JPS6352693B2 - - Google Patents

Info

Publication number
JPS6352693B2
JPS6352693B2 JP58054283A JP5428383A JPS6352693B2 JP S6352693 B2 JPS6352693 B2 JP S6352693B2 JP 58054283 A JP58054283 A JP 58054283A JP 5428383 A JP5428383 A JP 5428383A JP S6352693 B2 JPS6352693 B2 JP S6352693B2
Authority
JP
Japan
Prior art keywords
amplitude value
value
target
load
amplitude
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58054283A
Other languages
Japanese (ja)
Other versions
JPS59178335A (en
Inventor
Hidenori Hayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP5428383A priority Critical patent/JPS59178335A/en
Publication of JPS59178335A publication Critical patent/JPS59178335A/en
Publication of JPS6352693B2 publication Critical patent/JPS6352693B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/32Investigating strength properties of solid materials by application of mechanical stress by applying repeated or pulsating forces

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Description

【発明の詳細な説明】 (イ) 産業上の利用分野 本発明は材料試験機の負荷制御装置に関し、特
に、材料の疲労試験等の動的試験を行うのに適し
た負荷制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (A) Field of Industrial Application The present invention relates to a load control device for a material testing machine, and particularly to a load control device suitable for performing dynamic tests such as fatigue tests on materials.

(ロ) 従来技術 上述の如き動的試験を行う為の試験機として
は、その試験の性質上、荷重制御システムにクロ
ーズドシステムを採用した試験機が一般に用いら
れ、特に、電気―油圧サーボ方式の試験機が広く
採用されている。従来の電気―油圧サーボ方式の
試験機は、例えば第1図に示す如く、目標値信号
Aを発生する為の発振機1および負荷振巾調節器
2、入力信号に基づいてサーボバルブ3を制御す
るサーボアンプ4、サーボバルブ3からの作動油
によつて加振される加振器5、被試験体Wに作用
している荷重を測定する為のロードセル6および
ロードアンプ7等によつて構成され、ロードアン
プ7の出力、すなわち測定値信号Bを目標値信号
Aにフイードバツクして制御動作信号Cを得てい
る。このようなサーボ制御方式の試験機におい
て、例えば疲労試験の試験時間を短縮する為に負
荷周波数を高くすると、試験機の周波数特性の影
響により、目標値信号の振巾が不変であるにも拘
わらず被試験体に実際に作用する負荷振巾がが低
下する。また、試験の進行に伴つて被試験体Wの
コンプライアンス等機械的特性が変化した場合に
おいても、同一の目標値信号であつても実際の負
荷振巾が変化し、その都度負荷振巾調節器2を操
作しなければ一定の負荷振巾を与えることができ
ない場合があつた。
(b) Prior art Due to the nature of the test, test machines that use a closed load control system are generally used to perform the above-mentioned dynamic tests. Testing machines are widely used. A conventional electro-hydraulic servo type testing machine, for example, as shown in FIG. It is composed of a servo amplifier 4, a vibrator 5 that is excited by hydraulic oil from the servo valve 3, a load cell 6 and a load amplifier 7 for measuring the load acting on the test object W, and the like. The output of the load amplifier 7, that is, the measured value signal B, is fed back to the target value signal A to obtain the control operation signal C. In such a servo control type testing machine, for example, when the load frequency is increased to shorten the test time of a fatigue test, the amplitude of the target value signal remains unchanged due to the influence of the frequency characteristics of the testing machine. First, the load amplitude that actually acts on the test object decreases. In addition, even if the mechanical characteristics of the test object W change as the test progresses, such as compliance, the actual load amplitude will change even if the target value signal is the same, and the load amplitude adjuster will change each time. There were cases where it was not possible to give a constant load amplitude without operating 2.

