものに぀いお觊媒掻性係数倀を枬定するず、
100×10-4分の倀が埗られた。
[Table] Materials As shown above, a rapid increase in isopropyltrimethylindene and high-boiling materials was observed over time, and the apparent hue of the aluminum chloride complex changed from pale yellow to red, then reddish-black; shows a change corresponding to a decrease in the catalytic activity of this complex. The present inventors discovered that isopropyltrimethylindene and high-boiling substances are catalytic activity inhibitors, and that these catalytic activity inhibitors are very basic, and therefore they bind strongly to aluminum trichloride. Alkylation reactions or trans-alkyl-substituted benzenes, such as cumene, diisopropylbenzene, and triisopropylbenzene, have been found to reduce the catalytic activity of the complex and that these inhibitors are formed from alkyl-substituted benzenes such as cumene, diisopropylbenzene, and triisopropylbenzene forming aluminum chloride complexes. By contacting the catalyst complex used in the reaction with benzenes,
The inhibitory substances are extracted by benzenes to restore the catalytic activity, and a considerable amount of alkyl-substituted benzene is extracted from the complex by the benzenes, so even if left for a long period of time, the amount of inhibitory substances produced will be small. It is estimated that the catalytic activity is reduced and the catalytic activity is maintained. It should be noted that benzene and toluene are preferred as the benzenes used in such treatment, and those treated with benzene and toluene do not reduce their catalytic activity even after long-term storage.
On the other hand, those treated with lower alkyl-substituted benzenes other than toluene retain sufficient catalytic activity immediately after treatment, but the catalytic activity decreases over time. However, as shown in Example 3 below, those treated with cumene and stored in contact with benzene or toluene retain their catalytic activity both immediately after the cumene treatment and after the storage period. Next, the present invention will be explained with reference to examples. Reference Example The alkylation reaction of benzene with propylene and the transalkylation reaction of the reaction product were carried out as shown in the flow sheet of the drawings. 170 parts of fresh benzene from line 6 (wt.
330 parts of benzene distilled and dehydrated in the distillation column 5 and circulated through the line 15,
It is supplied to the alkylation reaction tank 1. To this alkylation reactor 1, 106 parts of propylene containing 6 parts of propane are supplied via line 7, 23 parts of catalytic aluminum chloride complex recycled from the catalyst separator 3 are supplied via lines 10 and 21, and substantially 0.1 part of water-free hydrogen chloride gas is supplied via lines 9 and 28, respectively. The reaction between benzene and propylene in the alkylation reaction tank 1 is carried out at 80° C., and propane not involved in the reaction is discharged from the system through a line 25.
The reaction products are m-diisopropylbenzene, p-diisopropylbenzene, which are fed to the transalkylation reactor 2 via line 26 and recycled from distillation columns 5'' and 5'' via lines 16 and 19, respectively. 175 parts of polyisopropylbenzene, such as triisopropylbenzene, 219 parts of catalytic aluminum chloride complex recycled from catalyst separator 3 via lines 10 and 22, line 9
0.45 parts of hydrogen chloride gas which does not contain substantially water via lines 8 and 24, and 0.6 parts of aluminum trichloride which is intermittently supplied from lines 8 and 23 are respectively supplied to the transalkylation reaction tank 2. In this transalkylation reaction tank 2, a transalkylation reaction between unreacted benzene from the alkylation reaction tank 1 and recycled polyisopropylbenzene is carried out at 74°C, and the reaction product is passed through a line 27 to a catalyst separator 3. the higher specific gravity catalyst phase is circulated as described above by line 10;
A portion (0.3 parts) is discharged from the system through line 11. The oil-liquid phase of the reaction product is sent via line 12 to water washing neutralization tank 4 to completely remove the catalyst component, and then 775 parts is fed to distillation column 5 via line 13. Note that the washing neutralization liquid is extracted from the bottom of the washing neutralization tank 4 through a line 14. Distillation is carried out in distillation columns 5, 5', 5'', 5 and 5
``'''', but without installing a distillation column to remove ethylbenzene.
240 parts of cumene with a purity of 99.9% by weight or more containing 0.06% by weight was also supplied from line 17 of the distillation column 5' and p-
26 parts of diisopropylbenzene were each obtained as a product from line 18 of distillation column 5, while a total of 330 parts of benzene fraction was obtained from distillation column 5 through line 15.
A total of 175 parts of the remaining p-diisopropylbenzene fraction, m-diisopropylbenzene and triisopropylbenzene fractions are circulated to the alkylation reactor 1 via line 16 of distillation column 5'' and distillation column 5'''' is circulated to the transalkylation reaction tank 2 via line 19.
3.2 parts were discharged through line 20. In such a double reaction, the catalyst separator 3
