JPS6353416B2 - - Google Patents

Info

Publication number
JPS6353416B2
JPS6353416B2 JP57193334A JP19333482A JPS6353416B2 JP S6353416 B2 JPS6353416 B2 JP S6353416B2 JP 57193334 A JP57193334 A JP 57193334A JP 19333482 A JP19333482 A JP 19333482A JP S6353416 B2 JPS6353416 B2 JP S6353416B2
Authority
JP
Japan
Prior art keywords
groove
seal ring
airtight
airtight seal
inner diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57193334A
Other languages
Japanese (ja)
Other versions
JPS5983871A (en
Inventor
Yoshihiko Yamazaki
Yoshihiro Ejiri
Kahei Yoshizawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KDDI Corp
Original Assignee
Kokusai Denshin Denwa KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusai Denshin Denwa KK filed Critical Kokusai Denshin Denwa KK
Priority to JP19333482A priority Critical patent/JPS5983871A/en
Publication of JPS5983871A publication Critical patent/JPS5983871A/en
Publication of JPS6353416B2 publication Critical patent/JPS6353416B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/02Sealings between relatively-stationary surfaces
    • F16J15/021Sealings between relatively-stationary surfaces with elastic packing
    • F16J15/022Sealings between relatively-stationary surfaces with elastic packing characterised by structure or material
    • F16J15/024Sealings between relatively-stationary surfaces with elastic packing characterised by structure or material the packing being locally weakened in order to increase elasticity
    • F16J15/025Sealings between relatively-stationary surfaces with elastic packing characterised by structure or material the packing being locally weakened in order to increase elasticity and with at least one flexible lip