ところで、このような不具合を解消すべき、従
来、実際の負荷振巾の振巾値を検出して、その検
出値を目標振巾値と比較し、その比較結果に基づ
いてクロツク発振器からのクロツク周波数を増減
しつつアツプダウンカウンタのアツプ端子又はダ
ウン端子に供給し、そのアツプダウンカウンタの
計数値を負荷波形信号に乗ずることによつて目標
値信号を得る制御装置が提案されている(特開昭
55―72845号)。この技術によると、目標値信号
は、アツプダウンカウンタの1カウント分に相当
する一定量づつ変化し、従つて実振巾値にもこれ
に準じた量づつ目標振巾値に近づくよう変化する
とともに、その変化の周期が偏差の大きさに依存
することになる。従つて、実振巾値を高精度に目
標振巾値に追従させるためには、上述の一定量、
つまり装置の分解能を小さくすることが必要とな
るが、この分解能を小さくすると、急激に負荷周
波数を変化させる等によつて実振巾値が目標振巾
値に対して大きくずれた場合には、変化の周期を
速くしたとしても自ずと限界があつて、目標振巾
値への到達が遅くなつてしまう。逆に到達速度を
速くするには1カウント当りの変化量を大きくす
る必要があつて、精度が低下してしまうという欠
点がある。
By the way, in order to solve this problem, conventional methods detect the amplitude value of the actual load amplitude, compare the detected value with the target amplitude value, and adjust the clock output from the clock oscillator based on the comparison result. A control device has been proposed that obtains a target value signal by increasing or decreasing the frequency and supplying it to the up or down terminal of an up-down counter and multiplying the count value of the up-down counter by the load waveform signal (Japanese Patent Application Laid-Open No. Akira
55-72845). According to this technology, the target value signal changes by a constant amount corresponding to one count of the up-down counter, and therefore the actual amplitude value also changes by a corresponding amount to approach the target amplitude value. , the period of change depends on the magnitude of the deviation. Therefore, in order to make the actual amplitude value follow the target amplitude value with high precision, the above-mentioned constant amount,
In other words, it is necessary to reduce the resolution of the device, but if this resolution is reduced, if the actual amplitude value deviates significantly from the target amplitude value due to sudden changes in the load frequency, etc. Even if the cycle of change is made faster, there will naturally be a limit, and the target amplitude value will be reached more slowly. On the other hand, in order to increase the arrival speed, it is necessary to increase the amount of change per count, which has the disadvantage of decreasing accuracy.

(ハ) 目的 本発明の目的、負荷周波数を変化させたり、被
試験体の機械的特性の変化が発生しても、実際の
負荷振巾を速やかに、かつ、高精度に目標振巾値
に追従させることのできる材料試験機の負荷制御
装置を提供することにある。
(c) Purpose The purpose of the present invention is to quickly and accurately adjust the actual load amplitude to the target amplitude value even if the load frequency changes or the mechanical characteristics of the test object change. It is an object of the present invention to provide a load control device for a material testing machine that can be made to follow the load.

(ニ) 構成 上記の目的を達成するための構成を、第2図に
示す機能ブロツク図を参照しつつ説明すると、本
発明は、加振すべき所要波形の基準振巾波を発生
する発振器と、実際に被試験体に作用している負
荷の測定値信号の振巾値を検出する実振巾値検出
器と、その検出された振巾値のデジタル変換値D
を刻々と読み取り、あらかじめ設定された目標振
巾値に対する偏差Xを算出する偏差算出手段と、
その偏差Xをあらかじめ設定された定数Kで除算
する除算手段と、その除算結果X/Kを目標振巾
値Eに加算する加算手段と、その加算結果(E+
X/K)と基準振巾波を乗算する乗算器とを備
え、その乗算器出力を目標値信号Aとして供給す
るよう構成したことによつて、特徴づけられる。
(d) Configuration The configuration for achieving the above object will be explained with reference to the functional block diagram shown in FIG. , an actual amplitude value detector that detects the amplitude value of the measured value signal of the load actually acting on the test object, and a digital conversion value D of the detected amplitude value.
a deviation calculating means for reading the amplitude every moment and calculating the deviation X from a preset target amplitude value;
A division means for dividing the deviation X by a preset constant K, an addition means for adding the division result X/K to the target amplitude value E, and the addition result (E+
It is characterized by having a multiplier that multiplies X/K) by a reference amplitude wave, and is configured to supply the output of the multiplier as the target value signal A.

