JPS6352698B2 - - Google Patents
Info
- Publication number
- JPS6352698B2 JPS6352698B2 JP56102804A JP10280481A JPS6352698B2 JP S6352698 B2 JPS6352698 B2 JP S6352698B2 JP 56102804 A JP56102804 A JP 56102804A JP 10280481 A JP10280481 A JP 10280481A JP S6352698 B2 JPS6352698 B2 JP S6352698B2
- Authority
- JP
- Japan
- Prior art keywords
- scintillator
- ray
- convex surface
- imaging lens
- image
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000003384 imaging method Methods 0.000 claims description 26
- 238000002594 fluoroscopy Methods 0.000 claims description 10
- 230000003287 optical effect Effects 0.000 claims description 9
- 239000002184 metal Substances 0.000 claims description 4
- 230000001678 irradiating effect Effects 0.000 claims description 2
- 238000000151 deposition Methods 0.000 claims 1
- 238000007747 plating Methods 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 230000005855 radiation Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N23/00—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
- G01N23/02—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
- G01N23/04—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
- G01N23/043—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material using fluoroscopic examination, with visual observation or video transmission of fluoroscopic images
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
- Measurement Of Radiation (AREA)
- Apparatus For Radiation Diagnosis (AREA)
Description
【発明の詳細な説明】
この発明は、高エネルギX線によるX線透視像
を得るためのX線透視装置に関し、特に、従来の
同種装置に比べて低線量において高い解像力を有
するようにしたものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an X-ray fluoroscope for obtaining X-ray fluoroscopic images using high-energy X-rays, and in particular, to an X-ray fluoroscope that has higher resolution at lower doses than conventional similar devices. It is.
第1図は従来のX線透視装置の構成を示す図で
ある。この第1図において、1はX線発生源、2
は螢光スクリーン、3は反射鏡、4は結像レン
ズ、5は高感度撮像管であり、6は被透視試料で
ある。 FIG. 1 is a diagram showing the configuration of a conventional X-ray fluoroscope. In this Figure 1, 1 is an X-ray source, 2
3 is a fluorescent screen, 3 is a reflecting mirror, 4 is an imaging lens, 5 is a high-sensitivity imaging tube, and 6 is a sample to be viewed.
次に動作について説明する。X線発生源1はX
線を発生して、被透視試料6を透過したX線が螢
光スクリーン2に照射される。螢光スクリーン2
は照射されたX線の強度に比例した螢光を発生
し、被透視試料6のX線による透視像を形成す
る。 Next, the operation will be explained. X-ray source 1 is X
X-rays are generated, and the fluorescent screen 2 is irradiated with the X-rays that have passed through the sample 6 to be diagnosed. Fluorescent screen 2
generates fluorescent light proportional to the intensity of the irradiated X-rays, and forms an X-ray fluoroscopic image of the sample 6 to be diagnosed.
また、反射鏡3は光の方向をX線の通路から遠
ざけ、結像レンズ4および高感度撮像管5をX線
の照射から保護する。結像レンズ4は螢光スクリ
ーン2の透視像を高感度撮像管5の入射面に結像
させ、テレビジヨンモニタ(図示しない)による
デイスプレイを可能にしている。 Further, the reflecting mirror 3 directs the light away from the path of the X-rays and protects the imaging lens 4 and the high-sensitivity image pickup tube 5 from exposure to the X-rays. The imaging lens 4 forms a transparent image of the fluorescent screen 2 onto the incident surface of the high-sensitivity image pickup tube 5, thereby making it possible to display the image on a television monitor (not shown).
上述のような従来のX線透視装置の欠点は螢光
スクリーン2が薄いため、透視像を作るX線がほ
とんど螢光スクリーン2を通り抜けてしまい、像
の形成に役立つX線の量が少ないことである。こ
のため、螢光強度が弱く、螢光量子数の不足によ
る画面のちらつきが大きい。したがつて、透視画
像は暗く、識別能力も不十分である。 The disadvantage of the conventional X-ray fluoroscope as described above is that the fluorescent screen 2 is thin, so most of the X-rays that form the fluoroscopic image pass through the fluorescent screen 2, and the amount of X-rays that are useful for forming the image is small. It is. For this reason, the intensity of the fluorescent light is low, and the screen flickers significantly due to a lack of fluorescent quantum numbers. Therefore, the fluoroscopic image is dark and the discrimination ability is insufficient.
