JPS6353328A - Controller for behavior of flow of fluid - Google Patents

Controller for behavior of flow of fluid

Info

Publication number
JPS6353328A
JPS6353328A JP12852887A JP12852887A JPS6353328A JP S6353328 A JPS6353328 A JP S6353328A JP 12852887 A JP12852887 A JP 12852887A JP 12852887 A JP12852887 A JP 12852887A JP S6353328 A JPS6353328 A JP S6353328A
Authority
JP
Japan
Prior art keywords
fluid
section
flow cross
piston
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12852887A
Other languages
Japanese (ja)
Inventor
ミヒアエル・メツトナー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of JPS6353328A publication Critical patent/JPS6353328A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/44Means on or in the damper for manual or non-automatic adjustment; such means combined with temperature correction
    • F16F9/46Means on or in the damper for manual or non-automatic adjustment; such means combined with temperature correction allowing control from a distance, i.e. location of means for control input being remote from site of valves, e.g. on damper external wall
    • F16F9/466Throttling control, i.e. regulation of flow passage geometry
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2401/00Indexing codes relating to the type of sensors based on the principle of their operation
    • B60G2401/10Piezoelectric elements

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Vehicle Body Suspensions (AREA)
  • Fluid-Damping Devices (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、速度場に位置する流過横断面内の流体の流れ
のふるまいを制御する装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a device for controlling the behavior of a fluid flow in a flow cross section located in a velocity field.

である前述の形式の装置においては、流動体が使用され
ており、さらに、ピストンを通る負通部内に、あるいは
ピストンとダンパーのシリンダ壁との間の環状室内に、
あるいはダンパーの外側に、流動体の流れのふるまいを
制御する電気的な装置が設けられている。このことによ
って、ダンパーの減衰特性が変化されるようになってい
る。
In a device of the above-mentioned type, a fluid is used and furthermore, in the negative passage through the piston or in the annular chamber between the piston and the cylinder wall of the damper.
Alternatively, an electrical device is provided outside the damper to control the behavior of the fluid flow. This allows the damping characteristics of the damper to be changed.

発明が解決しようとする問題点 公知の装置には、はとんどの使用例において電気−流動
効果が少なく、かつ熱的に安定した流動体があまり存在
しないという欠点がある。
PROBLEM TO BE SOLVED BY THE INVENTION The known devices have the disadvantage that in most applications they have low electro-rheological effects and the presence of very few thermally stable fluids.

たとえばダンパー内で機械的なエネルギを分裂させよう
とすると、流動体が加熱されかつ機械的に弱くなる。外
部温度の変動も流動体を変化させる。電気的な出力損失
は温度によって指数的に増大し、かつこのことによって
さらに温度が上昇される。このことによって、電気的な
制御出力が著しく必要となる。
For example, attempting to split mechanical energy within a damper heats up the fluid and weakens it mechanically. Fluctuations in external temperature also change the fluid. Electrical power losses increase exponentially with temperature, and this further increases the temperature. This requires a significant electrical control output.

問題点を解決するだめの手段 前述の問題点を解決するために講じた本発明の手段は、
流過横断面において、規定された振幅の速度勾配として
流体の速度場に重ねられるような振動を生ぜしめる手段
を有していることである。
Means for solving the problems The means of the present invention taken to solve the above-mentioned problems are as follows:
In the flow cross-section, means are provided for generating vibrations which are superimposed on the velocity field of the fluid as a velocity gradient of defined amplitude.

発明の効果 本発明によって得られる利点は、温度変動が流動体の安
定性に影響を及ぼさず、かつ充分な効果を有する膨張す
る流動体が使用されうろことである。
Advantages of the Invention The advantage obtained by the invention is that temperature fluctuations do not affect the stability of the fluid and that an expanding fluid may be used with sufficient effectiveness.

実施例 詳しく示さない車両ばね懸架装置のダンパー1は、ダン
パーシリンダ2と、該シリンダ内に取付けられたピスト
ン3とを有している。ピストン3にはピストンロッド4
が固定されており、このピストンロッドの自由端部5は
ダンパーシリンダ2から突出している。ピストンロッド
自由端部5及びダンパーシリンダ2は、車両振動の際に
相対運動する車両部分に取付けられている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A damper 1 of a vehicle spring suspension, not shown in detail, has a damper cylinder 2 and a piston 3 mounted in the cylinder. Piston 3 has piston rod 4
is fixed, and the free end 5 of this piston rod projects from the damper cylinder 2. The free end of the piston rod 5 and the damper cylinder 2 are mounted on vehicle parts that move relative to each other during vehicle vibrations.