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、気密容器本体とこの気密容器本体に
締結される蓋板とのシール面に介装される高圧気
密用シールリングを具えたシール構造に関し、特
に光海底ケーブルと光海底中継器との接続部に組
み込んで好適なものである。 近年、光フアイバを伝送媒体とする光伝送方式
の実用化が進められているが、これを海底伝送方
式に適用したのが光海底伝送方式であり、従来の
海底同軸伝送方式に較べて中継区内を長距離化で
きることを大きな特徴としている。ところが、大
洋横断等の長距離光海底伝送システムを実現する
ためには、数十台〜数百台もの光海底中継器を各
ケーブル区間毎に装着しなければならない。従つ
て、ケーブル敷設船上での光海底ケーブルと光海
底中継器との接続作業が不可欠となつてくる。一
方、光フアイバは石英(二酸化硅素)が主成分で
あるために機械的に脆く、水分が多く存在する環
境下ではその機械的強度が劣化してしまう性質を
具えている。従つて、光フアイバを海底ケーブル
化する場合には、光ケーブルを水圧から保護する
と共に水分の侵入を未然に防止しなければならな
いが、これは光海底中継器やこれらの接続部分に
も該当する。 このような観点から第1図に示すような光海底
ケーブル用の接続装置が開発されたが、これは図
示しない中継器を収納した中継器筐体11と光ケ
ーブル12の接続端末を保護する引留器13とを
保護スリーブ14を介して連結し、光中継器から
の光フアイバ15と光ケーブル12の光フアイバ
16とを中継器筐体11の端板17に取り付けら
れたジヨイントチヤンバ18内で接続するように
したものである。従つて、光フアイバ15,16
はチヤンバ本体19とチヤンバカバー20とで形
成されたジヨイントチヤンバ18内において剥き
出しとなつているため、この光フアイバ接続部の
信頼性を確保するためには、特にジヨイントチヤ
ンバ18内を乾燥状態の気密に保持する必要があ
る。又、船上作業となることを考慮すると可能な
限りこれらの構造を簡略化することが望ましい。 ところで、ジヨイントチヤンバ18の気密構造
を達成する場合、チヤンバ本体19と端板17及
びチヤンバカバー20とを溶接するか或いはこれ
らの間にそれぞれ金属製のシールリングを介装す
る方法が考えられる。しかし、溶接は船上での作
業性が悪くて採用することはできず、シールリン
グによつて気密を保持すると共にチヤンバ本体1
9と端板17及びチヤンバカバー20とをボルト
等によつて一体的に締結しなければならない。メ
タルガスケツトを用いた場合にはこれを完全に塑
性変形させるまでボルト等を締め付ける必要があ
り、このため相当大形の締結金具を用いなければ
ならず、ジヨイントチヤンバ18内の容積が減少
して光フアイバ15,16の接続部の収納作業性
が悪化すると共に光フアイバ15,16の屈曲部
分の曲率半径も小さくなつて信頼性が低下する。
又、メタルOリングを用いた場合にはメタルガス
ケツト程の締め付け力は不要となるが、ジヨイン
トチヤンバ18に要求される800気圧程度の耐圧
力に対応した気密性を得るためには少なくともリ
ング外周一センチメートル当り300キログラム程
度の緊縮力が必要である。例えば、直径が160ミ
リメートル位のジヨイントチヤンバ18の場合に
はM6のボルトが9本から12本も必要であり、そ
の組立て作業性が非常に悪くなつてしまう。 一般に、光海底ケーブルの接続時にはケーブル
敷設船を海上の一定位置に長時間停留させる必要
があるが、天候や海洋状態を考慮するならば船上
作業時間を極力短縮しなければならない。本発明
はこのような観点から上述したジヨイントチヤン
バのような気密容器の気密シールを迅速且つ容易
に行い得るシール構造を提供することを目的とす
る。 この目的を達成する本発明のシール構造にかか
る構成は、筒状をなす気密容器本体とこの気密容
器本体に締結される蓋板とのシール面の少なくと
も一方に環状の溝を形成し、この溝内に金属製の
環状をなす気密シールリングを装着したシール構
造であつて、前記気密シールリングは断面形状が
半円弧状に湾曲して凹んだ側が前記気密容器本体
の内部か或いは外部の高圧側を向くと共に屈曲部
が前記溝の周壁に圧接して前記溝の底面とこれと
対向する前記シール面とに押し付けられ、前記気
密シールリングの高さHに対する前記溝の高さh
の割合h/Hを0.06以上1未満に設定すると共に前 記溝の内径dに対する前記気密シールリングの内
径Dと前記溝の内径dとの〓間の割合D−d/2dを 0.0055以下に設定することにより、前記気密シー
ルリングを弾性変形させると共にその一部を塑性
変形させるようにしたことを特徴とするものであ
る。 つまり、本発明のシール構造に組込まれる高圧
気密用シールリングの断面構造を表す第2図及び
これを気密容器に装着した状態を表す第3図に示
すように、気密シールリング1は断面形状が半円
弧状に湾曲した金属製の環状をなし、気密容器本
体2に締結される蓋板3のシール面4に形成した
環状の溝5内に装着されるが、凹んだ側1aが気
密容器本体2の内部よりも高圧な外部側を向くよ
うに設計されている。気密容器本体2と蓋板3と
の締結により気密シールリング1は弾性変形する
と共にその一部が塑性変形して気密容器本体2の
シール面6と溝5の底面とに強力に密着状態で押
し付けられ、シール面4,6の気密シールを行な
う。なお、図示した例では気密容器本体2の内部
よりも外部の方が高圧としたが、逆に気密容器本
体2の内部の方が高圧の場合には、気密シールリ
ング1の凹んだ側1aが第2図に示したような外
周側ではなく逆に内周側となるような気密シール
リングを用いる必要がある。又、溝5は気密容器
本体2のシール面6に設けたり或いは両方のシー
ル面4,6に設けることも可能である。更に、気
密シールリング1は第2図に示すように肉厚が均
等である必要はなく、第2図の状態において最外
周端部ほど肉厚が薄くなるようにしてシール面
4,6や溝5の底面との密着性を向上させるよう
にしてもよい。溝5の高さh及び内径(凹んだ側
1aの向きが逆の場合には外径)dを設定する場
合、気密シールリング1の高さH及び内径(凹ん
だ側1aの向きが逆の場合には外径)Dに基づい
て適宜選定すれば良いが、重要な点は気密容器本
体2に蓋板3を締結して気密シールリング1を弾
性変形させると共にその一部を塑性変形させた場
合、気密シールリング1の屈曲部1bが多少の塑
性変形を伴つた弾性変形により溝5の内周壁に押
し当るように溝5の内径dを設定することであ
る。つまり、こうすることによつて屈曲部1bが
溝5の内周壁からの反力を受けて押し拡げられ、
この反力で気密シールリング1の高さが大きくな
るように気密シールリング1が更に強力に溝5の
底面及びシール面6に押し付けられて気密性の向
上に寄与するからである。 次に、このシール構造を光海底ケーブルと光海
底中継器との接続部を収納するジヨイントチヤン
バに応用した一実施例についてこのジヨイントチ
ヤンバの部分を拡大した第4図を参照しながら詳
細に説明する。相互に緊密に嵌合し且つ図示しな
いボルト等により一体的に連結されるチヤンバ本
体19と端板17及びチヤンバカバー20とのシ
ール部21には、ゴム製等のOリング22がそれ
ぞれ装着され、外部から侵入して来る海水等の液
体を封止するようになつている。又、Oリング2
2よりもジヨイントチヤンバ18内側のシール部
21にはそれぞれ第1図で示した気密シールリン
グ1が装着されており、Oリング22を通つてジ
ヨイントチヤンバ18内側へ侵入して来る外気等
を封止するようになつている。 ここで、先に述べた気密シールリング1と溝5
との具体的な寸法関係について、実験結果に基づ
き800気圧まで漏洩しないという条件で説明する。
別表は気密シールリング1及び溝5の寸法、気密
容器本体2と蓋板3との締結の際の緊縮力、外気
(ヘリウム)圧、外気侵入(漏洩)量との関係を
表わす。又、溝5の内径dに対する無負荷状態で
の気密シールリング1の内径Dと溝5の内径dと
の隙間(D−d/2)の百分率を横軸、無負荷状態 での気密シールリング1の高さHに対する溝5の
高さhの割合(h/H)を縦軸とし、これに別表の データをプロツトしたのが第5図であり、丸印で
囲まれた点が漏洩したものを示す。ところで、気
密シールリング1の屈曲部1bが組み立て状態に