この傾向はX線のエネルギが高くなるほど強く
なり、1MeV以上のエネルギでは、螢光スクリー
ン2に照射されたX線のうち、画の形成に使われ
る割合が1%のオーダしか得られない。 This tendency becomes stronger as the energy of the X-rays increases, and at an energy of 1 MeV or more, only about 1% of the X-rays irradiated onto the fluorescent screen 2 are used to form an image.
螢光スクリーン2を厚くすることは光学的分解
能の低下につながるので、限界があり、また、螢
光材料の改良も試みられているが、十分な改良は
行われていない。 There is a limit to increasing the thickness of the fluorescent screen 2 because it leads to a decrease in optical resolution, and although attempts have been made to improve the fluorescent material, sufficient improvements have not been made.
この発明は、上記従来の欠点を除去するために
なされたもので、像の形成に寄与するX線量を増
加させて、X線の線量率に対する感度を改善しか
つ光学的分解能を劣化させない新規なX線透視装
置を提供することを目的とする。 This invention was made in order to eliminate the above-mentioned conventional drawbacks, and is a novel method that increases the amount of X-rays that contribute to image formation, improves the sensitivity to the X-ray dose rate, and does not deteriorate the optical resolution. An object of the present invention is to provide an X-ray fluoroscopy device.
以下、この発明のX線透視装置の実施例につい
て図面に基づき説明する。第2図はその一実施例
の構成を示す図である。この第2図において、第
1図と同一部分には同一符中を付して述べること
にする。 Embodiments of the X-ray fluoroscopy apparatus of the present invention will be described below with reference to the drawings. FIG. 2 is a diagram showing the configuration of one embodiment. In FIG. 2, the same parts as in FIG. 1 will be described with the same reference numbers.
1はX線発生源であり、2aはシンチレータ、
2bは反射部材としての凹面反射鏡で、ガラスな
どの基材に金属膜を設けて形成したものである。
シンチレータ2aはX線発生源1に対向し、シン
チレータ2aの反対側には凹面反射鏡2bが接合
されている。シンチレータ2aとX線発生源1間
には平面反射鏡3が配設されており、また、凹面
反射鏡2bからの反射光は結像レンズ4を経て高
感度撮像管5にて受光されるようになつている。 1 is an X-ray generation source, 2a is a scintillator,
2b is a concave reflecting mirror as a reflecting member, which is formed by providing a metal film on a base material such as glass.
The scintillator 2a faces the X-ray source 1, and a concave reflecting mirror 2b is joined to the opposite side of the scintillator 2a. A plane reflector 3 is disposed between the scintillator 2a and the X-ray source 1, and the reflected light from the concave reflector 2b passes through an imaging lens 4 and is received by a high-sensitivity imaging tube 5. It's getting old.
次に、この発明のX線透視装置の動作について
説明する。X線発生源1からのX線は被透視試料
(図示せず)を透過して、シンチレータ2aに照
射されて、螢光に変換され、透視像を形成する。
このとき、X線はシンチレータ2aに入射する前
に平面反射鏡3を通過するが、ここでのX線の減
衰は無視できる。 Next, the operation of the X-ray fluoroscope according to the present invention will be explained. X-rays from the X-ray source 1 pass through a specimen to be viewed (not shown), are irradiated onto a scintillator 2a, and are converted into fluorescent light to form a fluoroscopic image.
At this time, the X-rays pass through the plane reflecting mirror 3 before entering the scintillator 2a, but the attenuation of the X-rays here can be ignored.
シンチレータ2aの厚さは従来の装置の螢光ス
クリーンに比べてはるかに厚く、1〜5cm程度に
選定されており、したがつて、シンチレータ2a
内で螢光に変換されるX線の量は従来の装置より
はるかに大きく、明るい透視像が形成できる。 The thickness of the scintillator 2a is much thicker than the fluorescent screen of conventional devices, and is selected to be approximately 1 to 5 cm.
The amount of X-rays that are converted into fluorescence within the device is much greater than with conventional devices, allowing the formation of brighter perspective images.
シンチレータ2aで得られた螢光像は凹面反射
鏡2bで反射され、さらに平面反射鏡3で反射さ
れ、結像レンズ4に入射する。この結像レンズ4
はシンチレータ2a内に形成された螢光像を高感
度撮像管5の入射面に結像させる。 The fluorescent image obtained by the scintillator 2a is reflected by a concave reflecting mirror 2b, further reflected by a flat reflecting mirror 3, and is incident on an imaging lens 4. This imaging lens 4
The fluorescent light image formed in the scintillator 2a is focused on the incident surface of the high-sensitivity image pickup tube 5.
