JPS6352735B2 - - Google Patents

Info

Publication number
JPS6352735B2
JPS6352735B2 JP13580A JP13580A JPS6352735B2 JP S6352735 B2 JPS6352735 B2 JP S6352735B2 JP 13580 A JP13580 A JP 13580A JP 13580 A JP13580 A JP 13580A JP S6352735 B2 JPS6352735 B2 JP S6352735B2
Authority
JP
Japan
Prior art keywords
powder
sintering
oxide
cathode
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13580A
Other languages
Japanese (ja)
Other versions
JPS5697939A (en
Inventor
Shunji Saito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP13580A priority Critical patent/JPS5697939A/en
Publication of JPS5697939A publication Critical patent/JPS5697939A/en
Publication of JPS6352735B2 publication Critical patent/JPS6352735B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • H01J9/04Manufacture of electrodes or electrode systems of thermionic cathodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)

Description

【発明の詳細な説明】 本発明は直熱形酸化物陰極の製造方法、特に酸
化物層の剥離を防止できる直熱形酸化物陰極の製
造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a directly heated oxide cathode, and particularly to a method for manufacturing a directly heated oxide cathode that can prevent peeling of an oxide layer.

テレビジヨン受像管例えばカラー受像管、白黒
用受像管等に用いられる陰極は、従来は非受信時
にも常に予備加熱電流をヒータに流しておき、受
信時にはヒータ電流値を定格値まで上昇するよう
にして受信開始時の画像出現までの時間を短縮す
る傍熱形陰極が主流を占めていた。しかし近時省
エネルギーの見地から予備加熱不要で、しかも通
電開始から画像出現までの時間の短い、すなわち
速動形の陰極が要求されるようになつた。通常予
備加熱電流を流しておかないと傍熱形陰極では通
電開始から画像出現までに約20秒を要するが通電
発熱体に電子放出用のいわゆる酸化物を直接塗布
した直熱形陰極は適切に設計すれば通電開始から
画像出現までの時間を1〜2秒に短縮することが
できる。
Conventionally, cathodes used in television picture tubes, such as color picture tubes and black and white picture tubes, have a preheating current flowing through the heater at all times even when no reception is being received, and the heater current value is increased to the rated value during reception. Indirectly heated cathodes, which shorten the time it takes for an image to appear at the start of reception, have been the mainstream. However, in recent years, from the standpoint of energy conservation, there has been a demand for cathodes that do not require preheating and that require a short time from the start of energization to the appearance of an image, that is, fast-acting cathodes. Normally, if a preheating current is not applied to an indirectly heated cathode, it takes about 20 seconds from the start of current application to the appearance of an image, but a directly heated cathode, in which a so-called oxide for electron emission is directly applied to the energized heating element, can be used properly. If designed properly, the time from the start of energization to the appearance of the image can be shortened to 1 to 2 seconds.

第1図は直熱形酸化物陰極の例を示す断面図で
ある。
FIG. 1 is a sectional view showing an example of a directly heated oxide cathode.

図中1は通電電流によつて発熱する基体金属
(以下基体という)、2は基体1に通電するための
端子、3はいわゆる酸化物である。基体1は速動
性をよくするためになるべく短かい部分の中で多
くの電気エネルギーを消費するように電気比抵抗
の高い材料が必要であり、そのような材料を用い
た基体の温度を酸化物陰極に適当な温度範囲内に
おさえるためには、基体は断面積に対し周囲の長
さを長くして熱放射が多くなる形状、たとえば厚
さ100μm以下、望ましくは60μm以下の薄いリボ
ン状とする必要がありこのような断面形状で陰極
動作温度範囲内で形状を維持するのに十分な高温
強度を有する材料が必要となる。さらに基体材料
に重要な性質として、その表面に塗布した酸化
物、すなわちアルカリ土類酸化物たとえばバリウ
ム(Ba)、ストロンチウム(Sr)、カルシウム
(Ca)等の酸化物から長時間にわたつて十分な電
子放出をさせるのに適していなければならない。
In the figure, 1 is a base metal (hereinafter referred to as the base) that generates heat due to the applied current, 2 is a terminal for supplying electricity to the base 1, and 3 is a so-called oxide. The base 1 needs to be made of a material with high electrical resistivity so that as much electrical energy as possible is consumed in the shortest possible part in order to improve the speed of movement. In order to keep the temperature within the appropriate range for the material cathode, the substrate should have a shape that increases the length of the circumference relative to the cross-sectional area and increases heat radiation, for example, a thin ribbon shape with a thickness of 100 μm or less, preferably 60 μm or less. This cross-sectional shape requires a material with sufficient high temperature strength to maintain the shape within the cathode operating temperature range. Furthermore, an important property of the substrate material is that it retains sufficient properties over a long period of time from the oxides applied to its surface, such as alkaline earth oxides such as barium (Ba), strontium (Sr), and calcium (Ca). It must be suitable for emitting electrons.