おいて溝5の内周壁に当接する領域は内径Dが
71.6ミリメートルの気密シールリング1において
第5図中、実線よりも下側の部分であり、内径D
が86.7ミリメートルの気密シールリング1におい
て第5
The present invention relates to a seal structure including a high-pressure airtight seal ring interposed between the sealing surface of an airtight container body and a lid plate fastened to the airtight container body, and in particular, the present invention relates to a seal structure including a high-pressure airtight seal ring interposed between a sealing surface of an airtight container body and a lid plate fastened to the airtight container body, and in particular, the present invention relates to a seal structure equipped with a high-pressure airtight seal ring interposed between a sealing surface of an airtight container body and a lid plate fastened to the airtight container body, and in particular, between an optical submarine cable and an optical submarine repeater. It is suitable for being incorporated into a connecting part. In recent years, the practical application of optical transmission systems that use optical fiber as a transmission medium has been progressing, but the optical submarine transmission system is an application of this to submarine transmission systems, and compared to conventional submarine coaxial transmission systems, the relay area is A major feature is that it can be used over long distances. However, in order to realize a long-distance optical submarine transmission system such as across oceans, tens to hundreds of optical submarine repeaters must be installed in each cable section. Therefore, it becomes essential to connect the optical submarine cable and the optical submarine repeater on board the cable-laying ship. On the other hand, optical fibers are mechanically brittle because their main component is quartz (silicon dioxide), and their mechanical strength deteriorates in environments with a large amount of moisture. Therefore, when converting optical fiber into a submarine cable, it is necessary to protect the optical cable from water pressure and prevent moisture from entering, and this also applies to optical submarine repeaters and their connecting parts. From this point of view, a connecting device for optical submarine cables as shown in FIG. 13 via a protective sleeve 14, and the optical fiber 15 from the optical repeater and the optical fiber 16 of the optical cable 12 are connected within a joint chamber 18 attached to the end plate 17 of the repeater housing 11. This is how it was done. Therefore, the optical fibers 15, 16
is exposed inside the joint chamber 18 formed by the chamber body 19 and the chamber cover 20, so in order to ensure the reliability of this optical fiber connection, the inside of the joint chamber 18 must be kept in a dry state. Must be kept airtight. Also, considering that the work will be carried out on a ship, it is desirable to simplify these structures as much as possible. By the way, in order to achieve an airtight structure for the joint chamber 18, it is possible to weld the chamber body 19, end plate 17, and chamber cover 20, or to interpose a metal seal ring between them. However, welding cannot be used because it is difficult to work on a ship, so a seal ring is used to maintain airtightness and the chamber body
9, the end plate 17, and the chamber cover 20 must be integrally fastened with bolts or the like. When a metal gasket is used, it is necessary to tighten bolts, etc. until the metal gasket is completely plastically deformed, which necessitates the use of fairly large fastening fittings, which reduces the volume inside the joint chamber 18. This deteriorates the workability of storing the connecting portions of the optical fibers 15 and 16, and also reduces the radius of curvature of the bent portions of the optical fibers 15 and 16, resulting in a decrease in reliability.
