JPS6353617A - Active vibration insulating method - Google Patents

Active vibration insulating method

Info

Publication number
JPS6353617A
JPS6353617A JP19664486A JP19664486A JPS6353617A JP S6353617 A JPS6353617 A JP S6353617A JP 19664486 A JP19664486 A JP 19664486A JP 19664486 A JP19664486 A JP 19664486A JP S6353617 A JPS6353617 A JP S6353617A
Authority
JP
Japan
Prior art keywords
vibration
piezoelectric actuator
actuator
structures
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19664486A
Other languages
Japanese (ja)
Inventor
Yuji Sugita
雄二 杉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP19664486A priority Critical patent/JPS6353617A/en
Publication of JPS6353617A publication Critical patent/JPS6353617A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/005Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion using electro- or magnetostrictive actuation means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2202/00Indexing codes relating to the type of spring, damper or actuator
    • B60G2202/40Type of actuator
    • B60G2202/42Electric actuator
    • B60G2202/424Electric actuator electrostrictive materials, e.g. piezoelectric actuator

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

PURPOSE:To execute the highly accurate vibration insulation in the combination of a structure by assembling a piezoelectric actuator to a vibration isolator to combine two vibration structures and expanding and damping this in accordance with the amplitude and the frequency of a rigid body at both sides. CONSTITUTION:Two vibration structures 1 and 2 are combined by vibration insulation device 3. For the device 3, a piezoelectric actuator 4 formed by a piezoelectric element disk is serially arranged to a load detect or 5, has rigid bodies 6 and both sides and on this, acceleration detectors 12 and 13 are provided. A control part 14 obtains the elongation quantity of the actuator 4 in accordance with the alternating force and the acceleration detected by detectors 5, 12 and 13 operates an impressing voltage control quantity to the actuator 4 necessary to generate this. When a voltage Va from a control part 14 is impressed to the actuator 4, the actuator 4 is elongated with the size equal to the difference in the displacement of the rigid bodies 6 and 7, the alternating force to propagate through the device 3 is suppressed and the structures 1 and 2 are independently oscillated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はアクティブ振動I@縁方法に係り、より詳しく
は、個々に外部から加振力を受は振動している、対設さ
れた二つの振動構造体を連結しながら、連結装置を通し
て伝播される交番力を抑制し、二つの構造体を振動的に
完全に分離できるようにしたアクティブ振動絶縁方法に
関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an active vibration I@edge method, and more specifically, the present invention relates to an active vibration I@edge method, and more specifically, two opposing vibrations each receiving an external excitation force. The present invention relates to an active vibration isolation method that connects two vibrating structures while suppressing alternating forces propagated through a connecting device, thereby completely separating the two structures vibrationally.

〔従来の技術とその問題点〕[Conventional technology and its problems]

構造部材の機械的振動は起振源からの振動の伝播によっ
て生じる。このため、構造部材の振動の制振には、起振
源からの振動の伝播を抑制することが大きな効果をもつ
。従来こうした起振源からの振動の伝播を抑制する方法
としては、起振源の支持端に防振ゴムをそう人する受動
的な方法が一般的に用いられてきた。防振ゴムは広い周
波数帯域にわたって抑制効果をもつが、周期的で大きな
振動の伝播には抑制効果が不十分であることが知られて
いる。このため、能動的な防振、いわゆるアクティブ防
振が考えられるようになってきた。
Mechanical vibrations of structural members are caused by propagation of vibrations from an excitation source. Therefore, suppressing the propagation of vibrations from the vibration source has a great effect on damping the vibrations of structural members. Conventionally, as a method of suppressing the propagation of vibration from such a vibration source, a passive method of installing vibration-proof rubber at the supporting end of the vibration source has been generally used. Although anti-vibration rubber has a suppressing effect over a wide frequency band, it is known that the suppressing effect is insufficient for the propagation of periodic and large vibrations. For this reason, active vibration isolation, so-called active vibration isolation, has come to be considered.

これは、起振源から得た信号をもとに振動を積極的に打
ち消そうとする方法である。その第一は、力のつり合い
によって防振する方法であり、被防振体である支持端側
に、起振源からの交番力に見合う大きさで方向が反対の
力を加えて防振する。
This is a method that actively attempts to cancel vibrations based on signals obtained from the vibration source. The first is a method of vibration isolation by balancing forces, which involves applying a force in the opposite direction to the alternating force from the vibration source on the supporting end side, which is the object to be vibration-isolated. .