ダンパーシリンダ2内には2つの作業室6゜7が形成さ
れておシ、これらの作業室は、膨張する減衰流体を充て
んされていて、かつピストン3によって仕切られている
。膨張する減衰流体は、ピストン3の外壁と、シリンダ
2の内壁との間の流過横断面8によって変化される粘性
を有している。
Two working chambers 6 and 7 are formed in the damper cylinder 2 and are filled with an expanding damping fluid and separated by a piston 3. The expanding damping fluid has a viscosity that is varied by the flow cross section 8 between the outer wall of the piston 3 and the inner wall of the cylinder 2.

流過横断面8は、ピストン3がその中央部分において圧
電の面振動子13として構成されていることによって変
化可能である。このために、2つのぎストン一端部プレ
ート9.10が電極として構成されており、これらの電
極は、ピストンロッド4内に延びている導線11.12
を介して、外側に位置する交流−エネルヤ発生装置14
に接続されている。
The flow cross section 8 can be varied in that the piston 3 is configured as a piezoelectric surface oscillator 13 in its central part. For this purpose, two end plates 9 .
via an externally located alternating current-energetic generator 14
It is connected to the.

下方のピストン作業室7がガス−補償室15によって制
限されており、さらに、ピストン作業室7とガス−補償
室15との闇の仕切り個所に仕切りピストン16が設け
られている。
The lower piston working chamber 7 is bounded by a gas compensation chamber 15, and a partition piston 16 is also provided at the dark partition between the piston working chamber 7 and the gas compensation chamber 15.

業室了又は6内に流れる。この場合、流過横断面8が流
体力学的な抵抗を形成する。この抵抗は、面振動子13
によってピストン直径が変化し、かつこのことによって
小さな振幅のせん断勾配が生ぜしめられるので、変化さ
れる。さらに抵抗は、ピストン3がダンパーシリンダ2
内を運動することによって流過横断面8を流過する流体
、特にこの流体の速度に加えられ又は重ねられる。
The work room ends or flows within 6. In this case, the flow cross section 8 forms a hydrodynamic resistance. This resistance is the surface oscillator 13
is changed because the piston diameter changes and this creates a shear gradient of small amplitude. Furthermore, the resistance is that the piston 3 is in the damper cylinder 2
The velocity of the fluid, in particular of this fluid, flowing past the flow cross-section 8 is added to or superimposed by the movement within.

面振動子13によって変化される流過横断面8及びこの
ことによって生ぜしめられるせん断勾配を、音場又は超
音場によって制御することもできる。別の実施例におい
て、せん断勾配が、厚み振動子によってもトランスバー
ス振動(すなわち軸方向)として与えられることができ
る。
The flow cross section 8 changed by the surface transducer 13 and the shear gradient produced thereby can also be controlled by an acoustic field or an ultrasonic field. In another example, the shear gradient can be applied as a transverse vibration (ie, axially) by a thickness oscillator as well.

本発明によれば、流体の強い粘性変化の範囲で振幅、全
一せん断勾配に応じて生せしめられ、かつこのことによ
ってダンパー1の減衰特性が変化されることが重要であ
る。
According to the invention, it is important that the amplitude and total shear gradient be generated in the range of strong viscosity changes of the fluid, and that the damping characteristics of the damper 1 are thereby changed.

本発明の装置の別の使用例は以下の通りでおる: 1、 たとえば、比例弁又はサーボ弁をパイロット制御
する際に、液圧機構内の流体流を調量する装置 2、制御可能な流体クラッチ 3、 制御可能なアクチュエータ
Further examples of the use of the device of the invention are as follows: 1. Device for metering fluid flow in a hydraulic mechanism, for example when pilot controlling a proportional or servo valve 2. Controllable fluid Clutch 3, controllable actuator

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明による装置の概略図である。 1・・・ダンパー、2・・・ダンパーシリンダ、3・・
・ピストン、4・・・ピストンロンド、5・・・自由端
部、6.7・・・作業室、8・・・流過横断面、9,1
0・・・ピストン一端部プレート、11.12・・・導
線、13・・・面振動子、14・・・交流−エネルギ発
生装置、15・・・ガス−補償室、16・・・仕切りピ
ストン
The drawing is a schematic illustration of a device according to the invention. 1...damper, 2...damper cylinder, 3...
・Piston, 4... Piston rond, 5... Free end, 6.7... Working chamber, 8... Flow cross section, 9, 1
0...Piston one end plate, 11.12...Conducting wire, 13...Plane vibrator, 14...AC-energy generator, 15...Gas-compensation chamber, 16...Partition piston