ただし、この場合、X線の一つの経路に対応す
る螢光の発生位置はシンチレータ2a内におい
て、X線の経路に沿つた線状の領域であり、結像
レンズ4はこの線状の領域を点に見る方向から見
る必要がある。 However, in this case, the generation position of fluorescence corresponding to one path of X-rays is a linear region along the path of the X-rays within the scintillator 2a, and the imaging lens 4 You need to look at it from the point-wise direction.
これが厚いシンチレータ2a内の螢光像が尖鋭
に見る条件であり、シンチレータ2aの全面にわ
たつてこの条件が満たされなければならない。シ
ンチレータ2aの屈折率が1である場合は、この
条件は結像レンズ4をX線発生源1と同一の位置
Aに置くことによつて満たされるが、シンチレー
タ、たとえば、NaIの屈折率nは約1.85であるか
ら、この条件を満たすシンチレータ2aから結像
レンズ4までの距離はシンチレータ2aからA点
までの距離lに対して1/n倍、すなわち、1/1.
85倍になりl/nである。 This is a condition under which the fluorescent image within the thick scintillator 2a appears sharp, and this condition must be satisfied over the entire surface of the scintillator 2a. If the refractive index of the scintillator 2a is 1, this condition is met by placing the imaging lens 4 at the same position A as the X-ray source 1, but the refractive index n of the scintillator, for example NaI, is Since it is approximately 1.85, the distance from the scintillator 2a to the imaging lens 4 that satisfies this condition is 1/n times the distance l from the scintillator 2a to point A, that is, 1/1.
It becomes 85 times l/n.
ただし、結像レンズ4では、シンチレータ2a
のX線発生源1側は平面としている。シンチレー
タ2aにガラスなどの窓が設けてあつても、この
条件は変わらない。 However, in the imaging lens 4, the scintillator 2a
The X-ray source 1 side of is a flat surface. This condition does not change even if the scintillator 2a is provided with a window such as glass.
平面反射鏡3は結像レンズ4の位置をX線の経
路から移動して、結像レンズ4をX線照射から保
護するためのものである。結像レンズ4の位置は
シンチレータ2aからの光学的距離がB点と等し
いC点となる。この結像レンズ4の移動は被透視
試料を配置するスペースを作り出す点でも役立つ
ている。 The plane reflecting mirror 3 moves the position of the imaging lens 4 from the path of the X-rays to protect the imaging lens 4 from X-ray irradiation. The position of the imaging lens 4 is point C, where the optical distance from the scintillator 2a is equal to point B. This movement of the imaging lens 4 is also useful in creating a space for arranging the sample to be viewed.
シンチレータ2aの片面は凸面となつており、
これと同一の曲率を有する凹面反射鏡2bと接し
ているが、両者の境界には油などを充填し、光学
的に損失の少ない接触を行つている。 One side of the scintillator 2a is a convex surface,
Although it is in contact with the concave reflecting mirror 2b having the same curvature as this, the boundary between the two is filled with oil or the like to achieve contact with little optical loss.
凹面反射鏡2bはシンチレータ2a内で発生す
る螢光のうち、光学系と反対の方向に向う光をも
透視像の形成に役立てるためにあるが、尖鋭な螢
光像を得るためには、前述の発光部位の虚像が実
際の発光部位と一つの直線上になければならな
い。したがつて、凹面反射鏡2bの曲率中心はA
点に一致させてある。 The concave reflecting mirror 2b is provided to use the light directed in the opposite direction of the optical system out of the fluorescent light generated within the scintillator 2a to form a perspective image. The virtual image of the light-emitting site must be on one straight line with the actual light-emitting site. Therefore, the center of curvature of the concave reflecting mirror 2b is A
The points are matched.
ここで、凹面反射鏡2bはガラスなどの基材に
金属膜を設けたものである。ただし、プラスチツ
クシンチレータのように、シンチレータの材質次
第では、その凸面に直接に金属膜の蒸着またはめ
つきを施し、凹面反射鏡を不要とする設計も可能
である。 Here, the concave reflecting mirror 2b is a base material such as glass provided with a metal film. However, depending on the material of the scintillator, such as a plastic scintillator, a design in which a metal film is directly deposited or plated on the convex surface of the scintillator, thereby eliminating the need for a concave reflector, is also possible.