この方法では起振力が大きい場合に装置が大型化する欠
点がある。そして第二は、バネ定数等を制御し、振動系
自体を変化させることにより被防振体の振動を制御する
。この方法も装置が大型化し、制御も複雑でコスト的に
も不利である。
This method has the disadvantage that the device becomes bulky when the excitation force is large. The second method is to control the vibration of the vibration-isolated object by controlling the spring constant and changing the vibration system itself. This method is also disadvantageous in terms of cost because the device becomes large and the control is complicated.

そこで、本発明者は、上記問題点を解決するために、起
振源の機械的振動に応じて圧電アクチュエータの伸び量
を制御して被防振体への振動の伝播自体を抑制する防振
支持制御方法を発明し、先に提案した。
Therefore, in order to solve the above-mentioned problems, the present inventor developed a vibration isolation system that suppresses the propagation of vibration to the vibration-isolated object by controlling the amount of extension of the piezoelectric actuator according to the mechanical vibration of the vibration source. Invented and previously proposed a support control method.

この方法の概要は、第6図、第7図に示すように、起振
源101を被防振体側である支持台102に取付けられ
た防振装置103を介して支持すると共に、該防振装置
103を圧電アクチュエータ104(変位発生部)と、
該圧電アクチュエータ104と同じ軸上に配置された荷
重検出器105および防振ゴム106とで構成し、また
、起振源101の加速度を検出するために加速度検出器
107を設け、前記起振源101の振動時における変動
荷重および加速度を測定し、該測定値に基づいて圧電ア
クチュエータ104の伸び量を演算し、この伸び量を電
圧に変換した後、前記圧電アクチュエータ104に印加
し、被防振体への振動の伝播を抑制するようにしたもの
である。なお、図において、108は演算部、109は
増幅部、110は加算器、111は二階の積分器、11
2は加算器、Vfは荷重検出器105によって検出され
る荷重信号、Vcは加速度検出部107によって検出さ
れる加速度信号、■は圧電アクチュエータ104の最適
な伸び量に対応した電圧信号である。
The outline of this method is as shown in FIGS. 6 and 7, in which a vibration source 101 is supported via a vibration isolator 103 attached to a support base 102 on the side of the vibration isolator, and the vibration isolator The device 103 is a piezoelectric actuator 104 (displacement generating section),
It is composed of a load detector 105 and a vibration isolator 106 arranged on the same axis as the piezoelectric actuator 104, and an acceleration detector 107 is provided to detect the acceleration of the vibration source 101. The varying load and acceleration during vibration of the piezoelectric actuator 101 are measured, the amount of elongation of the piezoelectric actuator 104 is calculated based on the measured values, and the amount of elongation is converted into a voltage, which is then applied to the piezoelectric actuator 104 and This is designed to suppress the propagation of vibrations to the body. In the figure, 108 is an arithmetic unit, 109 is an amplification unit, 110 is an adder, 111 is a second-order integrator, and 11
2 is an adder, Vf is a load signal detected by the load detector 105, Vc is an acceleration signal detected by the acceleration detection unit 107, and ■ is a voltage signal corresponding to the optimum amount of expansion of the piezoelectric actuator 104.

この防振支持制御方法は、外部から加振力を受ける1質
点系の防振支持に主眼をおいてなされてもので、起振源
から被防振体への振動の伝播を抑制する防振制御におい
ては、精度の高い防振@御ができるとともに、起振源に
適した防振が比較的簡単な構成で実現できる利点がある
が、しかし、個々に外部から加振力を受は振動している
二つの=3− 振動構造体を連結しながら、連結装置を通して伝播され
る交番力を抑制し、二つの構造体を振動的に完全に分離
するように防振制御することはできないという問題点が
あった。
This anti-vibration support control method focuses on anti-vibration support for a single mass point system that receives external excitation force, and is designed to provide anti-vibration support that suppresses the propagation of vibration from the vibration source to the object to be isolated. In terms of control, it has the advantage of being able to perform highly accurate vibration isolation @ control and achieve vibration isolation suitable for the vibration source with a relatively simple configuration. It is said that it is not possible to perform vibration isolation control that connects two vibrating structures, suppresses the alternating force propagated through the coupling device, and completely separates the two structures vibrationally. There was a problem.

