JPS6353305B2 - - Google Patents
Info
- Publication number
- JPS6353305B2 JPS6353305B2 JP55143843A JP14384380A JPS6353305B2 JP S6353305 B2 JPS6353305 B2 JP S6353305B2 JP 55143843 A JP55143843 A JP 55143843A JP 14384380 A JP14384380 A JP 14384380A JP S6353305 B2 JPS6353305 B2 JP S6353305B2
- Authority
- JP
- Japan
- Prior art keywords
- warp
- shaft
- output shaft
- continuously variable
- variable transmission
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 230000005540 biological transmission Effects 0.000 claims description 44
- 230000007246 mechanism Effects 0.000 claims description 11
- 230000008859 change Effects 0.000 claims description 3
- 230000009467 reduction Effects 0.000 claims description 3
- 238000006073 displacement reaction Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 230000007423 decrease Effects 0.000 description 4
- 230000033001 locomotion Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000004512 die casting Methods 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 238000009941 weaving Methods 0.000 description 1
Landscapes
- Looms (AREA)
Description
【発明の詳細な説明】
技術分野
この発明は織機の経糸送出装置においてそれに
組み込まれた無段変速機の負荷軽減装置に関する
ものである。DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to a load reduction device for a continuously variable transmission incorporated in a warp delivery device of a loom.
従来技術及び目的
従来、織機の経糸送出装置は均質な織成を行う
ために経糸の張力を常に一定に保持するようにな
つている。この経糸送出装置を第1図に例示す
る。まず、この従来装置の概略を説明すると、ワ
ープビーム軸1に取着されたワープビーム2から
送り出される経糸Wは、テンシヨンローラ3を経
て綜絖枠(図示せず)側に供給されるようになつ
ている。経糸Wの送り出しに伴い、ワープビーム
2が大径から小径に変化すると、経糸Wの張力が
増加してテンシヨンローラ3が押し下げられるた
め、テンシヨンレバー4及び各連結リンク5,
6,7を介して無段変速機8の変速レバー9が上
昇され、無段変速機8の出力軸10の回転数が後
述する作動により上昇される。BACKGROUND ART AND OBJECT Conventionally, a warp delivery device of a loom always maintains the tension of the warp constant in order to perform homogeneous weaving. This warp delivery device is illustrated in FIG. First, to explain the outline of this conventional device, warp yarns W sent out from a warp beam 2 attached to a warp beam shaft 1 are supplied to a heald frame (not shown) through a tension roller 3. It's summery. When the warp beam 2 changes from a large diameter to a small diameter as the warp threads W are fed out, the tension of the warp threads W increases and the tension roller 3 is pushed down, so that the tension lever 4 and each connecting link 5,
6 and 7, the gear lever 9 of the continuously variable transmission 8 is raised, and the rotational speed of the output shaft 10 of the continuously variable transmission 8 is raised by an operation described later.
出力軸10の回転は、第1図及び第2図に示す
ように、この出力軸10に固着された平歯車11
から平歯車12、伝達軸13、かさ歯車14,1
5、伝達軸16を経てウオーム17に伝達され、
このウオーム17からワープビーム軸1に固着さ
れたウオームホイール18に伝達される。無段変
速機8の入力軸19にはドライブシヤフト(図示
せず)からVベルト20を介して動力が伝達さ
れ、これが駆動源となる。 The rotation of the output shaft 10 is controlled by a spur gear 11 fixed to the output shaft 10, as shown in FIGS. 1 and 2.
From spur gear 12, transmission shaft 13, bevel gear 14, 1
5. Transmitted to the worm 17 via the transmission shaft 16,
The power is transmitted from this worm 17 to a worm wheel 18 fixed to the warp beam shaft 1. Power is transmitted from a drive shaft (not shown) to an input shaft 19 of the continuously variable transmission 8 via a V-belt 20, which serves as a driving source.