次に、この発明の利点を列挙する。 Next, the advantages of this invention will be listed.
(1) 厚いシンチレータ中にできる螢光像を歪やボ
ケを伴わずに観測できるので、螢光光量が多
く、かつ光学的分解能がよい。(1) Fluorescent images formed in thick scintillators can be observed without distortion or blurring, resulting in a large amount of fluorescent light and good optical resolution.
(2) 光学的境界面の数が少ないので、像のコント
ラストの低下が少ない。通常は上記(1)項の条件
を満たすためには、シンチレータの前面にコン
デンサレンズを必要とする。(2) Since the number of optical interfaces is small, there is little reduction in image contrast. Normally, a condenser lens is required in front of the scintillator to satisfy the condition in item (1) above.
(3) シンチレータの前方および後方に向う螢光を
両方とも像形成に利用できるので、利用可能光
量が多く、その分だけ結像レンズの口径を小さ
くできるか、またはシンチレータの厚さを減ら
すことができ、光学的分解能を高くできる。(3) Since both the fluorescent light directed toward the front and rear of the scintillator can be used for image formation, there is a large amount of usable light, which makes it possible to reduce the aperture of the imaging lens or reduce the thickness of the scintillator. It is possible to increase the optical resolution.
以上のように、この発明のX線透視装置によれ
ば、高エネルギX線発生源からのX線を被透視試
料に照射して透過したX線透視像により蛍光像を
発生するとともに、上記X線発生源に対向する側
が平面で反対側が凸面となつているシンチレータ
と、該シンチレータの凸面に同一曲率を持ちかつ
曲率中心が上記X線発生源側に一致して接合する
反射部材とを有し、上記シンチレータで得られた
蛍光像を上記反射部材を介して結像レンズで撮像
管に結像させるようにしたので、低線量時にも、
蛍光光量が多く、高エネルギ線に適した解像力の
高いX線透視装置が得られる効果がある。 As described above, according to the X-ray fluoroscopy apparatus of the present invention, a fluorescent image is generated by the transmitted X-ray image after irradiating the sample with X-rays from the high-energy X-ray generation source, and the A scintillator having a flat surface on the side facing the radiation source and a convex surface on the opposite side, and a reflecting member having the same curvature on the convex surface of the scintillator and joining with the center of curvature coincident with the X-ray radiation source side. Since the fluorescent image obtained by the scintillator is focused on the imaging tube by the imaging lens through the reflecting member, even at low doses,
This has the effect of providing an X-ray fluoroscope with a large amount of fluorescent light and a high resolution suitable for high-energy rays.
第1図は従来のX線透視装置の構成を示す図、
第2図はこの発明のX線透視装置の一実施例の構
成を示す図である。
1…X線発生源、2a…シンチレータ、2b…
凹面反射鏡、3…平面反射鏡、4…結像レンズ、
5…高感度撮像管。なお、図中同一符号は同一ま
たは相当部分を示す。
FIG. 1 is a diagram showing the configuration of a conventional X-ray fluoroscope,
FIG. 2 is a diagram showing the configuration of an embodiment of the X-ray fluoroscope of the present invention. 1... X-ray generation source, 2a... scintillator, 2b...
concave reflecting mirror, 3... plane reflecting mirror, 4... imaging lens,
5...High-sensitivity imaging tube. Note that the same reference numerals in the figures indicate the same or corresponding parts.