本発明は、上記問題点を解決するためになされたもので
、その目的は個々に外部から加振力を受は振動している
二つの振動構造体を連結しながら、連結装置を通して伝
播される交番力を抑制する振動絶縁方法を提供すること
にある。
The present invention has been made to solve the above problems, and its purpose is to connect two vibrating structures that each receive an external excitation force while propagating the vibration through a connecting device. An object of the present invention is to provide a vibration isolation method that suppresses alternating forces.

C問題点を解決するための手段〕 上記目的を達成するために、本発明のアクティブ振動絶
縁方法は、二つの振動構造体を、直列配置された圧電ア
クチュエータおよび荷重検出器と、その両端に取付けら
れた二つの剛体を有する結合装置により連結すると共に
、前記装置の各剛体に取付けられた加速度検出器の出力
信号又は両剛体間の相対変位を計測する変位検出器の出
力信号と、前記荷重検出器の出力信号とから該装置の両
端に作用する交番力を測定し、該測定値に基づいて圧電
アクチュエータの伸び量を演算し、該伸び量を電圧に変
換した後、前記圧電アクチュエータに印加するように構
成されている。また、本発明のアクティブ振動絶縁方法
は、各剛体をほぼ等しい質量の剛体としたことを望まし
い構成とするものである。
Means for Solving Problem C] In order to achieve the above object, the active vibration isolation method of the present invention includes two vibrating structures that are attached to both ends of a piezoelectric actuator and a load detector arranged in series. The output signal of an acceleration detector attached to each rigid body of the device or the output signal of a displacement detector that measures the relative displacement between the two rigid bodies, and the load detection The alternating force acting on both ends of the device is measured from the output signal of the device, the amount of elongation of the piezoelectric actuator is calculated based on the measured value, and the amount of elongation is converted into a voltage, which is then applied to the piezoelectric actuator. It is configured as follows. Furthermore, the active vibration isolation method of the present invention preferably has a configuration in which each rigid body has approximately the same mass.

〔作用〕[Effect]

このような構成とすれば、二つの振動構造体を連結する
振動絶縁装置に組み込まれた圧電アクチュエータを、該
装置の剛体の振幅および周波数に応じて電圧制御するこ
とによって、各剛体の変位の差に等しい大きさで圧電ア
クチュエータが伸び、該装置を通して伝播する交番力が
抑制される。
With this configuration, the piezoelectric actuator incorporated in the vibration isolating device that connects the two vibrating structures is controlled by voltage according to the amplitude and frequency of the rigid bodies of the device, thereby reducing the difference in displacement of each rigid body. The piezoelectric actuator extends by an amount equal to , and the alternating forces propagating through the device are suppressed.

したがって、二つの振動構造体は、連結されながら振動
的に完全に分離して、各々独自に振動することになる。
Therefore, while the two vibrating structures are connected, they are completely vibrationally separated and each vibrates independently.

〔実施例〕〔Example〕

以下、本発明の実施例を図面を参照しながら説明する。 Embodiments of the present invention will be described below with reference to the drawings.

個々に外部から加振力を受けて振動する二つの振動構造
体1,2は振動絶縁装置3により連結されている。振動
絶縁装置3は、ジルコン、チタン酸鉛等の圧電セラミッ
クスによって作製された複数の圧電素子ディスクで形成
された圧電アクチュエータ4(変位発生部)が荷重検出
器5と直列に配置され、その両端に取付けられた剛体6
,7を有している。さらに、その外側は防振ゴム8,9
等のバネ要素を介して、ねじ10,11で振動構造体1
,2と連結される。前記荷重検出器5は、ひずみゲージ
、圧電体による荷重センサあるいは圧電アクチュエータ
4と同じ圧電素子ディスクによって構成されている。ま
た、剛体6,7の加速度を検出するために加速度検出器
12.13が設けられている。
Two vibrating structures 1 and 2, each of which vibrates in response to an external excitation force, are connected by a vibration isolating device 3. In the vibration isolating device 3, a piezoelectric actuator 4 (displacement generating section) formed of a plurality of piezoelectric element disks made of piezoelectric ceramics such as zircon or lead titanate is arranged in series with a load detector 5, and a piezoelectric actuator 4 (displacement generating section) is arranged in series with a load detector 5. attached rigid body 6
, 7. Furthermore, the outside is made of anti-vibration rubber 8, 9.
Vibrating structure 1 with screws 10 and 11 via spring elements such as
, 2. The load detector 5 is constituted by a strain gauge, a piezoelectric load sensor, or the same piezoelectric element disk as the piezoelectric actuator 4. Further, acceleration detectors 12 and 13 are provided to detect the acceleration of the rigid bodies 6 and 7.