(ホ) 作用 目標値信号Aは、ある一定の周期で、偏差Xの
大きさと定数Kによつて決まる量X/Kづつ変化
し、実振巾値もそれに応じて目標振巾値に近づ
く。つまり、偏差の大きさに依存する量づつ所定
の周期で実振巾値が目標振巾値に近づくことにな
り、精度(分解能)と目標振巾値への到達速度と
は互いに独立した関係となり、高精度と高到達速
度の相方を容易に達成できる。
(E) Effect The target value signal A changes by an amount X/K determined by the magnitude of the deviation X and the constant K in a certain period, and the actual amplitude value approaches the target amplitude value accordingly. In other words, the actual amplitude value approaches the target amplitude value at a predetermined period by an amount that depends on the magnitude of the deviation, and the accuracy (resolution) and the speed at which the target amplitude value is reached are independent of each other. , the combination of high precision and high attainment speed can be easily achieved.

(ヘ) 実施例 以下、本発明実施例を図面に基づいて説明す
る。
(f) Examples Examples of the present invention will be described below based on the drawings.

第3図は本発明実施例の構成を示すブロツク図
である。
FIG. 3 is a block diagram showing the configuration of an embodiment of the present invention.

試験機の加振器11によつて被試験体Wに与え
られた荷重は、ロードセル12およびロードアン
プ13によつて測定され、その測定値信号Bは目
標値信号Aにフイードバツクされるとともに実振
巾値検出器14に供給される。実振巾値検出器1
4は測定値信号Bの一周期ごとの実振巾値Dを検
出して出力し、その値はA―D変換器15によつ
てデジタル量に変換されてコンピユータ16に取
り込まれる。コンピユータ16はCPU17の他、
プログラムが書き込まれたROM18、上述の実
振巾値D等が一時的に格納されるRAM19、お
よび被試験体Wに加えるべき目標振巾値E等を設
定する為のキーボード20その他から構成され、
目標振巾値Eと実振巾値Dとから後述する如き命
令振巾値Fを算出して出力する。一方、発振器2
1は加振すべき所要の波形の基準振巾波Gを発生
し、その出力は命令振巾値Fとともに乗算器22
に入力され、乗算器22ではこれらを乗算して目
標値信号Aとして出力し、測定値信号Bがフイー
ドバツクされて制御動体信号Cとなつてサーボア
ンプ23に供給される。サーボアンプ23はその
制御動作信号Cに応じてサーボバルブ24を制御
し、油圧源25からの作動油供給量を加減して加
振器11を駆動するよう構成されている。
The load applied to the test object W by the vibrator 11 of the testing machine is measured by the load cell 12 and load amplifier 13, and the measured value signal B is fed back to the target value signal A and is also fed back to the actual vibration. It is supplied to a width value detector 14. Actual amplitude value detector 1
4 detects and outputs the actual amplitude value D for each period of the measurement value signal B, and the value is converted into a digital quantity by the AD converter 15 and taken into the computer 16. In addition to the CPU 17, the computer 16 has
It consists of a ROM 18 in which a program is written, a RAM 19 in which the above-mentioned actual amplitude value D etc. are temporarily stored, a keyboard 20 for setting the target amplitude value E etc. to be added to the test object W, and others.
A commanded amplitude value F, which will be described later, is calculated from the target amplitude value E and the actual amplitude value D and is output. On the other hand, oscillator 2
1 generates a reference amplitude wave G of the required waveform to be excited, and its output is sent to the multiplier 22 along with the command amplitude value F.
The multiplier 22 multiplies these signals and outputs them as the target value signal A. The measured value signal B is fed back and becomes the control moving object signal C, which is supplied to the servo amplifier 23. The servo amplifier 23 is configured to control the servo valve 24 according to the control operation signal C, adjust the amount of hydraulic oil supplied from the hydraulic source 25, and drive the vibrator 11.