ワープビーム径が小さくなつて出力軸10の回
転数が上昇すると、ワープビーム軸1の回転数も
上昇し、経糸Wの送り出し量が大径時と同一とな
る。すなわち、経糸Wの張力変動を検出し、その
検出に基づいて無段変速機8が作動され、経糸W
の張力が増大した場合にはワープビーム2の送り
出し速度が大きくなり、経糸Wの張力が小さくな
つた場合には逆にワープビーム2の送り出し速度
が小さくなる。 When the warp beam diameter becomes smaller and the rotation speed of the output shaft 10 increases, the rotation speed of the warp beam shaft 1 also increases, and the amount of warp yarn W to be sent out becomes the same as when the diameter is large. That is, the tension fluctuation of the warp yarn W is detected, and based on the detection, the continuously variable transmission 8 is operated, and the warp yarn W
When the tension in the warp yarns W increases, the speed at which the warp beam 2 is sent out increases, and when the tension in the warp yarns W decreases, the speed at which the warp beam 2 sends out the warp beam 2 decreases.
この無段変速機8は従来周知のいわゆるゼロマ
ツクス(商標名)と言われるものであつて、第3
図に示すように、入力軸19に対し4枚の偏心リ
ンク21が互いに一定角度ずらして固定され、出
力軸10には一方向クラツチ22を介して4枚の
伝動リンク23が各偏心リンク21に対応して取
付けられ、これら4組の両リンク21,23が4
本のコネクテイングロツド24によりそれぞれ連
結軸21a,23aを似つて連結されている。偏
心リンク21とコネクテイングロツド24との各
連結軸21aには4本の変速リンク25の一端部
が連結され、この変速リンク25は前記変速レバ
ー9により操作されるようになつている。 This continuously variable transmission 8 is a conventionally well-known so-called Zeromax (trade name), and the third
As shown in the figure, four eccentric links 21 are fixed to the input shaft 19 at fixed angles, and four transmission links 23 are connected to each eccentric link 21 via a one-way clutch 22 to the output shaft 10. These four sets of both links 21 and 23 are attached correspondingly.
The connecting shafts 21a and 23a are similarly connected by a connecting rod 24, respectively. One end of four shift links 25 are connected to each connecting shaft 21a between the eccentric link 21 and the connecting rod 24, and the shift links 25 are adapted to be operated by the shift lever 9.
そして、変速リンク25が第3図に示すように
ゼロ位置、すなわち、連結軸21aと23aとを
結ぶ線上に変速リンク25の支点25aが接近す
る位置にあると、入力軸19が回転して偏心リン
ク21がクランク運動しても、伝動リンク23は
殆ど往復運動せずいわば足踏み運動をする。その
ため、出力軸10は停止状態を続ける。一方、変
速リンク25の支点25aが第4図に示すように
連結軸21aを中心にして上方へ回動すると、偏
心リンク21のクランク運動に伴い、伝動リンク
23が往復運動する。このとき、各偏心リンク2
1は互いに一定角度ずらして入力軸19に固定さ
れているため、伝動リンク23は各偏心リンク2
1により以下に説明するような順送り運動が与え
られ、出力軸10は連続的に回転する。この出力
軸10の回転数は前記変速リンク25により伝動
リンク23の往復運動幅を変えて変更することが
できる。 When the speed change link 25 is at the zero position, as shown in FIG. Even when the link 21 makes a crank movement, the transmission link 23 hardly makes a reciprocating movement and makes a so-called stepping movement. Therefore, the output shaft 10 continues to be in a stopped state. On the other hand, when the fulcrum 25a of the transmission link 25 rotates upward about the connecting shaft 21a as shown in FIG. 4, the transmission link 23 reciprocates as the eccentric link 21 cranks. At this time, each eccentric link 2
1 are fixed to the input shaft 19 while being shifted by a certain angle from each other, so that the transmission link 23 is connected to each eccentric link 2.