制御部14は、荷重検出器5および加速度検出器12.
13によって検出される交番力および加速度に応じて圧
電アクチュエータ4の伸び量を求め、この伸び量を発生
するために必要な圧電アクチュエータ4への印加電圧制
御量を演算する。
The control unit 14 includes a load detector 5 and an acceleration detector 12 .
The amount of expansion of the piezoelectric actuator 4 is determined according to the alternating force and acceleration detected by the piezoelectric actuator 13, and the amount of voltage control applied to the piezoelectric actuator 4 necessary to generate this amount of expansion is calculated.

つぎに、上記実施例の動作を説明する。Next, the operation of the above embodiment will be explained.

二つの振動構造体1,2が、外部からの加振力などで第
1図の矢印A方向に振動すると、振動絶縁装置3には交
番力が作用する。この交番力は荷重検出器5によって検
出され、荷重信号Vfとして制御部14に入力される。
When the two vibrating structures 1 and 2 vibrate in the direction of arrow A in FIG. 1 due to external excitation force, an alternating force acts on the vibration isolating device 3. This alternating force is detected by the load detector 5 and input to the control unit 14 as a load signal Vf.

同時に、二つの剛体6.7の加速度は加速度検出器12
.13によって検出され、加速度信号V C1,V c
2として制御部14に入力される。
At the same time, the acceleration of the two rigid bodies 6.7 is detected by the acceleration detector 12.
.. 13, and the acceleration signals V C1, V c
2 is input to the control unit 14.

第1図の振動系を運動方程式により解くと、振動絶縁装
置3を伝搬する交番力りは、 ・・・・・・・・・ (1) ここで ・・・・・・・・・  (2) となる。ここで*印はラプラス変換後の値であり、Sは
1階微分、S2は2階微分を表す。kAykBは防振ゴ
ム8,9のばね定数、kは圧電アクチュエータ4と荷重
検出器5のばね定数を合わせたもの、Ml、M2は2つ
の剛体6,7の質量、PAtPBは2つの振動構造体1
,2に外部から加えられる加振力である。また、CAy
 DAはそれぞれ、外力P1および、防振ゴム8を通し
て振動構造物1に加えられる力が、振動構造物1と振動
絶縁装置3の境界変位に及ぼす影響係数である。同様に
、CB、D、は、外力P2および、防振ゴム9を通して
振動構造物2に加えられる力が、振動構造物2と振動絶
縁装置3の境界変位に及ぼす影響係数である。これらの
値は振動構造物をばね−マス系にモデル化するか、ある
いは対象とする振動構造物の実測から求めることができ
る。式(1)から、式(1)の右辺がOになるようにU
*を駆動することにより振動絶縁装置3を伝搬する力L
*を0にすることができる。このU*は、式(1)の右
辺を、運動方程式を利用して変形し ・・・・・・・・・  (3) で計算することができる。式(3)の右辺で、(X11
1−X%)は振動絶縁装置3内の2つの剛体間の相対変
位であり、加速度信号vC1,vC2から求められる。
When the vibration system in Fig. 1 is solved using the equation of motion, the alternating force propagating through the vibration isolator 3 is: ...... (1) Here ...... (2 ) becomes. Here, the * mark is the value after Laplace transform, S represents the first differential, and S2 represents the second differential. kAykB is the spring constant of the vibration isolating rubbers 8 and 9, k is the sum of the spring constants of the piezoelectric actuator 4 and the load detector 5, Ml and M2 are the masses of the two rigid bodies 6 and 7, and PAtPB is the two vibration structures 1
, 2 is the excitation force applied from the outside. Also, CAy
DA is an influence coefficient that the external force P1 and the force applied to the vibrating structure 1 through the vibration isolating rubber 8 have on the boundary displacement between the vibrating structure 1 and the vibration isolating device 3, respectively. Similarly, CB and D are influence coefficients of the external force P2 and the force applied to the vibrating structure 2 through the vibration isolating rubber 9 on the boundary displacement between the vibrating structure 2 and the vibration isolating device 3. These values can be obtained by modeling the vibrating structure as a spring-mass system or by actually measuring the vibrating structure in question. From equation (1), set U so that the right side of equation (1) becomes O.
The force L propagating through the vibration isolating device 3 by driving *
* can be set to 0. This U* can be calculated by transforming the right side of equation (1) using the equation of motion as shown in (3). On the right side of equation (3), (X11
1-X%) is the relative displacement between the two rigid bodies in the vibration isolator 3, and is determined from the acceleration signals vC1 and vC2.

