JPS6352738B2 - - Google Patents

Info

Publication number
JPS6352738B2
JPS6352738B2 JP55063137A JP6313780A JPS6352738B2 JP S6352738 B2 JPS6352738 B2 JP S6352738B2 JP 55063137 A JP55063137 A JP 55063137A JP 6313780 A JP6313780 A JP 6313780A JP S6352738 B2 JPS6352738 B2 JP S6352738B2
Authority
JP
Japan
Prior art keywords
active material
material layer
cupric oxide
positive electrode
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55063137A
Other languages
Japanese (ja)
Other versions
JPS56159059A (en
Inventor
Takashi Sakai
Sanehiro Furukawa
Toshihiko Saito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP6313780A priority Critical patent/JPS56159059A/en
Publication of JPS56159059A publication Critical patent/JPS56159059A/en
Publication of JPS6352738B2 publication Critical patent/JPS6352738B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Primary Cells (AREA)

Description

【発明の詳細な説明】 本発明はリチウム、ナトリウム等の軽金属を負
極活物質とする非水電解質電池に係り、特にその
正極に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a non-aqueous electrolyte battery using a light metal such as lithium or sodium as a negative electrode active material, and particularly to a positive electrode thereof.

従来この種電池の正極活物質として各種金属の
酸化物、ハロゲン化物、硫化物等が提案されてい
る。その中で二酸化マンガン、フツ化炭素などを
用いた電池はその放電電圧が約3Vと高いのに対
し、酸化第2銅(CuO)、三酸化ビスマス
(Bi2O3)、硫化銅(CuS)などを用いた電池は放
電電圧が約1.5Vと低いので、汎用されている酸
化銀電池や水銀電池と互換使用しうる特徴があ
る。特に酸化第2銅は安価であると共に重量当り
及び体積当りの理論容量が高いので有望視されて
いるが、その放電電圧は他の1.5V系活物質に比
して低く、1mA/cm2程度以上の電流値で放電し
た場合、その放電電圧は1V近辺まで低下すると
いう欠点がある。
Conventionally, various metal oxides, halides, sulfides, etc. have been proposed as positive electrode active materials for this type of battery. Among these, batteries that use manganese dioxide, carbon fluoride, etc. have a high discharge voltage of about 3V, whereas batteries that use cupric oxide (CuO), bismuth trioxide (Bi 2 O 3 ), copper sulfide (CuS) Batteries using such materials have a low discharge voltage of approximately 1.5V, so they can be used interchangeably with commonly used silver oxide batteries and mercury batteries. In particular, cupric oxide is seen as promising because it is inexpensive and has a high theoretical capacity per weight and volume, but its discharge voltage is lower than other 1.5V active materials, about 1mA/cm 2 When discharging at a current value higher than that, there is a drawback that the discharge voltage drops to around 1V.

本発明は正極として酸化第2銅を活物質とする
第1の活物質層と酸化第2銅より高電位の金属化
合物を活物質とする第2の活物質層とよりなる2
重層とし、且つ第1の活物質層を負極と対向させ
ることにより、酸化第2銅単独の場合に比して放
電電圧の改善を計るものである。
The present invention provides a positive electrode consisting of a first active material layer containing cupric oxide as an active material and a second active material layer containing a metal compound having a higher potential than cupric oxide as an active material.
By using multiple layers and by placing the first active material layer facing the negative electrode, the discharge voltage is improved compared to the case where cupric oxide is used alone.

以下本発明の実施例を詳述する。 Examples of the present invention will be described in detail below.

実施例 1 市販特級の酸化第2銅と炭素粉末(導電剤)及
びフツ素樹脂粉末(結着剤)を90:5:5の重量
比で混合して酸化銅合剤を作成する。次に特級の
三級化ビスマスと炭素粉末及びフツ素樹脂を90:
5:5の重量比で混合して三酸化ビスマス合剤を
作成する。
Example 1 A copper oxide mixture is prepared by mixing commercially available special grade cupric oxide, carbon powder (conductive agent), and fluororesin powder (binder) at a weight ratio of 90:5:5. Next, add special grade tertiary bismuth, carbon powder and fluororesin to 90%:
A bismuth trioxide mixture is prepared by mixing at a weight ratio of 5:5.

正極の作成に際しては一端開口面に鍔縁を備え
た正極内缶に鍔縁を下にして先づ酸化第2銅剤を
入れて第1の活物質層とし、ついでその上に三酸
化ビスマス合剤を充填して第2の活物質層として
成型圧力2トン/cm2で成型する。その後300℃で
熱処理して正極とする。
When creating a positive electrode, a cupric oxide agent is first poured into a positive electrode inner can with a rim on the open end with the rim facing down to form the first active material layer, and then a bismuth trioxide compound is placed on top of the cupric oxide. A second active material layer is filled with the agent and molded at a molding pressure of 2 tons/cm 2 . It is then heat-treated at 300°C to form a positive electrode.