1 provides a progressive motion as described below, and the output shaft 10 rotates continuously. The rotational speed of the output shaft 10 can be changed by changing the reciprocating width of the transmission link 23 using the speed change link 25.
第5図中A,B,C,Dは伝動リンク23とコ
ネクテイングロツド24との4本の連結軸23a
の変位L(第4図参照)を表わしている。すなわ
ち、各連結軸23aは互いに位相をずらしてサイ
ンカーブ的に変位し、それぞれの交点Pを結ぶ山
形状の変位部LA,LB,LC,LDが入力軸19の1
回転あたり4回の割合で出力軸10に回転力を与
えようとするが、実際には負荷側であるワープビ
ーム軸1の慣性が大きいため、各変位部LA,LB,
LC,LDの頂点Qを過ぎて出力軸10の回転数が
落ちても、負荷側回転数はその慣性力により第5
図のEに示すようにほぼ一定となり、この回転数
変動Eと各変位部LA,LB,LC,LDとの交点Rに
おいて、ワープビーム軸1が出力軸10により積
極回転され、この状態は各変位部LA,LB,LC,
LDのほぼ頂点Q(Eとの接点まで)まで続く。つ
まり、第5図に示すように、ワープビーム軸1は
前述したR−Q間のみにおいて積極回転され、短
時間の間欠的な衝撃力が加わることになる。この
ため、ワープビーム軸1に同一の回転数を与える
にも大容量の無段変速機8を必要とするととも
に、その寿命にも悪影響を及ぼしていた。 In FIG. 5, A, B, C, and D are four connecting shafts 23a between the transmission link 23 and the connecting rod 24.
represents the displacement L (see FIG. 4). That is, the respective connecting shafts 23a are displaced in a sine curve manner with their phases shifted from each other, and the mountain-shaped displaced portions L A , L B , L C , L D connecting the respective intersection points P are 1 of the input shaft 19 .
Although an attempt is made to apply rotational force to the output shaft 10 at a rate of 4 times per rotation, in reality the inertia of the warp beam axis 1, which is the load side, is large, so each displacement part L A , L B ,
Even if the rotational speed of the output shaft 10 drops after passing the peak Q of L C and L D , the load side rotational speed will decrease to 5th due to the inertia force.
As shown in E in the figure, the rotational speed becomes almost constant, and at the intersection point R of this rotational speed variation E and each displacement part L A , L B , L C , L D , the warp beam axis 1 is actively rotated by the output shaft 10 . In this state, each displacement part L A , L B , L C ,
It continues almost to the vertex Q of L D (up to the point of contact with E). That is, as shown in FIG. 5, the warp beam axis 1 is actively rotated only between R and Q as described above, and short-term intermittent impact force is applied thereto. For this reason, a large-capacity continuously variable transmission 8 is required to provide the same number of rotations to the warp beam shaft 1, and its lifespan is also adversely affected.
この発明の目的は、可撓継手を無段変速機の出
力軸若しくはこの出力軸とウオームとの間の伝達
軸に装着することにより、従来の欠点を解消せん
とするものである。 An object of the present invention is to solve the conventional drawbacks by installing a flexible joint on the output shaft of a continuously variable transmission or on the transmission shaft between the output shaft and the worm.
実施例
以下、この発明を具体化した実施例を第6図〜
第9図に従つて説明すると、26は従来一般的に
知られている継手用のゴムリングであつて、第8
図に示すように、多角形状のゴム部27とその頂
点にインサートされたアルミダイカスト部28と
から構成され、その各々は完全に接着されてい
る。そして、アルミダイカスト部28には軸方向
の取付孔29若しくはラジアル方向の取付孔30
が交互に誘設されている。Embodiments Hereinafter, embodiments embodying this invention will be shown in Figures 6 to 6.