また、L*は振動絶縁装置3を伝搬する交番力で、荷重
信号Vfで得られる。このL*は低周波振動の制御を除
くためにフィルタを挿入する場合にも制御を安定化させ
る役割をもつ。
Further, L* is an alternating force propagating through the vibration isolating device 3, and is obtained from the load signal Vf. This L* also plays a role in stabilizing control when a filter is inserted to eliminate control of low frequency vibrations.

以上から、制御部14では、まずV cl、 V C,
From the above, in the control unit 14, first, V cl, V C,
.

をそれぞれの電圧−加速度変換係数に01倍およびkc
、倍し、減算器20に入力する。液算器20の出力は二
回積分器21で二回積分する。
01 times and kc to each voltage-acceleration conversion coefficient
, multiplied and input to the subtracter 20. The output of the liquid calculator 20 is integrated twice by a double integrator 21.

一方、Vfも電圧−荷重変換係数kf倍し、A/D変換
器22に入力する。そして、コンピュータ23で式(3
)の右辺第2項の()内の処理をコンボリューションあ
るいは数値積分によって計算する。そして、その結果を
D/A変換器24でアナログ信号に変換し、二重積分器
21の出力とともに加算器25に入力する。この出力電
圧はさらに(1/ka)倍する。ここで、kaは圧電ア
クチュエータの電圧−伸縮量変換係数である。そして、
その出力電圧に圧電アクチュエータ4が必要とするバイ
アス電圧を加算器26で加えた電圧が、圧電アクチュエ
ータ4への印加電圧Vaとなる。なお、2回積分器21
はA/D変換器+コンピュータ+D/A変換器と置きか
え、ディジタルで数値積分することも可能である。また
、コンピュータ23は市販のコンボルバあるいはディジ
タルフィルタで置きかえることもできる。
On the other hand, Vf is also multiplied by the voltage-load conversion coefficient kf and input to the A/D converter 22. Then, on the computer 23, the formula (3
) is calculated by convolution or numerical integration. The result is then converted into an analog signal by the D/A converter 24 and input to the adder 25 together with the output of the double integrator 21 . This output voltage is further multiplied by (1/ka). Here, ka is a voltage-expansion amount conversion coefficient of the piezoelectric actuator. and,
A voltage obtained by adding a bias voltage required by the piezoelectric actuator 4 to the output voltage by an adder 26 becomes the voltage Va applied to the piezoelectric actuator 4. In addition, the double integrator 21
It is also possible to perform numerical integration digitally by replacing A/D converter + computer + D/A converter. Further, the computer 23 can be replaced with a commercially available convolver or digital filter.

圧電アクチュエータ4に電圧Vaが印加されると、例え
ば剛体6が剛体7よりも上向きに大きく変位すると、そ
の差に等しい大きさで圧電アクチュエータ4が伸び、振
動絶縁装置3に通して伝播する交番力は抑止され、上下
二つの振動構造体1゜2はそれぞれ独自に振動すること
になる。
When a voltage Va is applied to the piezoelectric actuator 4, for example, if the rigid body 6 is displaced upwardly more than the rigid body 7, the piezoelectric actuator 4 will extend by a magnitude equal to the difference, and an alternating force propagates through the vibration isolator 3. is suppressed, and the two upper and lower vibrating structures 1°2 vibrate independently.