負極はリチウム圧延板を極板寸法に打抜いたも
のを用い、又電解液は過塩素酸リチウムをプロピ
レンカーボネイトと1.2ジメトキシエタンとの混
合溶媒に溶解したものでありポリプロピレン不織
布よりなるセパレータに含浸し電池Aを組立て
た。
The negative electrode used was a rolled lithium plate punched out to the size of the electrode plate, and the electrolyte was lithium perchlorate dissolved in a mixed solvent of propylene carbonate and 1.2 dimethoxyethane, which was impregnated into a separator made of polypropylene nonwoven fabric. I assembled battery A.

第1図は電池構造を示し、1は第1の活物質層
2と第2の活物質層3とよりなる正極、4は鍔縁
4′を備えた正極内缶、5は負極、6はセパレー
タ、7,8は正負外装缶、9は絶縁パツキングで
ある。尚、正極の理論容量は200mAHで第1、
第2の活物質層を夫々100mAHになるように調
製されている。
FIG. 1 shows the battery structure, where 1 is a positive electrode consisting of a first active material layer 2 and a second active material layer 3, 4 is a positive electrode inner can with a rim 4', 5 is a negative electrode, and 6 is a positive electrode. Separators, 7 and 8 are positive and negative exterior cans, and 9 is an insulating packing. In addition, the theoretical capacity of the positive electrode is 200mAH.
The second active material layers are each adjusted to have a thickness of 100 mAH.

実施例 2 実施例1における三酸化ビスマス合剤の代わり
に硫化銅(CuS)と炭素粉末及びフツ素樹脂を
92:3:5の重量比で混合した硫化銅合剤を第2
の活物質層とすることを除いては他は実施例1と
同様の電池A′を作成した。
Example 2 Copper sulfide (CuS), carbon powder, and fluororesin were used instead of the bismuth trioxide mixture in Example 1.
A second copper sulfide mixture mixed at a weight ratio of 92:3:5
A battery A' was prepared in the same manner as in Example 1 except that the active material layer was changed to .

第2図は本発明電池の放電特性を示し、図中
B,C及びDは夫々正極活物質に酸化第2銅、三
酸化ビスマス及び硫化銅を単独で用いた場合の従
来電池である。
FIG. 2 shows the discharge characteristics of the battery of the present invention, and B, C, and D in the diagram are conventional batteries in which cupric oxide, bismuth trioxide, and copper sulfide were used alone as positive electrode active materials, respectively.

第2図より明白なるように本発明電池A及び
A′は正極活物質として酸化第2銅を単独で用い
た従来電池Bに比して高い放電々圧を示すと共に
特に放電末期における放電々圧は平担で且安定し
ていることが解かる。
As is clear from FIG. 2, the batteries A and B of the present invention
It can be seen that A' shows a higher discharge pressure than the conventional battery B, which uses cupric oxide alone as the positive electrode active material, and that the discharge pressure, especially at the end of discharge, is flat and stable. .

この効果の理由は次のように考えられる。即ち
本発明電池の正極は酸化第2銅を活物質とする第
1の活物質層と酸化第2銅より高電位の金属化合
物を活物質とする第2の活物質層とで構成され、
且第1の活物質層が負極に対向するように配置さ
れているため、放電初期においては正極のうちセ
パレータを介して負極と対向している第1の活物
質層である酸化第2銅が放電反応の主体となると
共に、この第1の活物質層と、接触している第2
の活物質層である高電位の金属化合物の一部が放
電反応に関与するので酸化第2銅と金属化合物と
の混成電位が生じるため酸化第2銅単独の場合に
比して高い放電々圧を示すと共に放電反応は負極
に対向した部分から始まり徐々に正極の背面部へ
移行していくため放電末期においては酸化第2銅
がほとんど放電され、酸化第2銅より高電位を示
す金属化合物の放電が主となり高い安定した電圧
を示すものと考えられる。尚、酸化第2銅より高
電位を示す金属化合物としては実施例で示した
Bi2O3,CuS以外にPbO2,Pb3O4,TiO2,Fe3O4
等が挙げられる。
The reason for this effect is thought to be as follows. That is, the positive electrode of the battery of the present invention is composed of a first active material layer containing cupric oxide as an active material and a second active material layer containing a metal compound having a higher potential than cupric oxide as an active material,
In addition, since the first active material layer is arranged to face the negative electrode, in the early stage of discharge, the cupric oxide, which is the first active material layer of the positive electrode that faces the negative electrode through the separator, The second active material layer is the main body of the discharge reaction and is in contact with the first active material layer.
Part of the high-potential metal compound that is the active material layer participates in the discharge reaction, resulting in a hybrid potential of cupric oxide and the metal compound, resulting in a higher discharge voltage than in the case of cupric oxide alone. At the same time, the discharge reaction starts from the part facing the negative electrode and gradually moves to the back part of the positive electrode, so at the end of the discharge, most of the cupric oxide is discharged, and the metal compound which has a higher potential than the cupric oxide It is thought that discharge is the main cause and shows a high and stable voltage. In addition, examples of metal compounds showing a higher potential than cupric oxide are shown in the examples.
In addition to Bi 2 O 3 and CuS, PbO 2 , Pb 3 O 4 , TiO 2 , Fe 3 O 4
etc.

