JPS6352311B2 - - Google Patents

Info

Publication number
JPS6352311B2
JPS6352311B2 JP3113481A JP3113481A JPS6352311B2 JP S6352311 B2 JPS6352311 B2 JP S6352311B2 JP 3113481 A JP3113481 A JP 3113481A JP 3113481 A JP3113481 A JP 3113481A JP S6352311 B2 JPS6352311 B2 JP S6352311B2
Authority
JP
Japan
Prior art keywords
fluid
shell
heat exchanger
fixed tube
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3113481A
Other languages
Japanese (ja)
Other versions
JPS57148198A (en
Inventor
Hiroyuki Imagawa
Juji Saito
Atsushi Yoshida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP3113481A priority Critical patent/JPS57148198A/en
Publication of JPS57148198A publication Critical patent/JPS57148198A/en
Publication of JPS6352311B2 publication Critical patent/JPS6352311B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は熱交換器、特に竪型固定管板式熱交換
器に関するものである。 従来から第1図に示されるごとき、竪型固定管
板式熱交換器は公知である。この熱交換器1は、
円筒状の竪型のシエル2、該シエルの上端部2A
および下端部2Bのそれぞれに取り付けられた上
下部の固定管板4,3、該上下部の固定管板に、
それらを貫通して前記シエルの長さ方向に沿つて
取り付けられた多数本のステンレス鋼チユーブ5
および前記シエル2の上方と下方にシエル2に流
体を導入し、また導入された流体を導出するため
に取り付けられた流体導入口6と流体導出口7、
ならびにチユーブ5に流体を分配して導くために
下部固定管板3に取り付けられた下部チヤンネル
8およびチユーブ5から熱交換された流体を集め
て排出するために、上部固定管板4に取り付けら
れた上部チヤンネル9から構成されている。必要
に応じてさらにガス抜き管10をシエル2の上方
に取り付けてもよい。ところが、この熱交換器で
はチユーブ5の上方であつて、上部固定管板4に
チユーブ5が把持される部分5Aにひび割れが生
じやすい。これは例えばチユーブが製造時に残留
応力、熱交換器使用時の負荷応力、流体中の溶存
酸素、その他イオン等が原因して起こるが、さら
に上部固定管板4の構造、温度等の影響も受け
る。 そこで、本発明者らは上記割れ(応力腐食割れ
と称する)の発生が抑制された熱交換器の取得に
ついて鋭意検討した結果、本発明に到達した。 したがつて、本発明の目的は応力腐食割れが抑
制された熱交換器の提供にある。この目的は前記
要素からなる熱交換器において、前記流体導出口
好ましくは、複数個の流体導出口を、該導出口か
ら導出される流体の流面の高さが、前記上部固定
管板の下面と同じかそれより高くなるよう位置さ
せてある熱交換器とすることによつて達成され
る。更に好ましくは、前記シエルの周囲に、前記
導出口から導出してくる流体を集めて排出するジ
ヤケツトを設けてなる熱交換器とする。 具体的に本発明に係る熱交換器の構造を第2図
にしたがつて説明する。 本発明の熱交換器の主要な要素は前記した従来
のものと同じである。すなわち熱交換器1は、シ
エル2、上下部の固定管板4,3、ステンレス鋼
チユーブ5、流体導入口、出口6,7、上下部チ
ヤンネル9,8等から構成されている。 しかし、本発明に係る熱交換器1の流体導出口