第3図は、振動構造体1,2が別個に外部から加振力を
受は振動しているときの波形の一例を示しており、(1
)はアクティブ制御が行われていないときの波形、(2
)はアクティブ制御が行われているときの波形を示して
いる。振動構造体1,2に系の外部から作用する交番力
P、、P2の変化に応じて圧電アクチュエータの伸縮i
tuが制御される。その結果、アクティブ制御をしてい
ないときに出力していた荷重検出器の出力が0となり、
交番力の伝播が防止される。したがって、図から明らか
なように、アクティブ制御後は振動変位x1とx2の相
互作用がなくなっており、振動構造体1.2はそれぞれ
独自に振動していることがわかる。
FIG. 3 shows an example of a waveform when the vibrating structures 1 and 2 are vibrating by receiving excitation forces from the outside separately, and (1
) is the waveform when active control is not performed, (2
) shows the waveform when active control is performed. The piezoelectric actuator expands and contracts i in response to changes in the alternating forces P, P2 that act on the vibrating structures 1 and 2 from outside the system.
tu is controlled. As a result, the output of the load detector that was output when no active control was being performed becomes 0, and
The propagation of alternating forces is prevented. Therefore, as is clear from the figure, the interaction between the vibration displacements x1 and x2 disappears after the active control, and it can be seen that the vibration structures 1.2 vibrate independently.

−・方、前記実施例における二つの加速度検出器12.
13の代りに二つの剛体6,7間の相対変位(X、、−
X2)を検出する変位検出器16を用いることもできる
。第4図は、このときの構成図を、また第5図は制御部
を示す。
- On the other hand, the two acceleration detectors 12 in the above embodiment.
13, the relative displacement between the two rigid bodies 6 and 7 (X, , -
It is also possible to use a displacement detector 16 that detects X2). FIG. 4 shows a configuration diagram at this time, and FIG. 5 shows a control section.

この制御部は、変位検出器16の出力Vuを電圧−変位
換算係数ka倍し、その出力電圧を直接に加算器25に
入力する以外は、vci、VO2に関する信号処理経路
を除いた第2図と全く同じである。
This control unit multiplies the output Vu of the displacement detector 16 by a voltage-displacement conversion coefficient ka and inputs the output voltage directly to the adder 25. is exactly the same.

このようにして、二つの加速度検出器の代りに、変位検
出器を用いることによって、加速度検出器を用いた場合
と同じ圧電アクチュエータへの制御信号を得ることがで
き、アクティブ制御が可能とする。
In this way, by using a displacement detector instead of two acceleration detectors, it is possible to obtain the same control signal to the piezoelectric actuator as when using an acceleration detector, making active control possible.

なお、二つの剛体6,7の質量M工2M2を等しく選ぶ
ことにより制御系がかなり簡単になる。また、前記圧電
アクチュエータは、これを他のアクチュエータ、例えば
動電形アクチュエータとすることもできる。さらに、振
動系の減衰を考慮する場合には式(3)でkA→kA+
cAs、kA−)kへ十a)ys、に→k + cr3
sと置きかえて得られる式を用いればよい。ここでCA
+ c3.Qは、防振ゴム8.9の減衰係数ならびに、
圧電アクチュエータ4と荷重検出器5の減衰係数を合わ
せたものである。
Note that by selecting the masses M2M2 of the two rigid bodies 6 and 7 to be equal, the control system can be considerably simplified. Moreover, the piezoelectric actuator can also be used as another actuator, for example, an electrodynamic actuator. Furthermore, when considering the damping of the vibration system, kA→kA+ is expressed in equation (3).
cAs, kA-) to k 10 a) ys, to → k + cr3
An expression obtained by replacing s may be used. Here CA
+c3. Q is the damping coefficient of the anti-vibration rubber 8.9 and
This is the combination of the damping coefficients of the piezoelectric actuator 4 and the load detector 5.

〔発明の効果〕〔Effect of the invention〕

」−述のとおり、本発明によれば、二つの振動構進体を
連結する防振装置に圧電アクチュエータが組み込まれ、
この圧電アクチュエータを該装置の両端に取付けら九た
剛体の振幅および周波数に応じて伸縮させて制振するよ
うにしたので、個々に外部から加振力を受は振動してい
る二つの振動構造体を連結しながら、該装置を通して伝
播する交番力を抑制することができる。また、その際、
二つの剛体の質量をほぼ等しく選定することにより、制
御系をかなり簡単なものとすることができる。
- As mentioned above, according to the present invention, a piezoelectric actuator is incorporated in a vibration isolator that connects two vibrating structures,
This piezoelectric actuator is attached to both ends of the device and expands and contracts according to the amplitude and frequency of the nine rigid bodies to suppress vibration, so that two vibrating structures each receiving an external excitation force can be used. Alternating forces propagating through the device can be suppressed while connecting the bodies. Also, at that time,
By choosing the masses of the two rigid bodies to be approximately equal, the control system can be made considerably simpler.