When the catalytic activity coefficient M value of the catalyst complex inside was determined according to the following method, a value of 90×10 −4 /min was obtained. Here, the catalytic activity coefficient M value is defined as a value obtained by the following measuring method. First, p-diisopropylbenzene and benzene are mixed so that the molar ratio of isopropyl groups to benzene nuclei is exactly 0.6. This mixture 200
ml into a 500 ml reactor equipped with a stirrer, and while maintaining the temperature at 50°C, dry hydrogen chloride gas was blown in at a rate of about 300 ml/min under normal pressure for 30 minutes with stirring, and the mixture was heated with hydrogen chloride. Bring it to a saturated state.
In this operation, a reflux cooling device is provided in the hydrogen chloride gas outlet line so that benzene and p-diisopropylbenzene are not volatilized outside the system. Then 10ml of the catalyst aluminum chloride complex to be measured
was added dropwise at once, and while maintaining this temperature, hydrogen chloride gas was continued to be blown in at a rate of about 10 ml/min.
After dropping the complex, samples are taken out from the reactor about 5 to 10 times every 1/2 to 1 minute, and each sample is subjected to the following treatment to remove the catalyst. That is, each sample is washed with a 2% aqueous sodium hydroxide solution, then washed with water, and dehydrated with anhydrous sodium sulfate. The above processing is
This is done carefully to prevent volatile components such as benzene from evaporating and scattering. For the sample treated in this manner, cumene is quantified by gas chromatography to determine the cumene concentration [CU]i. here,
The suffix i means the value for the sample at time ti. Next, the value of Yi is measured according to the following formula (). Yi=[CU]e/2[DIPB]o×ln([CU]e/[CU]e
−[CU]i) ...() Here, [CU]e: Equilibrium cumene concentration (mol/) (Note 1) [DIPB]o: Mixture of benzene and p-diisopropylbenzene before dropping the catalyst complex The concentration of the latter (mol/) (Note 2) in Find the M value. Y=Mt+C (constant) ... () The catalyst activity constant M value obtained in this way shows a positive correlation with the reaction rate constant K of the transalkylation reaction shown by the following reaction formula, and the M value is A large value means that the catalytic activity of the catalyst complex is large. (Note 1) In the presence of Friedel-Crafts catalyst,
When benzene, cumene, diisopropylbenzene, etc. are mixed, a transalkylation reaction occurs, and the final composition ratio of each component of benzene, cumene, o-diisopropylbenzene, m-diisopropylbenzene, p-diisopropylbenzene, and triisopropylbenzene changes. A thermodynamic equilibrium is reached, and the cumene concentration at this time is defined as the equilibrium cumene concentration. This equilibrium cumene concentration varies depending on the molar ratio of isopropyl groups to benzene nuclei in the reactants or depending on the temperature, but in the present invention, [CU]e = 3.62 mol/ is the value applied to the above formula (). Applicable. (Note 2) In the present invention, [DIPE] o = 2.5 mol/
The value is . Example 1 30 ml of the catalytic aluminum chloride complex having steady-state activity obtained in Reference Example was placed in a 300 ml flask, 200 ml of benzene was added thereto, and the mixture was stirred at room temperature for 1 hour. Thereafter, the catalyst phase and the oily phase (benzene phase) were separated, and the catalyst phase had a volume of 38 ml. When the catalytic activity coefficient M value of this catalyst was measured, it was 130 immediately after separation from the oily phase.
*10 -4 /min, and for those left at room temperature for 40 days after treatment, values of 120x10 -4 /min were obtained. Comparative example When the catalyst complex obtained in the reference example is left as it is at room temperature for 40 days, its catalytic activity coefficient M value is
It decreased to 60×10 -4 /min. Example 2 In Example 1, after stirring with benzene for 1 hour,
For the catalyst complex that was allowed to stand at room temperature for 50 days without being separated from the oily phase, and then separated from the oily phase, a catalytic activity coefficient M value of 110×10 −4 /min was obtained. Example 3 When 30 ml of the catalyst complex obtained in the reference example was treated with 200 ml of cumene in the same manner as in Example 1, the catalyst phase became 28 ml.
It became. When the catalytic activity number M value of this catalyst was measured, it was found that immediately after cumene treatment,
A value of 120×10 -4 /min was obtained, and a value of 110×10 -4 /min was obtained when 100 ml of benzene was added to this and the oily phase was separated after standing for 40 days. Example 4 When 30 ml of the catalyst complex obtained in the reference example was treated with 200 ml of toluene in the same manner as in Example 1, the catalyst phase was 33
It became ml. When 50 ml of fresh toluene was added to this and left for 40 days, the oily phase was separated and the catalytic activity coefficient M value was measured.
A value of 100×10 -4 /min was obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は、プロピレンによるベンれンのアルキル
化反応のフロヌシヌトである。 この図面においお、笊号はアルキル化反応
槜、はトランスアルキル化反応槜、は觊媒分
離噚、は氎掗䞭和槜、そしおは蒞留塔をそれ
ぞれ指瀺する。
The drawing is a flow sheet of the alkylation reaction of benzene with propylene. In this drawing, reference numeral 1 indicates an alkylation reactor, 2 indicates a transalkylation reactor, 3 indicates a catalyst separator, 4 indicates a water washing neutralization tank, and 5 indicates a distillation column.