の位置が従来のものと著しく異なる。即ち流体導
出口7を、該導出口から導出される流体の流面の
高さが、上部固定管板4の下面と同じか、または
それより高くなるように位置させてある点におい
て著しく、従来のものと異なる。第3図に従つて
詳細に説明すれば、次のとおりである。第3図は
流体導出口7付近の部分的拡大図であつて、流体
の流面の高さが上部固定管板の不面の高さと同じ
である場合を示す。即ち、流体Lがその導出口7
から導出されるとき、その最上位の流面LSが、上
部固定管板4の下面4dの高さ(水準)と同じに
なるよう導出口7がシエル2の中腹に設けられて
いる。前記高さを同じようにするには、流体導出
口7の最上位面7uが上部固定管板4の下面4d
と同じか、それともそれより高い位置になければ
ならないし、シエル2の中腹に設けられる流体導
出口の数及び各導出口の断面積等は流体導入口6
から導入される流体の流量を考慮して決められ
る。本発明の熱交換器においては、上部固定管板
4に下面4dの下位に流体の満たされない空間を
形成させないということが重要であるから、この
ことを踏襲する限りにおいて、流体導出口の形
状、数、大きさを決め得る。 本発明の熱交換器においては、好ましくは流体
導出口7から導出された流体を集めるジヤケツト
12をシエル2の外周に設け、それから流体を排
出管11により排出するようにする。排出管11
の高さは第2図のように高くすると、流体導出口
7の流面Lsは流体導出管7の最上位面7uに位
置させることが可能になる。 さらに本発明の熱交換器においては好ましくは
上部固定管板4およびシエル2の上部のチユーブ
内の流体に接する部分の材質を一般構造用炭素
鋼々材とし、チユーブ内流体が接する側をステン
レスライニングまたはクラツド材とする。 このように本発明に係る熱交換器は上記の構造
となつているので、次のような作用、効果を発揮
する。 (1) 上部シエル内の上部固定管板下面の空間がな
くなる。そのため冷却流体により上部固定管板
4の温度を下げ、ひいては前記接触する部分
5′のステンレス鋼チユーブ5の応力腐食割れ
を抑制し得る。 (2) 前記空間がなくなるので、前記接触する部分
5′の冷却流体の乾湿繰り返し現象によつて応
力腐食割れの原因となる物質、例えば塩分の濃
縮を防ぎ、前記接触する部分5′のステンレス
鋼チユーブ5の応力腐食割れを抑制し得る。 実施例 1 第1図に示す構造の伝熱面積5m2、シエル内径
250mm、チユーブ本数19本、外径27.7mm、長さ4
mのステンレス鋼製竪型多管式熱交換器2器のチ
ユーブ側に150℃のプロセス流体を入れた。この
プロセス流体の出口温度は140℃である。シエル
側には20℃の工業用水を通水し熱交換させる。 この熱交換器を同時に稼動し、応力腐食割れが
発生してチユーブが洩れた時点で運転を中止して
プロセス流体、工業用水を抜き出し、チユーブの
応力腐食割れを調査した。 調査方法は、渦流探傷器(電子磁気工業MT−
3450型)にて調査した。調査結果を表1に示す。
The present invention relates to a heat exchanger, particularly a vertical fixed tube sheet heat exchanger. BACKGROUND OF THE INVENTION A vertical fixed tube plate heat exchanger as shown in FIG. 1 is conventionally known. This heat exchanger 1 is
Cylindrical vertical shell 2, upper end 2A of the shell
and the upper and lower fixed tube sheets 4 and 3 attached to the lower end portion 2B, respectively, and the upper and lower fixed tube sheets,
A number of stainless steel tubes 5 are attached along the length of the shell through them.