また、二つの振動構造体を連結しながら、連結装置を通
して伝播される交番力を抑制して、二つの構造体を振動
的に分離するように制御することができるので、種々の
振動構造体の連結において精度の高い振動絶縁が可能と
なる。
In addition, while connecting two vibrating structures, it is possible to suppress the alternating force propagated through the coupling device and control the two structures to vibrationally separate them. Highly accurate vibration isolation is possible in connection.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係るアクティブ振動絶縁方法の実施例
を説明するための振動絶縁制御構成図、第2図はその制
御部のブロック図、第3図は検出信号の波形図、第4図
は本発明に係るアクティブ振動絶縁方法の他の実施例を
説明するための振動絶縁構成図、第5図はその制御部の
ブロック図、第6図は従来の一質点系のアクティブ防振
支持制御方法を説明するための防振支持制御構成図、第
7図はその演算部のブロック図である。 1.2・・・振動構造体、3・・・振動絶縁装置、4・
・・圧電アクチュエータ、5・・・荷重検出器、6.7
・・・剛体、1.2.13・・・加速度検出器、16・
・・変位検出器。
Fig. 1 is a vibration isolation control configuration diagram for explaining an embodiment of the active vibration isolation method according to the present invention, Fig. 2 is a block diagram of its control section, Fig. 3 is a waveform diagram of a detection signal, and Fig. 4 is a vibration isolation configuration diagram for explaining another embodiment of the active vibration isolation method according to the present invention, FIG. 5 is a block diagram of its control section, and FIG. 6 is a conventional single mass point system active vibration isolation support control. FIG. 7 is a block diagram of the vibration isolation support control configuration for explaining the method, and is a block diagram of the calculation section. 1.2... Vibration structure, 3... Vibration isolator, 4.
...Piezoelectric actuator, 5...Load detector, 6.7
... Rigid body, 1.2.13 ... Acceleration detector, 16.
...Displacement detector.

Claims (2)

【特許請求の範囲】[Claims] (1)二つの振動構造体を、直列配置された圧電アクチ
ュエータおよび荷重検出器と、その両端に取り付けられ
た二つの剛体を有する結合装置により連結すると共に、
前記装置の各剛体にとりつけられた加速度検出器の出力
信号または、両剛体間の相対変位を検出する変位検出器
の出力信号と、前記荷重検出器の出力信号とから該装置
の両端に作用する交番力を測定し、該測定値に基づいて
圧電アクチュエータの伸び量を演算し、該伸び量を電圧
に変換した後、前記圧電アクチュエータに印加すること
を特徴とするアクティブ振動絶縁方法。
(1) Two vibrating structures are connected by a coupling device having a piezoelectric actuator and a load detector arranged in series, and two rigid bodies attached to both ends, and
Acting on both ends of the device from the output signal of an acceleration detector attached to each rigid body of the device, or the output signal of a displacement detector that detects relative displacement between both rigid bodies, and the output signal of the load detector. An active vibration isolation method comprising: measuring an alternating force, calculating the amount of elongation of a piezoelectric actuator based on the measured value, converting the amount of elongation into a voltage, and then applying the voltage to the piezoelectric actuator.
(2)各剛体をほぼ等しい質量の剛体とした特許請求の
範囲第1項記載のアクティブ振動絶縁方法。
(2) The active vibration isolation method according to claim 1, wherein each rigid body has approximately the same mass.
JP19664486A 1986-08-22 1986-08-22 Active vibration insulating method Pending JPS6353617A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19664486A JPS6353617A (en) 1986-08-22 1986-08-22 Active vibration insulating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19664486A JPS6353617A (en) 1986-08-22 1986-08-22 Active vibration insulating method

Publications (1)

Publication Number Publication Date
JPS6353617A true JPS6353617A (en) 1988-03-07

Family

ID=16361201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19664486A Pending JPS6353617A (en) 1986-08-22 1986-08-22 Active vibration insulating method

Country Status (1)