Referring to FIG. 9, 26 is a conventionally known rubber ring for a joint;
As shown in the figure, it is composed of a polygonal rubber part 27 and an aluminum die-cast part 28 inserted at its apex, each of which is completely adhered. The aluminum die-casting part 28 has an axial mounting hole 29 or a radial mounting hole 30.
are introduced alternately.
このゴムリング26は無段変速機8の出力軸1
0に装着されている。すなわち、第6図及び第7
図に示すように、出力軸10にはスリーブ31が
固着され、このスリーブ31に対しゴムリング2
6が嵌挿されるとともに、さらにその外側から平
歯車11が球面軸受32を介して嵌挿されてい
る。そして、前記取付孔29に挿通されたボルト
33によりゴムリング26と平歯車11とが螺着
され、又、前記取付孔30に挿通されたボルト3
4によりゴムリング26とスリーブ31とが螺着
されるようになつている。従つて、平歯車11は
出力軸10に対し球面軸受32を介して自由に回
動し、出力軸10の回転力は可撓継手としてのゴ
ムリング26を介して平歯車11に伝達される。 This rubber ring 26 is the output shaft 1 of the continuously variable transmission 8.
It is attached to 0. That is, Figures 6 and 7
As shown in the figure, a sleeve 31 is fixed to the output shaft 10, and a rubber ring 2 is attached to the sleeve 31.
6 is fitted and inserted, and a spur gear 11 is further fitted from the outside via a spherical bearing 32. Then, the rubber ring 26 and the spur gear 11 are screwed together by the bolts 33 inserted into the mounting holes 29, and the bolts 3 inserted into the mounting holes 30 are screwed together.
4, the rubber ring 26 and the sleeve 31 are screwed together. Therefore, the spur gear 11 freely rotates with respect to the output shaft 10 via the spherical bearing 32, and the rotational force of the output shaft 10 is transmitted to the spur gear 11 via the rubber ring 26 as a flexible joint.
さて、出力軸10が回転すると、ゴムリング2
6がねじられてそのゴム部27に回転方向にたわ
みが保持された状態でその回転は平歯車11に伝
達される。そして、第9図に示すように、変位部
LA,LB,LC,LDに対応して出力軸10の回転数
が変動しても、その変動の範囲はゴムリング26
に保持された弾性の範囲となるため、出力軸10
の回転はワープビーム軸1に対しゴムリング26
の弾性力により常に回転力を与えた状態で伝達さ
れる。つまり、変位部LA,LB,LC,LDの全域に
わたつて出力軸10の回転力がワープビーム軸1
に与えられ、その力は頂点Qにおいて最高となる
場合言い換えれば、前述した従来例のように短時
間に必要エネルギーを与える場合より、本発明の
ように同一エネルギーを長時間かけて与える方が
小さい力で済むのである。この負荷側回転数変動
Eを第9図に見ると、出力軸10の最高回転数よ
りも若干小さい回転数でほぼ一定状態となる。 Now, when the output shaft 10 rotates, the rubber ring 2
6 is twisted and its rotation is transmitted to the spur gear 11 with its rubber portion 27 retaining its flexure in the direction of rotation. Then, as shown in Fig. 9, the displacement part
Even if the rotational speed of the output shaft 10 fluctuates in response to L A , L B , L C , and L D , the range of the fluctuation is within the range of the rubber ring 26.
Since the range of elasticity is maintained at
The rotation of the rubber ring 26 with respect to the warp beam axis 1
The rotational force is always transmitted due to the elastic force of the In other words, the rotational force of the output shaft 10 is applied to the warp beam axis 1 over the entire area of displacement parts L A , L B , L C , and L D .
In other words, it is smaller when the same energy is applied over a long period of time as in the present invention than when the required energy is applied in a short period of time as in the conventional example mentioned above. All it takes is force. When this load-side rotational speed variation E is seen in FIG. 9, it becomes almost constant at a rotational speed slightly smaller than the maximum rotational speed of the output shaft 10.