従来このような条件に一応適合するものとし
て、経験的、実験的にニツケル(Ni)を主成分
とし、これに耐熱性のすぐれたタングステン
(W)、モリブデン(Mo)等の高融点金属と、電
子放出用酸化物に活性剤として作用する微量のジ
ルコニウム(Zr)を添加した合金が、直熱形酸
化物陰極の基体金属として提案されている。
Conventionally, it has been empirically and experimentally that nickel (Ni) is the main component, and high melting point metals such as tungsten (W) and molybdenum (Mo), which have excellent heat resistance, are used to meet these conditions. An alloy in which a trace amount of zirconium (Zr), which acts as an activator, is added to an electron-emitting oxide has been proposed as a base metal for directly heated oxide cathodes.

しかしこのような組成の金属を基体として用い
ると、受像管の製造工程やその後の使用中に、基
体と酸化物層の間にWあるいはMoによるいわゆ
る中間層が多量に生成され、そのために酸化物層
の剥離が多発する場合があるという問題が生じ
た。
However, when a metal with such a composition is used as a substrate, a large amount of a so-called intermediate layer of W or Mo is generated between the substrate and the oxide layer during the manufacturing process of the picture tube and during its subsequent use. A problem arose in that layers often peeled off.

このような欠点を除去するために基体金属に
Ni粉を焼結させて酸化物層を機械的に固定する
方法が用いられている。
to the base metal to eliminate such defects.
A method is used to mechanically fix the oxide layer by sintering Ni powder.

第2図はこのような構成による直熱形酸化物陰
極の要部拡大断面図である。図中4はNi粉であ
り、このNi粉4は基体1上に焼結されている。
FIG. 2 is an enlarged sectional view of a main part of a directly heated oxide cathode having such a configuration. In the figure, 4 is Ni powder, and this Ni powder 4 is sintered onto the base 1.

しかしながら、このような構成による直熱形酸
化物陰極は、活性化時、動作初期の酸化物3の剥
離に対して効果的であるが、長時間の動作でNi
粉4が基体1の焼結部から折損し、剥離するとい
う問題のあることが確かめられた。この折損の原
因は、Ni粉4の焼結部近傍に動作中に穴が形成
されるためであり、この穴の形成はNi粉4中に
拡散されたZrが消耗するために起ることが確か
められた。そして、穴を形成するNi粉4中への
Zr拡散のほとんどはNi粉4を基体1に焼結する
際に起ることが確かめられた。このため、Zrの
Ni粉4中への拡散を防止するのにNi粉4の焼結
温度を低くする方法、Ni粉4の焼結時間を短か
くする方法等を試み、これらのうち焼結温度を低
くすると、Ni粉4の穴あき防止効果の大きいこ
とがわかつた。しかしながら、焼結温度を低くす
ると、Ni粉4の基体1への焼結が不十分となり、
活性化時点でNi粉が剥離するという問題が生じ、
低温での焼結のみでは不十分であることがわかつ
た。
However, although the directly heated oxide cathode with such a configuration is effective in preventing the peeling off of the oxide 3 at the initial stage of operation during activation, the Ni
It was confirmed that there was a problem in that the powder 4 was broken and peeled off from the sintered part of the base 1. The cause of this breakage is that a hole is formed near the sintered part of the Ni powder 4 during operation, and the formation of this hole is likely to occur due to the consumption of Zr diffused into the Ni powder 4. It was confirmed. Then, into the Ni powder 4 that forms the hole,
It was confirmed that most of the Zr diffusion occurred when the Ni powder 4 was sintered onto the substrate 1. For this reason, Zr
In order to prevent diffusion into the Ni powder 4, we tried methods such as lowering the sintering temperature of the Ni powder 4, shortening the sintering time of the Ni powder 4, etc. Among these, lowering the sintering temperature resulted in It was found that Ni powder 4 was highly effective in preventing holes. However, when the sintering temperature is lowered, the sintering of the Ni powder 4 onto the substrate 1 becomes insufficient.
There was a problem that the Ni powder peeled off at the time of activation,
It was found that sintering at low temperatures alone was insufficient.

したがつて本発明は、Ni粉の基体金属への焼
結強度が強く、かつNi粉中へのZr拡散が少ない
焼結方法を提供することを目的としている。
Therefore, an object of the present invention is to provide a sintering method in which the sintering strength of Ni powder to a base metal is strong and Zr diffusion into the Ni powder is reduced.