Claims (1)

【特許請求の範囲】 1、速度場に位置する流過横断面内の流体の流れのふる
まいを制御する装置において、流過横断面(8)におい
て、規定された振幅の速度勾配として流体の速度場に重
ねられるような振動を生ぜしめる手段を有していること
を特徴とする、流体の流れのふるまいを制御する装置。 2、流過横断面(8)内の振動が、音場もしくは超音場
によつて生ぜしめられるようになつている特許請求の範
囲第1項記載の装置。 3、流過横断面(8)内の振動が、圧電部材(13)に
よつて生ぜしめられるようになつている特許請求の範囲
第1項又は第2項記載の装置。 4、流体として、せん断勾配によつて増大する粘性を有
する膨張する流体が使用されている特許請求の範囲第1
項から第3項までのいずれか1項記載の装置。 5、ピストン(3)と、該ピストン(3)を受容するシ
リンダ(2)との間のリング状の流過横断面内に使用さ
れており、しかもこの流過横断面(8)内で半径方向又
は軸方向の振動が生ぜしめられるようになつている特許
請求の範囲第1項から第4項までのいずれか1項記載の
装置。 6、車両ばね懸架装置のダンパー(1)に使用される特
許請求の範囲第1項から第5項までのいずれか1項記載
の装置。
[Claims] 1. In a device for controlling the behavior of a fluid flow in a flow cross section located in a velocity field, the fluid velocity is determined as a velocity gradient of a defined amplitude in a flow cross section (8). A device for controlling the behavior of a fluid flow, characterized in that it has means for producing vibrations that are superimposed on the field. 2. Device according to claim 1, characterized in that the vibrations in the flow cross section (8) are caused by a sound field or an ultrasonic field. 3. Device according to claim 1, characterized in that the vibrations in the flow cross section (8) are generated by piezoelectric elements (13). 4. Claim 1 in which the fluid is an expanding fluid whose viscosity increases with a shear gradient.
The device according to any one of paragraphs 3 to 3. 5. It is used in a ring-shaped flow cross section between the piston (3) and the cylinder (2) that receives the piston (3), and within this flow cross section (8), a radius 5. Device according to claim 1, characterized in that directional or axial vibrations are generated. 6. The device according to any one of claims 1 to 5, which is used for a damper (1) of a vehicle spring suspension system.
JP12852887A 1986-08-16 1987-05-27 Controller for behavior of flow of fluid Pending JPS6353328A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3627831.9 1986-08-16
DE19863627831 DE3627831C2 (en) 1986-08-16 1986-08-16 Device for influencing the flow behavior of fluids

Publications (1)

Publication Number Publication Date
JPS6353328A true JPS6353328A (en) 1988-03-07

Family

ID=6307539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12852887A Pending JPS6353328A (en) 1986-08-16 1987-05-27 Controller for behavior of flow of fluid

Country Status (4)

Country Link
JP (1) JPS6353328A (en)
DE (1) DE3627831C2 (en)
FR (1) FR2602837B1 (en)
GB (1) GB2193785B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19820569A1 (en) * 1998-05-08 1999-11-11 Schenck Ag Carl Valve based on electrorheological or magnetorheological liquids
DE10223216B4 (en) * 2002-05-24 2005-10-27 Siemens Ag Device for shock absorption by means of a piezoelectric actuator
DE102006019307B4 (en) * 2006-04-26 2016-06-09 Robert Bosch Gmbh damper
DE102007026378A1 (en) 2007-05-21 2008-11-27 Fludicon Gmbh vibration
DE102008050084B3 (en) * 2008-10-06 2009-11-26 Benteler Automobiltechnik Gmbh High frequency excitation compensating method for telescopic vibration damper of motor vehicle, involves deforming upper piezoelectric actuator against lower piezoelectric actuator, when mechanical force acts on lower actuator
DE102013003841B4 (en) 2012-12-21 2016-11-24 Fludicon Gmbh vibration
CN105546020A (en) * 2016-01-07 2016-05-04 南京航空航天大学 Magnetorheological damper with piezoelectric energy recovery function
CN106168265A (en) * 2016-08-11 2016-11-30 张广 A kind of energy based on piezoelectric effect is from supplying magneto-rheological vibration damper