この実施例においては、出力軸10に対してね
じりこわさのやわらかい従来周知のたわみ継手を
装着したりすることも可能である。 In this embodiment, it is also possible to attach to the output shaft 10 a conventionally known flexible joint with low torsional stiffness.
なお、経糸Wには常に張力が働き、その張力に
よりワープビーム2が自由に回転しないようにす
るため、ウオーム17とウオームホイール18と
の間は自動締り作用を持たせてロツクされてい
る。つまり、無段変速機8の回転力エネルギーは
このロツクを解除するために殆ど消費される。従
つて、前述した実施例において例えば特開昭54−
147261号公報に開示されているように、ワープビ
ーム軸1とウオームホイール18との間に可撓継
手を取着した場合には、出力軸10の回転変動が
ウオーム17とウオームホイール18の接点に常
に作用するので、この位置におけるロツク作用の
ために上記可撓継手による出力軸10側の変動を
吸収する作用が全くない。従つて、前記した本発
明の目的を達成することができないので、前記の
ような従来装置では無段変速機8かかる衝撃的負
荷を緩和することができない。 Note that tension always acts on the warp threads W, and in order to prevent the warp beam 2 from freely rotating due to the tension, the space between the worm 17 and the worm wheel 18 is locked with an automatic tightening action. In other words, most of the rotational force energy of the continuously variable transmission 8 is consumed to release this lock. Therefore, in the above-mentioned embodiment, for example,
As disclosed in Japanese Patent No. 147261, when a flexible joint is installed between the warp beam shaft 1 and the worm wheel 18, rotational fluctuations of the output shaft 10 are caused by the contact point between the worm 17 and the worm wheel 18. Since it always acts, there is no effect of absorbing fluctuations on the output shaft 10 side due to the above-mentioned flexible joint due to the locking effect at this position. Therefore, the object of the present invention described above cannot be achieved, and the impact load applied to the continuously variable transmission 8 cannot be alleviated with the conventional device as described above.
効 果
以上詳述したこの発明は、ワープビームから送
り出される経糸の張力に応じて変速される一方向
クラツチ機構式無段変速機の出力をその出力軸か
ら回転伝達軸及びウオーム等の歯車機構を介して
ヤーンビーム軸に伝え、経糸の送り出しを行う織
機の経糸送出装置において、前記無段変速機の出
力軸上に可撓継手を装着し、同可撓継手をその装
着軸に対して自由な歯車機構側に連結し、無段変
速機からの回転出力を前記可撓継手のたわみに変
換し、同可撓継手の弾性力によつてウオーム側を
駆動するので、無段変速機からの出力は間欠的で
あつてもウオームには連続して駆動力が付加さ
れ、ワープビーム軸に対して連続的な回転力が伝
達される。また、無段変速機の間欠駆動による衝
撃的負荷が可撓継手で緩和され、同無段変速機に
影響することがないので、その耐久性が向上す
る。さらに、ワープビーム軸に回転力を与える時
間が連続的になるので、同一負荷の場合、その回
転力の最高値が減少し、無段変速機の一方向クラ
ツチの耐久性が向上するとともに小容量の無段変
速機での送り出しが可能となる効果を奏する。さ
らに、本発明では可撓継手を無段変速機の出力軸
上に設けるように構成したため、伝達トルクが小
さくて済むので、可撓継手を他の位置に配した場
合に比較して最も小さく構成することができ、こ
の結果経糸の送り出し機構の占めるスペースを従
来の機構とほとんど変わらない状態で設定できる
という大きな効果を有するものである。Effects The present invention described in detail above transmits the output of a one-way clutch mechanism continuously variable transmission whose speed is changed according to the tension of warp threads sent out from a warp beam from its output shaft to a rotation transmission shaft and a gear mechanism such as a worm. In a warp sending device of a loom that sends the warp to the yarn beam shaft through the yarn beam shaft, a flexible joint is installed on the output shaft of the continuously variable transmission, and the flexible joint is free with respect to the installed shaft. Connected to the gear mechanism side, the rotational output from the continuously variable transmission is converted into the deflection of the flexible joint, and the worm side is driven by the elastic force of the flexible joint, so the output from the continuously variable transmission is A driving force is continuously applied to the worm even if it is intermittently, and a continuous rotational force is transmitted to the warp beam axis. Furthermore, the shock load caused by intermittent driving of the continuously variable transmission is alleviated by the flexible joint, and does not affect the continuously variable transmission, thereby improving its durability. Furthermore, since the time for applying rotational force to the warp beam shaft is continuous, the maximum value of the rotational force decreases under the same load, improving the durability of the one-way clutch of the continuously variable transmission and reducing the capacity. This has the effect of making it possible to send the oil using a continuously variable transmission. Furthermore, in the present invention, since the flexible joint is arranged on the output shaft of the continuously variable transmission, the transmitted torque is small, so the structure is minimized compared to the case where the flexible joint is arranged at other positions. This has the great effect of allowing the space occupied by the warp delivery mechanism to be set almost the same as in conventional mechanisms.