以下、本発明を詳細に説明する。 The present invention will be explained in detail below.

通常、Ni粉の焼結強度は、Ni粉と基体との焼
結部面積に比例する。一方、焼結部の接触面積を
大きくすると、高温焼結が有効であるが、前述し
たようにZrの拡散が生じる。したがつて本発明
はNi粉を基体に焼結する以前に加圧することに
よつて、Ni粉と基体との接触面積を増大させ、
しかる後に低温で焼結することにより、焼結部の
焼結強度を大幅に向上させたものである。
Normally, the sintering strength of Ni powder is proportional to the area of the sintered portion between the Ni powder and the base. On the other hand, if the contact area of the sintered part is increased, high-temperature sintering is effective, but Zr diffusion occurs as described above. Therefore, the present invention increases the contact area between the Ni powder and the substrate by applying pressure before sintering the Ni powder to the substrate,
By subsequently sintering at a low temperature, the sintering strength of the sintered portion is greatly improved.

このような方法によれば、後述する具体例等か
ら明らかなように、従来のNi粉を基体の酸化物
被着面に直接固着した直熱形酸化物陰極に比べて
酸化物の剥離防止が極めて優れていることが判明
した。
According to such a method, as is clear from the specific examples described later, it is possible to prevent the oxide from peeling off compared to the conventional directly heated oxide cathode in which Ni powder is directly fixed to the oxide-attached surface of the substrate. It turned out to be extremely good.

以下、具体例を用いてさらに詳細に説明する。 Hereinafter, a more detailed explanation will be given using a specific example.

具体例 1 粒径2〜3μmのNi粉を、ニトロセルロースを
バインダとし酢酸ブチルを溶媒とする溶液に懸濁
したサスペンジヨンを基体上に約1.5mg/cm2の密
度に塗布して乾燥する。しかる後、この塗布面上
を約0.5t/cm2の圧力で加圧し、Ni粉を潰し、基体
とNi粉との接触部を大きくした後、約750℃で約
30分間の真空焼結を行なう。さらに、この上面に
酸化物を塗布することにより、直熱形酸化物陰極
を完成する。
Specific Example 1 A suspension in which Ni powder with a particle size of 2 to 3 μm is suspended in a solution containing nitrocellulose as a binder and butyl acetate as a solvent is applied onto a substrate at a density of about 1.5 mg/cm 2 and dried. After that, the coated surface is pressurized with a pressure of about 0.5t/cm 2 to crush the Ni powder and increase the contact area between the substrate and the Ni powder.
Perform vacuum sintering for 30 minutes. Furthermore, by coating this upper surface with an oxide, a directly heated oxide cathode is completed.

具体例 2 粒径2〜3μmのNi粉とアクリル樹脂とニトロ
セルローズと溶媒とからなるペーストを基体上に
約1.5mg/cm2の密度で印刷し、乾燥させた後、約
750℃で約10分間の真空焼結を行ない、基体とNi
粉とをわずかに焼結させる。しかる後、この上面
を約0.5t/cm2の圧力で加圧し、Ni粉を圧潰し、基
体とNi粉との接触部を大きくする。さらに約750
℃で約20分間の真空焼結を行なつて焼結強度を向
上させる。次に、この上面に酸化物を印刷するこ
とにより、陰極として完成する。
Specific Example 2 A paste consisting of Ni powder with a particle size of 2 to 3 μm, acrylic resin, nitrocellulose, and a solvent was printed on a substrate at a density of about 1.5 mg/cm 2 , and after drying, about
Vacuum sintering was performed at 750℃ for about 10 minutes to bond the substrate and Ni.
The powder is slightly sintered. Thereafter, this upper surface is pressurized with a pressure of about 0.5 t/cm 2 to crush the Ni powder and enlarge the contact area between the base and the Ni powder. Approximately 750 more
Vacuum sintering is performed at ℃ for about 20 minutes to improve the sintering strength. Next, an oxide is printed on this top surface to complete the cathode.

このような方法によれば、Ni粉の基体との接
触部を大きくしてから、ZrがNi粉へ拡散しにく
い温度で焼結することにより、焼結強度が強く、
ZrのNi粉中への拡散が少ない陰極を得ることが
でき、活性化時、長時間動作でもNi粉の剥離強
度の強い陰極が得られた。
According to this method, the sintering strength is increased by increasing the contact area of the Ni powder with the substrate and then sintering at a temperature that makes it difficult for Zr to diffuse into the Ni powder.
We were able to obtain a cathode with less diffusion of Zr into the Ni powder, and a cathode with strong peel strength from the Ni powder during activation and even during long-term operation.