Also, when using a metal O-ring, the tightening force as much as a metal gasket is not required, but in order to obtain airtightness that corresponds to the pressure resistance of approximately 800 atmospheres required for the joint chamber 18, at least the ring A tightening force of approximately 300 kilograms per centimeter of outer circumference is required. For example, in the case of a joint chamber 18 with a diameter of about 160 mm, 9 to 12 M6 bolts are required, resulting in extremely poor assembly workability. Generally, when connecting optical submarine cables, it is necessary for a cable-laying ship to remain at a fixed location at sea for a long time, but if weather and ocean conditions are taken into consideration, the time required for onboard work must be shortened as much as possible. From this point of view, it is an object of the present invention to provide a sealing structure that can quickly and easily airtightly seal an airtight container such as the above-mentioned joint chamber. The structure of the seal structure of the present invention that achieves this object is such that an annular groove is formed in at least one of the sealing surfaces of a cylindrical airtight container body and a lid plate fastened to this airtight container body. It has a seal structure in which a metal annular airtight seal ring is installed inside, and the airtight seal ring has a semicircular cross-sectional shape and a concave side is located inside the airtight container body or on the outside high pressure side. The bent portion is pressed against the circumferential wall of the groove and pressed against the bottom surface of the groove and the sealing surface opposite thereto, so that the height h of the groove relative to the height H of the airtight seal ring is
The ratio h/H is set to 0.06 or more and less than 1, and the ratio D-d/2d between the inner diameter D of the airtight seal ring and the inner diameter d of the groove to the inner diameter d of the groove is set to 0.0055 or less. Accordingly, the airtight seal ring is elastically deformed and a portion thereof is plastically deformed. That is, as shown in FIG. 2 showing the cross-sectional structure of the high-pressure airtight seal ring incorporated in the seal structure of the present invention and FIG. 3 showing the state in which it is attached to an airtight container, the airtight seal ring 1 has a It has a metal annular shape curved in a semicircular arc shape, and is installed in an annular groove 5 formed in the sealing surface 4 of the lid plate 3 that is fastened to the airtight container body 2, with the recessed side 1a being the same as the airtight container body. It is designed to face the outside where the pressure is higher than the inside of 2. When the airtight container main body 2 and the lid plate 3 are fastened together, the airtight seal ring 1 is elastically deformed, and a part of it is also plastically deformed and pressed tightly against the sealing surface 6 of the airtight container main body 2 and the bottom surface of the groove 5. The seal surfaces 4 and 6 are hermetically sealed. In the illustrated example, the pressure outside the airtight container body 2 is higher than the inside, but if the pressure inside the airtight container body 2 is higher, the recessed side 1a of the airtight seal ring 1 It is necessary to use an airtight seal ring that is not on the outer