第1図は経糸送出装置を示す概略図、第2図は
無段変速機からの出力をワープビームに伝達する
従来の伝達機構を示す部分拡大図、第3図及び第
4図は一方向クラツチを用いた無段変速機の原理
を示す作動説明図、第5図は従来の伝達機構にお
ける出力軸の回転変動と負荷側回転数変動とを比
較して示した線図、第6図は本発明にかかる負荷
軽減装置を備えた伝達機構を示す部分拡大図、第
7図は第6図中の可撓継手を示す部分拡大断面
図、第8図はこの可撓継手として用いられるゴム
リングの斜視図、第9図は本発明の場合における
出力軸の回転変動と負荷側回転変動とを比較して
示した線図である。
ワープビーム軸……1、ワープビーム……2、
無段変速機……8、出力軸……10、平歯車……
11,12、伝達軸……13,16、ウオーム…
…17、ウオームホイール……18、一方向クラ
ツチ……22、ゴムリンク……26、球面軸受…
…32、経糸……W。
Fig. 1 is a schematic diagram showing a warp delivery device, Fig. 2 is a partially enlarged view showing a conventional transmission mechanism that transmits the output from a continuously variable transmission to a warp beam, and Figs. 3 and 4 are a one-way clutch. Figure 5 is a diagram comparing the rotational fluctuations of the output shaft and load-side rotational speed fluctuations in a conventional transmission mechanism, and Figure 6 is a graph showing the principle of a continuously variable transmission using FIG. 7 is a partially enlarged sectional view showing the flexible joint in FIG. 6, and FIG. 8 is a partially enlarged view showing the transmission mechanism equipped with the load reduction device according to the invention. The perspective view and FIG. 9 are diagrams showing a comparison of the rotational fluctuations of the output shaft and the load-side rotational fluctuations in the case of the present invention. Warp beam axis...1, warp beam...2,
Continuously variable transmission...8, Output shaft...10, Spur gear...
11, 12, transmission shaft... 13, 16, worm...
...17, Worm wheel...18, One-way clutch...22, Rubber link...26, Spherical bearing...
...32, warp...W.