なお、上記実施例において、Ni粉の加圧力を
0.5t/cm2とした場合について説明したが、本発明
は必ずしもこれに限定されるものではなく、後工
程の焼結温度との兼ね合いも含めて目的を達する
には0.3t/cm2〜1.0t/cm2の範囲の加圧力が適当で
ある。
In addition, in the above example, the pressing force of Ni powder was
Although the case of 0.5t/cm 2 has been described, the present invention is not necessarily limited to this, and in order to achieve the objective, including the balance with the sintering temperature in the subsequent process, it is 0.3t/cm 2 to 1.0. An applied force in the range of t/cm 2 is suitable.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は本発明を説明するための
直熱形酸化物陰極の例を示す要部断面図および要
部拡大断面図である。 1……基体金属(基体)、2……端子、3……
酸化物、4……Ni粉。
FIGS. 1 and 2 are a sectional view and an enlarged sectional view of a main part showing an example of a directly heated oxide cathode for explaining the present invention. 1...Base metal (base), 2...Terminal, 3...
Oxide, 4...Ni powder.

Claims (1)

【特許請求の範囲】[Claims] 1 ニツケルを主体とする合金からなりかつ還元
剤としてジルコニウムを含む基体金属に電子放射
のための酸化物を被着してなる直熱形酸化物陰極
の製造において、前記基体金属上にニツケル粉を
塗布した後、加圧して前記基体金属と該ニツケル
粉との接触面積を拡大させ、しかる後ジルコニウ
ムがニツケル粉中へ拡散しにくい低温で焼結する
ことを特徴とした直熱形酸化物陰極の製造方法。
1. In the production of a directly heated oxide cathode in which an oxide for electron emission is coated on a base metal made of an alloy mainly composed of nickel and containing zirconium as a reducing agent, nickel powder is applied onto the base metal. After being applied, pressure is applied to expand the contact area between the base metal and the nickel powder, and the oxide cathode is then sintered at a low temperature that makes it difficult for zirconium to diffuse into the nickel powder. Production method.
JP13580A 1980-01-07 1980-01-07 Manufacturing method for direct heat type oxide cathode Granted JPS5697939A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13580A JPS5697939A (en) 1980-01-07 1980-01-07 Manufacturing method for direct heat type oxide cathode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13580A JPS5697939A (en) 1980-01-07 1980-01-07 Manufacturing method for direct heat type oxide cathode

Publications (2)

Publication Number Publication Date
JPS5697939A JPS5697939A (en) 1981-08-07
JPS6352735B2 true JPS6352735B2 (en) 1988-10-20

Family

ID=11465582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13580A Granted JPS5697939A (en) 1980-01-07 1980-01-07 Manufacturing method for direct heat type oxide cathode

Country Status (1)

Country Link
JP (1) JPS5697939A (en)

Also Published As

Publication number Publication date
JPS5697939A (en) 1981-08-07

Similar Documents

Publication Publication Date Title
JPH02288044A (en) Cathode for discharge tube
JPS6352735B2 (en)
US3246197A (en) Cathode heater having an aluminum oxide and tungesten coating
US4636681A (en) Directly heated cathode
JP2710700B2 (en) Method for producing impregnated cathode and cathode obtained by this method
US2798010A (en) Method of manufacturing indirectly heated cathodes
KR100257779B1 (en) A cathode for an electron tube
JP2004047365A (en) Cathode and manufacturing method of the same
US2744838A (en) Electron discharge device cathode and method of making same
US2995674A (en) Impregnated cathodes
JPS5925337B2 (en) Manufacturing method of electron tube grid electrode
JPS6134218B2 (en)
US3342634A (en) Method of producing black, metalcontaining surface layers
JP2723897B2 (en) Indirectly heated cathode for electron tubes
JP3137406B2 (en) Manufacturing method of cathode assembly
JPS6055942B2 (en) Cathode manufacturing method
JPS5842132A (en) Direct-heated dispenser cathode and manufacturing method
JPH02301933A (en) Impregnated type cathode
JPH10289645A (en) Cathode heater and cathode-ray tube using the same
KR920003186B1 (en) Manufacturing method of oxide cathode
JPS62193031A (en) Cathode for electron tube
JPH04220926A (en) Cathode for electron tube
KR790001794B1 (en) A method of manufacture for electron tube cathode
JPS6017831A (en) Impregnated cathode
KR20010010956A (en) Cathode for cathode ray tube to increase an adhesion of electron-emission material layer and its manufacturing method