Country Link
JP (1) JPS6353617A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01171721A (en) * 1987-12-25 1989-07-06 Taihei Kogyo Co Ltd Knife replacing bogie for slitter
DE4007443A1 (en) * 1989-03-16 1991-09-12 Topexpress Ltd ACTIVE VIBRATION CONTROL
DE4110601A1 (en) * 1990-04-03 1991-10-10 Toyo Tire & Rubber Co Vibration isolating unit for vehicle engine - uses intermediate piezoelectric washer(s) for one or two fixings
US5738343A (en) * 1990-04-03 1998-04-14 Toyo Tire & Rubber Co., Ltd. Vibration isolating apparatus
US5927699A (en) * 1990-05-18 1999-07-27 Toyo Tire & Rubber Co., Ltd. Damping apparatus
EP0964181A3 (en) * 1998-06-13 2002-11-20 DaimlerChrysler AG Method and device to influence vibrations resulting from an engine-driven vehicle
DE102004025725A1 (en) * 2004-05-26 2005-12-29 Fujitsu Siemens Computers Gmbh Fixing system with integrated actuator comprises at least two fixing elements connected by a movable connection containing an actuator that converts changes in physical and/or properties into electrical signals
FR2967742A1 (en) * 2010-11-23 2012-05-25 Astrium Sas VIBRATION INSULATION DEVICE

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01171721A (en) * 1987-12-25 1989-07-06 Taihei Kogyo Co Ltd Knife replacing bogie for slitter
DE4007443A1 (en) * 1989-03-16 1991-09-12 Topexpress Ltd ACTIVE VIBRATION CONTROL
DE4110601C2 (en) * 1990-04-03 2000-01-20 Toyo Tire & Rubber Co Vibration isolation system
DE4110601A1 (en) * 1990-04-03 1991-10-10 Toyo Tire & Rubber Co Vibration isolating unit for vehicle engine - uses intermediate piezoelectric washer(s) for one or two fixings
US5738343A (en) * 1990-04-03 1998-04-14 Toyo Tire & Rubber Co., Ltd. Vibration isolating apparatus
DE4116270C2 (en) * 1990-05-18 2002-01-17 Toyo Tire & Rubber Co attenuator
US5927699A (en) * 1990-05-18 1999-07-27 Toyo Tire & Rubber Co., Ltd. Damping apparatus
EP0964181A3 (en) * 1998-06-13 2002-11-20 DaimlerChrysler AG Method and device to influence vibrations resulting from an engine-driven vehicle
DE102004025725A1 (en) * 2004-05-26 2005-12-29 Fujitsu Siemens Computers Gmbh Fixing system with integrated actuator comprises at least two fixing elements connected by a movable connection containing an actuator that converts changes in physical and/or properties into electrical signals
DE102004025725B4 (en) * 2004-05-26 2007-10-18 Fujitsu Siemens Computers Gmbh Computer case fixing system
FR2967742A1 (en) * 2010-11-23 2012-05-25 Astrium Sas VIBRATION INSULATION DEVICE
WO2012069487A3 (en) * 2010-11-23 2013-06-27 Astrium Sas Vibration isolating device
US9234561B2 (en) 2010-11-23 2016-01-12 Airbus Defence And Space Sas Vibration isolating device

Similar Documents

Publication Publication Date Title
KR950033751A (en) Active Vibration Separation System
JP6011725B2 (en) Improved resonator
JP5408961B2 (en) Angular velocity sensor
JPS63293342A (en) Vibration absorber
Beijen et al. Two-sensor control in active vibration isolation using hard mounts
JPS6353617A (en) Active vibration insulating method
JPS6392851A (en) Active vibration isolator
JPS63180401A (en) Cutting tool having active vibration isolating function
Zu et al. A novel mode-localized accelerometer employing a tunable annular coupler
US9611139B2 (en) Resonator
Schofield et al. Effects of operational frequency scaling in multi-degree of freedom MEMS gyroscopes
JP3618235B2 (en) Vibration test equipment
JPH04235598A (en) Method of separating and controlling interacting signal and noise offset device
JP3798033B2 (en) Vibration control method and apparatus
RU2301970C1 (en) Micro-mechanical vibration gyroscope
JPS63261300A (en) Active vibration insulation
JPS6392852A (en) Active vibration isolating method
Wang et al. A Mems Accelerometer with an auto-tuning system based on an electrostatic anti-spring
JP4631240B2 (en) Physical quantity sensor
JPS63106019A (en) Active vibrationproof control method
Alshehri et al. Two-mass MEMS velocity sensor: Internal feedback loop design
JPS6288015A (en) Active vibration isolation control method
JP3823397B2 (en) Active vibration control method
JP2864038B2 (en) Microvibration test method and device
JP6075252B2 (en) Active vibration isolator