次に作用を述べる。第4図はコンピユータ16
によつて命令振巾値Fを算出して出力する過程を
示すフローチヤートである。
Next, we will discuss the effect. Figure 4 shows the computer 16
This is a flowchart showing the process of calculating and outputting the command amplitude value F by using the following method.

負荷の一周期ごとに採取される実振巾値Dは、
あらかじめ設定されている目標振巾値Eと比較さ
れて偏差Xが算出される。次に、その偏差Xが0
近傍に設けられた不感帯±X0の範囲外であるか
どうかが判断され、範囲内であれば目標振巾値E
そのものが命令振巾値Fとして出力される。偏差
Xが不感帯の範囲外である場合、命令振巾値Fは
下記の式によつて算出されて出力される。
The actual amplitude value D collected for each cycle of the load is
A deviation X is calculated by comparing it with a preset target amplitude value E. Next, the deviation X is 0
It is determined whether or not it is outside the range of the dead zone ±X 0 provided nearby, and if it is within the range, the target amplitude value E
That value is output as the command amplitude value F. When the deviation X is outside the dead zone, the command amplitude value F is calculated by the following formula and output.

F=E+X/K K;定数 すなわち、命令振巾値Fは、偏差Xを定数Kで
除した値を目標振巾値Eに加算した値となる。定
数Kは実振巾値Dが無理なく目標振巾値Eに近づ
く為の設定値で、実験では2〜4の値が良好な結
果を示している。従つて、命令振巾値Fは目標振
巾値Eに対する実振巾値Dの偏差Xの大きさに応
じ、実振巾値Dの採取ごとに、つまり負荷の一周
期ごとに順次修正が加えられ、偏差Xはこれによ
つて順次0に近づく。その結果、第5図に加振周
波数を段階的に高くした場合の本発明実施例によ
る目標値信号Aと測定値信号Bを示す如く、測定
値信号Bの振巾値が目標振巾値Eに近づくよう目
標値信号Aの振巾が漸次補正されて乗算器22か
ら出力される。ちなみに、第6図に同様に従来の
閉ループシステムの制御装置による目標値信号と
測定値信号を示すと、一定の振巾値を持つた目標
値信号によれば、試験機の応答持性等によつて測
定値信号の振巾値が段階的に低下する。
F=E+X/K K: Constant That is, the command amplitude value F is the value obtained by dividing the deviation X by the constant K and adding it to the target amplitude value E. The constant K is a set value so that the actual amplitude value D reasonably approaches the target amplitude value E, and in experiments, values of 2 to 4 have shown good results. Therefore, the commanded amplitude value F is sequentially corrected every time the actual amplitude value D is sampled, that is, every cycle of the load, depending on the magnitude of the deviation X of the actual amplitude value D from the target amplitude value E. As a result, the deviation X gradually approaches 0. As a result, as shown in FIG. 5, which shows the target value signal A and the measured value signal B according to the embodiment of the present invention when the excitation frequency is increased stepwise, the amplitude value of the measured value signal B becomes the target amplitude value E. The amplitude of the target value signal A is gradually corrected so that it approaches , and is output from the multiplier 22 . Incidentally, Fig. 6 similarly shows the target value signal and measured value signal from the conventional closed-loop system control device.If the target value signal has a constant amplitude value, it will affect the response characteristics of the test machine, etc. Therefore, the amplitude value of the measured value signal decreases in stages.

なお、0近傍に設けられる不感帯は、制御精度
に影響を及ぼさない程度で、かつ、制御の安定度
を乱さない程度の大きさに選択されるべきで、上
述の定数Kも制御の安定度を乱さない範囲で可能
な限り1に近づけると振巾修正の応答が速くな
る。
Note that the dead zone provided near 0 should be selected to a size that does not affect control accuracy and does not disturb control stability, and the constant K mentioned above also affects control stability. If it is set as close to 1 as possible without causing disturbance, the amplitude correction response will be faster.