上述した如く、本発明は非水電解質電池の正極
として酸化第2銅を活物質とする第1の活物質層
と酸化第2銅より高電位であり且つ酸化第2銅の
放電生成物を酸化しない金属化合物を活物質とす
る第2の活物質層とで構成し、且第1の活物質層
をセパレータを介して負極に対向させたものであ
り、資源的に豊富且安価な酸化第2銅の欠点を解
消して放電々圧の向上及び放電末期における放
電々圧の平担性を改善でき、汎用電池と互換性の
ある1.5V系非水電解質電池の実用化に資すると
ころ大なるものである。
As described above, the present invention uses a first active material layer containing cupric oxide as an active material as a positive electrode of a non-aqueous electrolyte battery, which has a higher potential than cupric oxide, and which oxidizes the discharge product of cupric oxide. and a second active material layer containing a metal compound as an active material, and the first active material layer is opposed to the negative electrode with a separator interposed therebetween. It can eliminate the drawbacks of copper, improve the discharge pressure and the flatness of the discharge pressure at the end of discharge, and greatly contribute to the practical application of 1.5V nonaqueous electrolyte batteries that are compatible with general-purpose batteries. It is.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明電池の縦断面図、第2図は本発
明電池の1KΩ定抵抗放電特性図を夫々示す。 1…正極、2…第1の活物質層、3…第2の活
物質層、5…負極、6…セパレータ、7,8…正
負外装缶、A,A′…本発明電池、B,C,D…
従来電池。
FIG. 1 is a longitudinal sectional view of the battery of the present invention, and FIG. 2 is a 1KΩ constant resistance discharge characteristic diagram of the battery of the present invention. DESCRIPTION OF SYMBOLS 1...Positive electrode, 2...First active material layer, 3...Second active material layer, 5...Negative electrode, 6...Separator, 7, 8...Positive/negative outer can, A, A'...Battery of the present invention, B, C ,D...
Conventional battery.

Claims (1)

【特許請求の範囲】[Claims] 1 リチウム、ナトリウム等の軽金属を活物質と
する負極と、非水電解質と、正極とを備え、前記
正極は酸化第2銅を活物質とする第1の活物質層
と、酸化第2銅より高電位であり且酸化第2銅の
放電生成物を酸化しない金属化合物を活物質とす
る第2の活物質層とよりなり、第1の活物質層が
セパレータを介して前記負極に対向していること
を特徴とする非水電解質電池。
1 A negative electrode comprising a light metal such as lithium or sodium as an active material, a non-aqueous electrolyte, and a positive electrode, the positive electrode comprising a first active material layer comprising cupric oxide as an active material, and a first active material layer comprising cupric oxide as an active material. a second active material layer whose active material is a metal compound that has a high potential and does not oxidize discharge products of cupric oxide, and the first active material layer faces the negative electrode with a separator interposed therebetween. A non-aqueous electrolyte battery characterized by:
JP6313780A 1980-05-13 1980-05-13 Nonaqueous electrolyte battery Granted JPS56159059A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6313780A JPS56159059A (en) 1980-05-13 1980-05-13 Nonaqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6313780A JPS56159059A (en) 1980-05-13 1980-05-13 Nonaqueous electrolyte battery

Publications (2)

Publication Number Publication Date
JPS56159059A JPS56159059A (en) 1981-12-08
JPS6352738B2 true JPS6352738B2 (en) 1988-10-20

Family

ID=13220574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6313780A Granted JPS56159059A (en) 1980-05-13 1980-05-13 Nonaqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JPS56159059A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4993860B2 (en) * 2005-02-03 2012-08-08 日立マクセルエナジー株式会社 Non-aqueous electrolyte primary battery

Also Published As

Publication number Publication date
JPS56159059A (en) 1981-12-08

Similar Documents

Publication Publication Date Title
JPH0746607B2 (en) Non-aqueous secondary battery
JPS6352738B2 (en)
JPS618852A (en) Nonaqueous electrolyte cell
JPS6215761A (en) Nonaqueous electrolyte secondary cell
JP2692932B2 (en) Non-aqueous secondary battery
JPS62290070A (en) Organic electrolyte secondary battery
JP2807481B2 (en) Cathode of non-aqueous electrolyte battery
JP2664710B2 (en) Non-aqueous solvent battery
JP2631998B2 (en) Manufacturing method of positive electrode for non-aqueous secondary battery
JPH07130359A (en) Nonaqueous electrolyte secondary battery
JPH0770315B2 (en) Non-aqueous electrolyte battery
JP2714078B2 (en) Non-aqueous electrolyte battery
JPH0626120B2 (en) Non-aqueous electrolyte battery
JPS59134559A (en) Organic electrolyte battery
JPH0345862B2 (en)
JPH0346950B2 (en)
JPH0421990B2 (en)
JPH02276157A (en) Nonaqueous electrolyte battery
JPH0564431B2 (en)
JPS6142858A (en) Nonaqueous electrolyte battery
JPH0586626B2 (en)
JPS63193464A (en) Nonaqueous electrolyte battery
JPS58206056A (en) Organic electrolyte battery
JPH0524625B2 (en)
JPS61163567A (en) Organo-electrolytic solution electric cell