circumferential side as shown in FIG. 2, but on the inner circumferential side. Further, the groove 5 can be provided on the sealing surface 6 of the airtight container body 2 or on both the sealing surfaces 4 and 6. Furthermore, the airtight seal ring 1 does not need to have a uniform wall thickness as shown in FIG. 2, and in the state shown in FIG. The adhesiveness with the bottom surface of 5 may be improved. When setting the height h and inner diameter (outer diameter when the direction of the recessed side 1a is reversed) d of the groove 5, the height H and inner diameter (when the direction of the recessed side 1a is reversed) of the airtight seal ring 1 is set. (outer diameter) D, but the important point is that the lid plate 3 is fastened to the airtight container body 2 to elastically deform the airtight seal ring 1 and to plastically deform a part of it. In this case, the inner diameter d of the groove 5 is set so that the bent portion 1b of the airtight seal ring 1 presses against the inner circumferential wall of the groove 5 through elastic deformation accompanied by some plastic deformation. In other words, by doing this, the bent portion 1b is pushed and expanded by the reaction force from the inner circumferential wall of the groove 5,
This is because this reaction force presses the airtight seal ring 1 even more strongly against the bottom surface of the groove 5 and the sealing surface 6 so that the height of the airtight seal ring 1 increases, contributing to improved airtightness. Next, an example in which this seal structure is applied to a joint chamber that accommodates the connection between an optical submarine cable and an optical submarine repeater will be described in detail with reference to FIG. 4, which shows an enlarged view of the joint chamber. explain. O-rings 22 made of rubber or the like are attached to the sealing portions 21 of the chamber body 19, the end plate 17, and the chamber cover 20, which are tightly fitted to each other and integrally connected by bolts or the like (not shown). It is designed to seal out liquids such as seawater that enter from the inside. Also, O-ring 2
The airtight seal ring 1 shown in FIG. It's supposed to be sealed. Here, the airtight seal ring 1 and the groove 5 mentioned earlier are
We will explain the specific dimensional relationship between the two, based on experimental results, under the condition that there will be no leakage up to 800 atmospheres.
The attached table shows the relationship between the dimensions of the airtight seal ring 1 and the groove 5, the tightening force when fastening the airtight container body 2 and the lid plate 3, the outside air (helium) pressure, and the amount of outside air intrusion (leakage). Also, the horizontal axis represents the percentage of the gap (D-d/2) between the inner diameter D of the airtight seal ring 1 in the no-load state and the inner diameter d of the groove 5 with respect to the inner diameter d of the groove 5, and the airtight seal ring in the no-load state. The vertical axis is the ratio (h/H) of the height h of the groove 5 to the height H of the groove 1, and the data in the attached table is plotted on this in Figure 5, and the points surrounded by circles indicate leakage. show something By the way, the area where the bent portion 1b of the airtight seal ring 1 comes into contact with the inner circumferential wall of the groove 5 in the assembled state has an inner diameter D.
This is the part below the solid line in Fig. 5 for the 71.6 mm airtight seal ring 1, and the inner diameter D
is the fifth in the 86.7 mm hermetic seal ring 1.