上述の実施例で負荷の制御を荷重によつて行つ
たが、他の負荷に関する物理量、例えば変位やあ
るいは試験によつてはトルク等によつて行つても
よいことは勿論である。
In the embodiments described above, the load was controlled using the load, but it goes without saying that it may be controlled using other physical quantities related to the load, such as displacement or, depending on the test, torque.

(ト) 効果 以上説明したように、本発明によれば、目標振
巾値に対する実振巾値の偏差に応じた量づつ、例
えば負荷の一周期ごと等の一定周期ごとに目標値
信号に補正が加えられ、実振巾値はこれに応じて
目標振巾値へと漸近することになる。ここで、実
振巾値の目標振巾値への到達速度は、偏差の大き
さと定数Kにのみ依存し、従来のように分解能の
大小とは互いに独立した関係となつているから、
高精度にしかも高速度で実振巾値を目標値に追従
させることができる。このことは、例えば航空機
の部品等を、温度および負荷パターン(負荷周波
数および振巾)を刻々と変化させつつ加振する、
フライト・バイ・フライト試験等を行う場合に特
に有効であつて、常に上質の分析結果を得ること
ができる。
(g) Effects As explained above, according to the present invention, the target value signal is corrected by an amount corresponding to the deviation of the actual amplitude value from the target amplitude value, for example, at regular intervals such as every cycle of the load. is added, and the actual amplitude value asymptotically approaches the target amplitude value accordingly. Here, the speed at which the actual amplitude value reaches the target amplitude value depends only on the magnitude of the deviation and the constant K, and as in the past, it has a mutually independent relationship with the resolution.
The actual amplitude value can be made to follow the target value with high accuracy and high speed. This means that, for example, parts of an aircraft are vibrated while constantly changing the temperature and load pattern (load frequency and amplitude).
It is particularly effective when conducting flight-by-flight tests, etc., and allows high-quality analysis results to be obtained at all times.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の材料試験機の負荷制御装置の構
成を示すブロツク図、第2図は本発明の構成を示
す為の機能ブロツク図、第3図は本発明実施例の
構成を示すブロツク図、第4図はその命令振巾値
を出力する過程を示すフローチヤート、第5図は
本発明実施例による目標値信号と測定値信号を示
す波形図、第6図は従来例による目標値信号と測
定値信号を示す波形図である。 11…加振器、12…ロードセル、13…ロー
ドアンプ、14…実振巾値検出器、16…コンピ
ユータ、21…発振器、22…乗算器、23…サ
ーボアンプ、24…サーボバルブ、A…目標値信
号、B…測定値信号、C…制御動作信号、D…実
振巾値、E…目標振巾値、F…命令振巾値、G…
基準振巾波。
Figure 1 is a block diagram showing the configuration of a load control device of a conventional material testing machine, Figure 2 is a functional block diagram showing the configuration of the present invention, and Figure 3 is a block diagram showing the configuration of an embodiment of the present invention. , FIG. 4 is a flowchart showing the process of outputting the command amplitude value, FIG. 5 is a waveform diagram showing the target value signal and measured value signal according to the embodiment of the present invention, and FIG. 6 is the target value signal according to the conventional example. FIG. 3 is a waveform diagram showing a measured value signal. 11... Exciter, 12... Load cell, 13... Load amplifier, 14... Actual amplitude value detector, 16... Computer, 21... Oscillator, 22... Multiplier, 23... Servo amplifier, 24... Servo valve, A... Target Value signal, B...Measured value signal, C...Control operation signal, D...Actual amplitude value, E...Target amplitude value, F...Command amplitude value, G...
Reference amplitude.