Claims (1)

【特蚱請求の範囲】  炭玠数〜のオレフむンによる芳銙族炭化
氎玠のアルキル化反応に甚いられた觊媒塩化アル
ミニりム錯䜓を非眮換たたは炭玠数〜のアル
キル基で眮換されたベンれンず接觊させ、接觊状
態のたたあるいは短時間接觊させおから分離した
状態で、再䜿甚時迄攟眮するこずを特城ずするア
ルキル化觊媒の凊理方法。  (a)少くずも個の炭玠数〜のアルキル基
で眮換された芳銙族炭化氎玠ず(b)非眮換たたは炭
玠数〜のアルキル基で眮換された芳銙族炭化
氎玠ずのトランスアルキル化反応に甚いられた觊
媒塩化アルミニりム錯䜓を非眮換たたは炭玠数
〜のアルキル基で眮換されたベンれンず接觊さ
せ、接觊状態のたたあるいは短時間接觊させおか
ら分離した状態で、再䜿甚時迄攟眮するこずを特
城ずするトランスアルキル化觊媒の凊理方法。
[Scope of Claims] 1. Contacting a catalytic aluminum chloride complex used in the alkylation reaction of an aromatic hydrocarbon with an olefin having 2 to 4 carbon atoms with benzene that is unsubstituted or substituted with an alkyl group having 1 to 4 carbon atoms. 1. A method for treating an alkylation catalyst, which is characterized in that the alkylation catalyst is left in a contact state or in a separated state after being in contact for a short time until it is reused. 2 (a) an aromatic hydrocarbon substituted with at least one alkyl group having 2 to 4 carbon atoms; and (b) an aromatic hydrocarbon unsubstituted or substituted with an alkyl group having 1 to 4 carbon atoms. The catalyst aluminum chloride complex used in the transalkylation reaction is unsubstituted or has 1 carbon number.
A method for treating a transalkylation catalyst, which comprises bringing it into contact with benzene substituted with an alkyl group of -4, and leaving it in a contact state or in a separated state after a short contact period until reuse.
JP56195451A 1981-12-04 1981-12-04 Treatment of alkylating or transalkylating catalyst Granted JPS5898145A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56195451A JPS5898145A (en) 1981-12-04 1981-12-04 Treatment of alkylating or transalkylating catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56195451A JPS5898145A (en) 1981-12-04 1981-12-04 Treatment of alkylating or transalkylating catalyst

Publications (2)

Publication Number Publication Date
JPS5898145A JPS5898145A (en) 1983-06-10
JPS6354421B2 true JPS6354421B2 (en) 1988-10-27

Family

ID=16341280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56195451A Granted JPS5898145A (en) 1981-12-04 1981-12-04 Treatment of alkylating or transalkylating catalyst

Country Status (1)

Country Link
JP (1) JPS5898145A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4952195A (en) * 1972-09-21 1974-05-21

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4952195A (en) * 1972-09-21 1974-05-21

Also Published As

Publication number Publication date
JPS5898145A (en) 1983-06-10

Similar Documents

Publication Publication Date Title
US4051191A (en) Solid phosphoric acid catalyzed alkylation of aromatic hydrocarbons
US3531546A (en) Alkylation of organic compounds
EP0046678B2 (en) Process for continuous production of cumene and/or diisopropylbenzene
JPS5833206B2 (en) Improved alkylation method
US2436695A (en) Alkylation process
US4237328A (en) Process for HF-catalyzed alkylation of aromatic hydrocarbons
US2930820A (en) Alkylation of toluene
US2948763A (en) Alkylation of aromatic compounds
US4064068A (en) Preparation of isopropylnaphthalene mixture
US3894090A (en) Water washing method for borate removal in an aromatic alkylation process
JPS6354421B2 (en)
US2667519A (en) Alkylation of aromatics
US3248443A (en) Process for alkylating aromatic hydrocarbons
US2849505A (en) Alkylation catalyst comprising a tin halide and metallic aluminum
US2850545A (en) Preparation of diaryl methanes
US2971992A (en) Alkylation of aromatic hydrocarbons
US2563050A (en) Treatment of olefins with liquid anhydrous hydrogen bromide
US3054835A (en) Alkylation of aromatic hydrocarbons
US2382505A (en) Olefin recovery process
US3398206A (en) Production of p-dialkylbenzenes
GB794570A (en) Improvements in and relating to the alkylation of aromatic hydrocarbons
US2589253A (en) Alkylation of aromatic compounds
US3109037A (en) Synthesis of isopropyl benzene
US3009003A (en) Alkylation of alkylatable compounds
US3291848A (en) Alkylation catalyst and process therefor