Claims (1)
応じて変速される一方向クラツチ機構式無段変速
機の出力をその出力軸から回転伝達軸及びウオー
ム等の歯車機構を介してヤーンビーム軸に伝え、
経糸の送り出しを行う織機の経糸送出装置におい
て、前記無段変速機の出力軸上に可撓継手を装着
し、同可撓継手をその装着軸に対して自由な歯車
機構側に連結し、無段変速機の出力軸の回転出力
を前記可撓継手のたわみに変換し、同可撓継手の
弾性力によつてウオーム側の回転伝達軸を駆動す
ることを特徴とする織機の経糸送出装置に組み込
まれた無段変速機の負荷軽減装置。1. Transmit the output of a one-way clutch mechanism continuously variable transmission whose speed is changed according to the tension of the warp sent out from the warp beam from its output shaft to the yarn beam shaft via a rotation transmission shaft and a gear mechanism such as a worm,
In a warp sending device of a loom that sends out warp threads, a flexible joint is installed on the output shaft of the continuously variable transmission, and the flexible joint is connected to the gear mechanism side that is free with respect to the installed shaft. A warp delivery device for a loom, characterized in that the rotation output of the output shaft of the step change transmission is converted into the deflection of the flexible joint, and the elastic force of the flexible joint drives the rotation transmission shaft on the worm side. Built-in continuously variable transmission load reduction device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14384380A JPS5771450A (en) | 1980-10-15 | 1980-10-15 | Load reducing apparatus of transmission gear assembled in warp yarn send-out apparatus of loom |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14384380A JPS5771450A (en) | 1980-10-15 | 1980-10-15 | Load reducing apparatus of transmission gear assembled in warp yarn send-out apparatus of loom |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5771450A JPS5771450A (en) | 1982-05-04 |
JPS6353305B2 true JPS6353305B2 (en) | 1988-10-21 |
Family
ID=15348234
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14384380A Granted JPS5771450A (en) | 1980-10-15 | 1980-10-15 | Load reducing apparatus of transmission gear assembled in warp yarn send-out apparatus of loom |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5771450A (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58192979U (en) * | 1982-06-15 | 1983-12-22 | 三木プ−リ株式会社 | Motor drive force transmission device for looms |
JPS5988491U (en) * | 1982-12-07 | 1984-06-15 | 三木プ−リ株式会社 | loom drive device |
JP5538306B2 (en) * | 2011-06-14 | 2014-07-02 | 本田技研工業株式会社 | Drive control device and drive control method |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS575486B2 (en) * | 1980-03-07 | 1982-01-30 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS575486U (en) * | 1980-06-11 | 1982-01-12 |
-
1980
- 1980-10-15 JP JP14384380A patent/JPS5771450A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS575486B2 (en) * | 1980-03-07 | 1982-01-30 |
Also Published As
Publication number | Publication date |
---|---|
JPS5771450A (en) | 1982-05-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5035678A (en) | Energy-storing bicycle sprocket drive system | |
US8043193B2 (en) | Gear mechanism for a heald shaft drive | |
KR20060048337A (en) | Warp let-off apparatus for weaving loom | |
EP1210531B1 (en) | Continuously variable transmission utilizing oscillating torque and one way drives | |
KR20210150975A (en) | Loom | |
JPS6353305B2 (en) | ||
KR930012232B1 (en) | Torque device | |
US3899933A (en) | Transmission with antibacklash means | |
US6076419A (en) | Gear arrangement | |
US5515746A (en) | Traveling driving device for a bicycle | |
CN218913706U (en) | Gear shifting control mechanism | |
RU2091523C1 (en) | Apparatus for equalizing power in batten mechanism of weaving machine and weaving machine having such apparatus | |
KR100984187B1 (en) | Continuously Variable Transmission | |
US4726402A (en) | Gear drive for shuttleless looms | |
JP6751413B2 (en) | Mechanism for controlling reciprocating motion of weft transport gripper in loom | |
JPS638786Y2 (en) | ||
EP1710333A2 (en) | Driving device for terry motion members in cloth-shifting type pile loom | |
JPS6239109Y2 (en) | ||
US2179827A (en) | Change-speed gear | |
CN218408373U (en) | Lever linkage machine | |
CN115992882B (en) | Elastic gear shifting control system | |
GB2400422A (en) | CVT having a one-way clutch that unlocks under torque | |
KR200180900Y1 (en) | Automatic transmission for bicycle | |
SU1558839A1 (en) | Unreeling device | |
GB2030257A (en) | A device for transmitting oscillatory rotary motion on a textile machine |