【表】【table】

【表】 図中、破線よりも下側の部分であり、内径Dが
102.1ミリメートルの気密シールリング1におい
て第5図中、一点鎖線よりも下側の部分である。
又、塑性限界の点で気密シールリング1の高さH
に対する溝5の高さhの割合(h/H)をむやみに 小さくすることはできない。この値は気密シール
リング1の材質や肉厚或いは大きさ等によつて変
化するが、概ね0.66以上とすることが安全上望ま
しい。なお、h/Hが0.06以上であることから、溝 5の内径dに対する気密シールリング1の内径D
と溝5の内径dとの〓間の割合(D−d/2d)の百 分率は最大でも0.55%程度となる。従つて、第5
図中、斜線で囲まれた領域に溝5の高さh及び内
径dを設定すれば、800気圧の差の気密性を確保
し得る。なお、緊縮力は別表からも明らかなよう
に気密シールリング1の肉厚によつても変化する
が、内径Dが大きい程剛性が低下して来るために
小さくて済む。ジヨイントチヤンバ18に使用す
る160ミリメートル程度のものではリング外周一
センチメートル当り100〜130キログラム位の緊縮
力で良く、この値はメタルOリングの三分の一程
度であるので、ボルト等の締結金具の小形化及び
減少が可能であり、組み立て作業性を著しく向上
させることができる。この結果、ジヨイントチヤ
ンバ18内の容積を増加させて光フアイバ接続部
の収容に余裕を持たせることができ、信頼性の向
上につながる。又本実施例では気密シールリング
1をチヤンバ本体19と端板17及びチヤンバカ
バー20との間のシール部21に装着したが、光
フイードスル23や給電線フイードスル24或い
は中継器筐体11(第1図参照)と端板17との
間の気密シールを行うことも可能であり、又、金
属製であることから高温雰囲気での使用も全く問
題ない。更に、メタルガスケツトのように全体を
完全に塑性変形させる使い方ではないので再使用
が可能であり、このことはすでに実験によつて確
認済みである。 このように本発明のシール構造によると、半円
弧状断面の気密シールリングの凹んだ側を高圧側
に向け、この気密シールリングの屈曲部が溝の周
壁に押し当る反力によつて溝の底面とシール面と
に強力に気密シールリングが押し付くようにした
ので、800気圧程度の圧力差での気密を確実に行
うことができ、しかも気密容器本体に対する蓋板
の緊縮力が少さくて済むため、締結金具を小形に
すると共に減少させることが可能であり、組み立
て作業の容易化及び迅速化を達成できる。
[Table] In the figure, this is the part below the broken line, and the inner diameter D is
This is the portion of the airtight seal ring 1 of 102.1 mm below the dashed line in FIG.
Also, the height H of the airtight seal ring 1 at the plastic limit point
The ratio (h/H) of the height h of the groove 5 to the height h of the groove 5 cannot be made unnecessarily small. Although this value varies depending on the material, wall thickness, size, etc. of the airtight seal ring 1, it is generally desirable for safety to set it to 0.66 or more. In addition, since h/H is 0.06 or more, the inner diameter D of the airtight seal ring 1 with respect to the inner diameter d of the groove 5
The percentage (D-d/2d) between the inner diameter d of the groove 5 and the inner diameter d of the groove 5 is about 0.55% at maximum. Therefore, the fifth
If the height h and inner diameter d of the groove 5 are set in the area surrounded by diagonal lines in the figure, airtightness with a difference of 800 atmospheres can be ensured. As is clear from the attached table, the tightening force also changes depending on the wall thickness of the airtight seal ring 1, but the larger the inner diameter D is, the lower the rigidity is, so it can be kept small. For a joint chamber 18 with a length of about 160 mm, a tightening force of about 100 to 130 kg per centimeter of ring circumference is sufficient, and this value is about one-third that of a metal O-ring, so it is difficult to tighten bolts, etc. It is possible to downsize and reduce the number of metal fittings, and it is possible to significantly improve assembly workability. As a result, the volume within the joint chamber 18 can be increased to provide room for accommodating the optical fiber connection portion, leading to improved reliability. Further, in this embodiment, the airtight seal ring 1 is attached to the seal portion 21 between the chamber body 19, the end plate 17, and the chamber cover 20. ) and the end plate 17, and since it is made of metal, there is no problem in using it in a high temperature atmosphere. Furthermore, unlike metal gaskets, the entire gasket is not completely plastically deformed, so it can be reused, and this has already been confirmed through experiments. As described above, according to the seal structure of the present invention, the recessed side of the airtight seal ring with a semicircular arc cross section is directed toward the high pressure side, and the reaction force of the bent portion of the airtight seal ring pressing against the peripheral wall of the groove causes the groove to open. Since the airtight seal ring presses strongly against the bottom and sealing surfaces, it is possible to ensure airtightness with a pressure difference of about 800 atmospheres, and the tightening force of the lid plate against the airtight container body is small. Therefore, it is possible to downsize and reduce the number of fasteners, and the assembly work can be made easier and faster.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の光海底ケーブルと光海底中継器
との接続部の概略構造を表す断面図、第2図は本
発明による高圧気密シールリングの一実施例の形
状を表す断面図、第3図はこれを組み込んだ気密
容器のシール部の断面図、第4図は本発明を光海
底ケーブルと光海底中継器との接続部のジヨイン
トチヤンバに応用した一実施例の断面図、第5図
は800気圧に耐え得る溝の寸法の設計許容領域を
表すグラフであり、図中の符号で、 1は気密シールリング、1aは凹んだ側、1b
は屈曲部、2は気密容器本体、3は蓋板、4,
6,21はシール面、5は溝、17は端板、18
はジヨイントチヤンバ、19はチヤンバ本体、2
0はチヤンバカバー、Dは屈曲部の径、Hは気密
シールリングの高さ、dは屈曲部が圧接する溝の
周壁の径、hは溝の高さである。
FIG. 1 is a cross-sectional view showing a schematic structure of a connection between a conventional optical submarine cable and an optical submarine repeater, FIG. 2 is a cross-sectional view showing the shape of an embodiment of a high-pressure airtight seal ring according to the present invention, and FIG. The figure is a sectional view of the sealing part of an airtight container incorporating this, FIG. The figure is a graph showing the design allowable range of groove dimensions that can withstand 800 atmospheres.The symbols in the figure are: 1 is the airtight seal ring, 1a is the recessed side, 1b
is a bent part, 2 is an airtight container body, 3 is a lid plate, 4,
6 and 21 are sealing surfaces, 5 is a groove, 17 is an end plate, 18
is the joint chamber, 19 is the chamber body, 2
0 is the chamber cover, D is the diameter of the bent portion, H is the height of the airtight seal ring, d is the diameter of the peripheral wall of the groove with which the bent portion is pressed, and h is the height of the groove.