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59131049A (en) * 1983-01-18 1984-07-27 Toyota Motor Corp Shock absorber

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3442501A (en) * 1966-02-25 1969-05-06 Martin Marietta Corp Non-mechanical variable orifice shock absorber
FR1515242A (en) * 1967-01-20 1968-03-01 Vide Soc Gen Du Improvements to transducers, in particular to pneumatic electric transducers
CA983962A (en) * 1972-01-19 1976-02-17 A/S Raufoss Ammunisjonsfabrikker Energy absorber
NL7301617A (en) * 1973-02-06 1974-08-08
FR2281602A1 (en) * 1974-08-08 1976-03-05 Ucc NEW METHOD AND SYSTEM FOR ADJUSTING THE FLOW OF A LIQUID IN A TANK
DE3024601A1 (en) * 1980-06-28 1982-01-21 H. Kuhnke GmbH, 2427 Malente Piezoelectric transducer with signal actuated function - uses electric control signal to switch fluidic pressure flow from one output to another one
DE3037078C2 (en) * 1980-10-01 1982-08-12 Daimler-Benz Ag, 7000 Stuttgart Electrically controlled actuator
JPS57136859U (en) * 1981-02-18 1982-08-26
GB2111171B (en) * 1981-12-09 1985-07-31 Secr Defence Linear dampers with variable viscosity
JPS608540A (en) * 1983-06-27 1985-01-17 Nissan Motor Co Ltd Vibration isolating device
US4491207A (en) * 1983-07-15 1985-01-01 Lord Corporation Fluid control means for vehicle suspension system
DE3330205C2 (en) * 1983-08-20 1986-10-23 Günther 6940 Weinheim Obstfelder Self-regulating shock absorbers, in particular for motor vehicles
DE3433797A1 (en) * 1984-09-14 1986-03-27 Uni-Cardan Ag, 5200 Siegburg Elastic bearing with hydraulic damping

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59131049A (en) * 1983-01-18 1984-07-27 Toyota Motor Corp Shock absorber

Also Published As

Publication number Publication date
GB2193785B (en) 1990-03-21
DE3627831A1 (en) 1988-02-18
GB8719303D0 (en) 1987-09-23
FR2602837A1 (en) 1988-02-19
FR2602837B1 (en) 1990-08-10
DE3627831C2 (en) 1997-04-03
GB2193785A (en) 1988-02-17

Similar Documents

Publication Publication Date Title
Peel et al. Dynamic modelling of an ER vibration damper for vehicle suspension applications
US5356123A (en) Elastic mount having fluid chamber partially defined by oscillating plate actuated by electrostrictive/magnetostrictive element
JPS6329136B2 (en)
EP0151586B2 (en) Apparatus for hydraulic damping
JPS6353328A (en) Controller for behavior of flow of fluid
JP2013501200A (en) Force control hydraulic system
Dimock et al. Quasi-steady Bingham biplastic analysis of electrorheological and magnetorheological dampers
Hong et al. A unifying perspective on the quasi-steady analysis of magnetorheological dampers
JP2002372095A (en) Vibration control method and device
Kela Attenuating amplitude of pulsating pressure in a low-pressure hydraulic system by an adaptive Helmholtz resonator
JPS60132144A (en) Vibration isolator
Lindler et al. Quasi-steady Bingham plastic analysis of an electrorheological flow mode bypass damper with piston bleed
JPH11108099A (en) Fluid damper
Dogruer et al. A magneto-rheological fluid damper for high-mobility multi-purpose wheeled vehicle (HMMWV)
US10584762B2 (en) Disruptive tuned mass system and method
JPH0215063Y2 (en)
Heinken et al. A high response electrorheological servo valve for active vibration decoupling
EP1212546A1 (en) Control valve and hydraulic damper
Guglielmino et al. Damp-by-wire: magnetorheological vs. friction dampers
Peel et al. An ER Long-Stroke Damper: Performance Modelling Under Quasi-Steady Conditions
Kamath et al. System identification of electrorheological fluid-based dampers using a nonlinear viscoelastic-plastic phenomenological model
Han et al. Control performance of an electrorheological suspension system considering actuator time constant
JP2010090971A (en) Vibration absorbing device
JPH0437296B2 (en)
Szary The analytical model of rheological fluid for vibration and noise control