Claims (1)

【特許請求の範囲】[Claims] 1 被試験体を加振する為の目標値信号に、実際
に被試験体に作用している負荷に関する物理量の
測定値信号をフイールドバツクすることにより、
被試験体を加振する加振器の制御動作信号を得る
よう構成された装置において、加振すべき所要波
形の基準振巾波を発生する発振器と、上記測定値
信号の振巾値を検出する実振巾値検出器と、その
検出された振巾値のデジタル変換値を刻々と読み
取り、あらかじめ設定された目標振巾値に対する
偏差を算出する偏差算出手段と、その算出された
偏差をあらかじめ設定された定数で除算する除算
手段と、その除算結果を上記目標振巾値に加算す
る加算手段と、その加算結果と上記基準振巾波を
乗算する乗算器とを備え、その乗算器出力を上記
目標値信号として供給するよう構成したことを特
徴とする材料試験機の負荷制御装置。
1 By fielding back the measured value signal of the physical quantity related to the load actually acting on the test object to the target value signal for exciting the test object,
In a device configured to obtain a control operation signal for an exciter that excites a test object, an oscillator that generates a reference amplitude wave of a required waveform to be excited and an amplitude value of the measured value signal detected. an actual amplitude value detector, which reads the digital conversion value of the detected amplitude value moment by moment, and calculates a deviation from a preset target amplitude value; comprising a division means for dividing by a set constant, an addition means for adding the division result to the target amplitude value, and a multiplier for multiplying the addition result by the reference amplitude value, and the multiplier output is A load control device for a material testing machine, characterized in that it is configured to supply the target value signal as the target value signal.
JP5428383A 1983-03-29 1983-03-29 Load control apparatus for testing machine Granted JPS59178335A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5428383A JPS59178335A (en) 1983-03-29 1983-03-29 Load control apparatus for testing machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5428383A JPS59178335A (en) 1983-03-29 1983-03-29 Load control apparatus for testing machine

Publications (2)

Publication Number Publication Date
JPS59178335A JPS59178335A (en) 1984-10-09
JPS6352693B2 true JPS6352693B2 (en) 1988-10-19

Family

ID=12966230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5428383A Granted JPS59178335A (en) 1983-03-29 1983-03-29 Load control apparatus for testing machine

Country Status (1)

Country Link
JP (1) JPS59178335A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6218644U (en) * 1985-07-17 1987-02-04

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5572845A (en) * 1978-11-28 1980-06-02 Saginomiya Seisakusho Inc Automatic amplitude controller of electric oil pressure servo test equipment

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5572845A (en) * 1978-11-28 1980-06-02 Saginomiya Seisakusho Inc Automatic amplitude controller of electric oil pressure servo test equipment

Also Published As

Publication number Publication date
JPS59178335A (en) 1984-10-09

Similar Documents

Publication Publication Date Title
EP0897111B1 (en) Material testing machine
US6192299B1 (en) Method of measuring operation characteristic of proportional electromagnetic control valve, method of controlling operation of hydraulic cylinder, and method of modifying operation characteristic of proportional electromagnetic control valve
US8166874B2 (en) Vibration severity monitor to control press operating shutheight and process operating conditions
JPS6352693B2 (en)
JP6466165B2 (en) PID control apparatus, PID control method, and test apparatus equipped with PID control apparatus
JP3399792B2 (en) Fatigue testing machine
CN106180213B (en) Hydraulic pressing control device and its method of adjustment
JP2890529B2 (en) Self tuning method
JP3858833B2 (en) Material testing machine
SU721678A1 (en) Method and device for determining two components of mechanical oscillations of a structure
JPS6341495B2 (en)
JPH0750001B2 (en) String vibration type force measuring device
SU1221505A2 (en) Arrangement for measuring angular vibrodisplacements of rotating shaft
JPH1164195A (en) Material testing machine
JPS59178334A (en) Material testing machine
JPH0434761B2 (en)
SU1037165A1 (en) Electromagnetic structure scope
JPS63244209A (en) Electrohydraulic servo-system controller
SU1339495A1 (en) Device for controlling the loading at life service tests
JPS63154085A (en) Detector for unknown variable parameter in physical system
SU875335A1 (en) Device for regulating cutting process power parameters
JPS62267643A (en) Fatigue testing machine
SU892419A2 (en) Device for determining frequency characteristics of automatic control systems
JPH07113597B2 (en) Fatigue crack growth test equipment
JPH0264434A (en) Controlling device of material tester