and a fluid inlet 6 and a fluid outlet 7 installed above and below the shell 2 to introduce fluid into the shell 2 and to draw out the introduced fluid;
and a lower channel 8 attached to the lower fixed tube sheet 3 for distributing and directing the fluid to the tubes 5 and an upper fixed tube sheet 4 attached to the upper fixed tube sheet 4 for collecting and discharging the heat exchanged fluid from the tubes 5. It consists of an upper channel 9. If necessary, a gas vent pipe 10 may be further attached above the shell 2. However, in this heat exchanger, cracks tend to occur in the portion 5A above the tube 5 where the tube 5 is held by the upper fixed tube plate 4. This is caused by, for example, residual stress when the tube is manufactured, stress applied when using a heat exchanger, dissolved oxygen in the fluid, other ions, etc., but it is also affected by the structure of the upper fixed tube sheet 4, temperature, etc. . Therefore, the present inventors have conducted extensive studies on obtaining a heat exchanger in which the occurrence of the above-mentioned cracks (referred to as stress corrosion cracking) is suppressed, and as a result, they have arrived at the present invention. Therefore, an object of the present invention is to provide a heat exchanger in which stress corrosion cracking is suppressed. This purpose is to provide a heat exchanger comprising the above-mentioned elements such that the fluid outlet port, preferably a plurality of fluid outlet ports, is such that the height of the flow surface of the fluid led out from the outlet port is the lower surface of the upper fixed tube plate. This is achieved by placing the heat exchanger at a height equal to or higher than the More preferably, the heat exchanger is provided with a jacket around the shell that collects and discharges the fluid led out from the outlet. The structure of the heat exchanger according to the present invention will be specifically explained with reference to FIG. The main elements of the heat exchanger of the present invention are the same as those of the conventional heat exchanger described above. That is, the heat exchanger 1 includes a shell 2, upper and lower fixed tube plates 4 and 3, a stainless steel tube 5, a fluid inlet, outlets 6 and 7, upper and lower channels 9 and 8, and the like. However, the position of the fluid outlet of the heat exchanger 1 according to the present invention is significantly different from that of the conventional heat exchanger. That is, the fluid outlet 7 is located so that the height of the flow surface of the fluid led out from the outlet is the same as or higher than the lower surface of the upper fixed tube plate 4, which is significantly different from the conventional method. different from that of The detailed explanation will be as follows with reference to FIG. FIG. 3 is a partially enlarged view of the vicinity of the fluid outlet 7, showing a case where the height of the fluid flow surface is the same as the height of the uneven surface of the upper fixed tube plate. That is, the fluid L flows through its outlet 7.
The outlet 7 is provided in the middle of the shell 2 so that the uppermost flow surface L S is the same as the height (level) of the lower surface 4d of the upper fixed tube plate 4. In order to make the heights the same, the uppermost surface 7u of the fluid outlet 7 is the lower surface 4d of the upper fixed tube plate 4.
The number of fluid outlet ports provided in the middle of the shell 2 and the cross-sectional area of each outlet port must be the same as or higher than the fluid inlet port 6.
It is determined by considering the flow rate of the fluid introduced from the In the heat exchanger of the present invention, it is important not to form a space in the upper fixed tube plate 4 below the lower surface 4d that is not filled with fluid, so as long as this is followed, the shape of the fluid outlet, You can decide the number and size. In the heat exchanger of the present invention, a jacket 12 is preferably provided around the outer periphery of the shell 2 to collect the fluid discharged from the fluid outlet 7, and then the fluid is discharged through the discharge pipe 11. Discharge pipe 11
If the height of is increased as shown in FIG. 2, the flow surface Ls of the fluid outlet 7 can be located at the uppermost surface 7u of the fluid outlet tube 7. Furthermore, in the heat exchanger of the present invention, the material of the upper fixed tube plate 4 and the upper portion of the shell 2 that is in contact with the fluid in the tube is preferably a general structural carbon steel material, and the side of the tube that is in contact with the fluid is lined with stainless steel. Or use clad wood. Since the heat exchanger according to the present invention has the above-described structure, it exhibits the following functions and effects. (1) The space under the upper fixed tube plate inside the upper shell is eliminated. Therefore, the temperature of the upper fixed tube plate 4 can be lowered by the cooling fluid, and stress corrosion cracking of the stainless steel tube 5 at the contacting portion 5' can be suppressed. (2) Since the space is eliminated, the concentration of substances that cause stress corrosion cracking, such as salt, due to repeated drying and wetting of the cooling fluid in the contacting part 5' is prevented, and the stainless steel of the contacting part 5' is prevented from concentrating. Stress corrosion cracking of the tube 5 can be suppressed. Example 1 The structure shown in Fig. 1 has a heat transfer area of 5 m 2 and a shell inner diameter.