Claims (1)
ら被透視試料に照射して透過したX線透視像によ
り蛍光像を発生するとともに上記X線発生源に対
向する側が平面で反対側が凸面となつているシン
チレータと、該シンチレータの凸面に同一曲率を
持つてかつ曲率中心が上記X線発生源側に一致し
て接合する反射部材とを有し、上記シンチレータ
で得られた蛍光像を上記反射部材を介して撮像管
に結像させる結像レンズとを備え、上記シンチレ
ータと結像レンズとの光学的距離をシンチレータ
の曲率半径をl、屈折率をnとしてl/nとした
ことを特徴とするX線透視装置。 2 反射部材はシンチレータの凸面に直接金属膜
を蒸着して形成された凹面反射鏡であることを特
徴とする特許請求の範囲第1項記載のX線透視装
置。 3 反射部材はシンチレータの凸面にめつきを施
して形成された凹面反射鏡であることを特徴とす
る特許請求の範囲第1項記載のX線透視装置。 4 シンチレータの凸面と反射部材との接合は、
油を隙間なく介在させて密着させたものであるこ
とを特徴とする特許請求の範囲第1項記載のX線
透視装置。 5 反射部材を介して得られるシンチレータの蛍
光像を、X線発生源からのX線に照射されること
のない位置に配置された結像レンズに反射せしめ
撮像管に結像させる平面反射鏡をX線発生源とシ
ンチレータ間に配置せしめたことを特徴とする特
許請求の範囲第1項記載のX線透視装置。[Scope of Claims] 1. A high-energy X-ray generation source, which generates a fluorescent image by an X-ray fluoroscopic image transmitted by irradiating a sample to be diagnosed from this X-ray generation source, and a side opposite to the X-ray generation source. A scintillator having a flat surface and a convex surface on the opposite side, and a reflecting member having the same curvature on the convex surface of the scintillator and joining with the center of curvature coincident with the X-ray generation source side, an imaging lens that forms a fluorescent image on an imaging tube via the reflecting member, and the optical distance between the scintillator and the imaging lens is l/n, where the radius of curvature of the scintillator is l and the refractive index is n. An X-ray fluoroscopy device characterized by: 2. The X-ray fluoroscopy apparatus according to claim 1, wherein the reflecting member is a concave reflecting mirror formed by directly depositing a metal film on the convex surface of the scintillator. 3. The X-ray fluoroscopy apparatus according to claim 1, wherein the reflecting member is a concave reflecting mirror formed by plating the convex surface of a scintillator. 4 The connection between the convex surface of the scintillator and the reflective member is
The X-ray fluoroscopy device according to claim 1, wherein the X-ray fluoroscopy device is closely attached with oil interposed therebetween. 5. A flat reflecting mirror that reflects the fluorescent image of the scintillator obtained through the reflecting member to an imaging lens placed at a position where it will not be irradiated with X-rays from an X-ray source and forms the image on the imaging tube. The X-ray fluoroscopy device according to claim 1, wherein the X-ray fluoroscopy device is disposed between an X-ray generation source and a scintillator.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56102804A JPS585638A (en) | 1981-06-30 | 1981-06-30 | X-ray penetrating device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56102804A JPS585638A (en) | 1981-06-30 | 1981-06-30 | X-ray penetrating device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS585638A JPS585638A (en) | 1983-01-13 |
JPS6352698B2 true JPS6352698B2 (en) | 1988-10-19 |
Family
ID=14337245
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56102804A Granted JPS585638A (en) | 1981-06-30 | 1981-06-30 | X-ray penetrating device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS585638A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2572366B (en) * | 2018-03-27 | 2021-08-18 | Elekta ltd | Imager |
-
1981
- 1981-06-30 JP JP56102804A patent/JPS585638A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS585638A (en) | 1983-01-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7330532B2 (en) | Dual energy imaging using optically coupled digital radiography system | |
US4246607A (en) | X-Ray fluoroscopy device | |
US5723865A (en) | X-ray imaging device | |
JPS6230465A (en) | Reader for radiation image | |
JPH0563064B2 (en) | ||
CN110702718A (en) | Optical mirror, X-ray fluorescence analysis device, and X-ray fluorescence analysis method | |
RU2232405C2 (en) | Device for determination of location of radiation sources | |
US4818880A (en) | Radiation image read-out apparatus | |
JPS6117970A (en) | Detecting system of two x-ray energy | |
US5533087A (en) | X-ray imaging system including brightness control | |
US6931099B2 (en) | High-energy X-ray imaging device and method therefor | |
US4680473A (en) | Radiation image read-out apparatus including selective stimulating ray reflection preventing means | |
US20070246655A1 (en) | Scintillator-based micro-radiographic imaging device | |
EP0556901B1 (en) | Apparatus for detecting high energy radiation | |
US4052621A (en) | Object viewing system with radiation responsive screen system | |
US5401964A (en) | Reduced electron scattering phosphor screen for high resolution transmission electron microscope imaging | |
JPS6352698B2 (en) | ||
JPS60174137A (en) | Digital tomography apparatus | |
US3515870A (en) | X-ray system for superimposing the image of a reference object and an x-ray image | |
US2902604A (en) | Scintillation converter | |
US4810886A (en) | Electron microscope | |
JP2784260B2 (en) | Transparent storage phosphor scanning using telecentric optics | |
US4988873A (en) | Apparatus and method for scanning transparent phosphors | |
JPS59150358A (en) | Radiation detector | |
JPS6052414B2 (en) | Radiation image information reading device |