Claims (1)

【特許請求の範囲】 1 筒状をなす気密容器本体とこの気密容器本体
に締結される蓋板とのシール面の少なくとも一方
に環状の溝を形成し、この溝内に金属製の環状を
なす気密シールリングを装着したシール構造であ
つて、前記気密シールリングは断面形状が半円弧
状に湾曲して凹んだ側が前記気密容器本体の内部
か或いは外部の高圧側を向くと共に屈曲部が前記
溝の周壁に圧接して前記溝の底面とこれと対向す
る前記シール面とに押し付けられ、前記気密シー
ルリングの高さHに対する前記溝の高さhの割合
h/Hを0.06以上1未満に設定すると共に前記溝の 内径dに対する前記気密シールリングの内径Dと
前記溝の内径dとの〓間の割合D−d/2dを0.0055 以下に設定することにより、前記気密シールリン
グを弾性変形させると共にその一部を塑性変形さ
せるようにしたことを特徴とするシール構造。
[Claims] 1. An annular groove is formed in at least one of the sealing surfaces of a cylindrical airtight container body and a lid plate fastened to the airtight container body, and a metal annular groove is formed in this groove. The seal structure is equipped with an airtight seal ring, and the airtight seal ring has a cross-sectional shape curved in a semicircular arc shape, with the concave side facing the inside of the airtight container main body or the high pressure side outside, and the bent part facing the groove. The groove is pressed against the bottom surface of the groove and the sealing surface opposite thereto, and the ratio h/H of the height h of the groove to the height H of the airtight seal ring is set to 0.06 or more and less than 1. At the same time, by setting the ratio D-d/2d between the inner diameter D of the airtight seal ring and the inner diameter d of the groove to the inner diameter d of the groove to be 0.0055 or less, the airtight seal ring is elastically deformed and A seal structure characterized in that a part of the seal is plastically deformed.
JP19333482A 1982-11-05 1982-11-05 High-pressure type air-tight seal-ring Granted JPS5983871A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19333482A JPS5983871A (en) 1982-11-05 1982-11-05 High-pressure type air-tight seal-ring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19333482A JPS5983871A (en) 1982-11-05 1982-11-05 High-pressure type air-tight seal-ring

Publications (2)

Publication Number Publication Date
JPS5983871A JPS5983871A (en) 1984-05-15
JPS6353416B2 true JPS6353416B2 (en) 1988-10-24

Family

ID=16306160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19333482A Granted JPS5983871A (en) 1982-11-05 1982-11-05 High-pressure type air-tight seal-ring

Country Status (1)

Country Link
JP (1) JPS5983871A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7098907B2 (en) * 2017-10-17 2022-07-12 株式会社アドヴィックス Vehicle braking control device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS511378U (en) * 1974-06-15 1976-01-07

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS511378U (en) * 1974-06-15 1976-01-07

Also Published As

Publication number Publication date
JPS5983871A (en) 1984-05-15

Similar Documents

Publication Publication Date Title
US4801158A (en) Pipe joint
EP0865109A2 (en) Seal assembly for overmolded metal structure
US20070292097A1 (en) Feedthrough of Submarine Repeater and Submarine Repeater
EP1096183A2 (en) Seal assemblies
JPS6353416B2 (en)
JP2003156155A (en) Seal ring, composite material tank and seal structure of flange coupling for piping or the like
EP0201288A1 (en) High pressure hose fitting
US4790570A (en) Electrically insulated joint for metal pipes
US7090258B2 (en) Sealing socket and method for arranging a sealing socket to a tube
US4749215A (en) Conduit split case expansion coupling
JPH0321169Y2 (en)
US3975579A (en) Conical face-seal for an electrical feedthrough
JP2007198601A (en) Conversion joint and its manufacture
JP2000179750A (en) Spiral tube fitting structure
JPH048665B2 (en)
JPH0614901Y2 (en) Connection structure of thin-walled stainless steel pipe and fitting
CN112350237B (en) Cable installation device and camera
US20220246332A1 (en) Electrical feedthrough
US5232376A (en) High-voltage connector assembly
JPS6153689B2 (en)
KR200184206Y1 (en) A reducer for flare steel piping
JPH0311168B2 (en)
SU1196587A1 (en) Flange joint seal
SU1231308A1 (en) Axis off-loaded high-pressure vessel
RU2014542C1 (en) Union-butt joint for pipe lines