250mm, number of tubes: 19, outer diameter: 27.7mm, length: 4
A process fluid at 150°C was introduced into the tube side of two vertical multitubular stainless steel heat exchangers. The exit temperature of this process fluid is 140°C. Industrial water at 20°C is passed through the shell side for heat exchange. This heat exchanger was operated at the same time, and when stress corrosion cracking occurred and the tube leaked, the operation was stopped, process fluid and industrial water were extracted, and stress corrosion cracking of the tube was investigated. The investigation method is an eddy current flaw detector (Electronic Magnetic Industry MT-
3450 model). The survey results are shown in Table 1.

【表】 次に応力腐食割れチユーブを新品のチユーブと
交換し、この熱交換器の1基を上部固定管板部付
近の周方向シエルにシエル内流体を導出するため
の数個の導出口を設け、この導出口より導出され
た流体をまとめて導出するためのジヤケツト方式
に構造を改良し(本発明に係る熱交換器)、もう
1基の従来のものと同時に稼動させた。その結果
を表2に示す。 通常の竪型熱交換器ではいずれも9〜12ケ月で
応力腐食割れ発生によりチユーブの洩れに至る
が、構造面を改良した本発明に係る熱交換器では
3年間応力腐食割れは発生せず、著しい効果が認
められた。
[Table] Next, the stress corrosion cracked tube was replaced with a new tube, and one of the heat exchangers was connected to the circumferential shell near the upper fixed tube plate with several outlet ports for discharging the fluid inside the shell. The structure was improved to a jacket type for collectively discharging the fluid discharged from the outlet (heat exchanger according to the present invention), and the heat exchanger was operated simultaneously with another conventional heat exchanger. The results are shown in Table 2. In normal vertical heat exchangers, stress corrosion cracking occurs in 9 to 12 months, leading to tube leakage, but in the heat exchanger of the present invention, which has an improved structure, no stress corrosion cracking occurs for 3 years. A significant effect was observed.

【表】 実施例 2 伝熱面積275m2のステンレス鋼製竪型多管式熱
交換器2基のチユーブ側に130℃のプロセス流体
を入れた。このプロセス流体の出口温度は120℃
である。シエル側には20℃の工業用水を通水し30
℃で取り出す。 この熱交換器を同時に稼動したところ、2年目
よりチユーブに応力腐食割れが発生した。発生状
況を表3に示す。2基のうち1基を稼動後5年目
で更新する際、上部固定管板部付近の周方向シエ
ルにシエル内流体を導出するために数個の導出口
を設け、この導出口より排出された流体をまとめ
て導出するためのジヤケツト方式に構造を改良し
(本発明に係る熱交換器)稼動を開始した。 応力腐食割れを発生しているか否かの調査は年
1回の定期検査時に上部チヤンネルを外し、チユ
ーブ内に水を張つて、シエル側に空気圧をかけて
肉眼にて行なつた。さらに渦流探傷器(電子磁気
工業MT−3450型)で調査した。 通常の竪型熱交換器では稼動後2〜3年で応力
腐食割れが発生し、年毎に増加の傾向にあるが、
構造面を改良した本発明の熱交換器は4年間応力
腐食割れは発生せず、著しい効果が認められた。
[Table] Example 2 A process fluid at 130° C. was introduced into the tube side of two stainless steel vertical multitubular heat exchangers with a heat transfer area of 275 m 2 . The outlet temperature of this process fluid is 120℃
It is. Industrial water at 20°C is passed through the shell side at 30°C.
Remove at °C. When this heat exchanger was operated at the same time, stress corrosion cracking occurred in the tubes from the second year onwards. Table 3 shows the occurrence situation. When renewing one of the two units after five years of operation, several outlet ports were installed in the circumferential shell near the upper fixed tube plate to draw out the fluid inside the shell, and the fluid was discharged from these outlets. The structure was improved to a jacket system (heat exchanger according to the present invention) for collectively discharging the collected fluid, and operation began. To investigate whether stress corrosion cracking was occurring, we removed the upper channel during annual inspections, filled the tube with water, and applied air pressure to the shell side to visually inspect the tube. Further investigation was conducted using an eddy current flaw detector (Denshi Magnetic Industry Model MT-3450). In normal vertical heat exchangers, stress corrosion cracking occurs after 2 to 3 years of operation, and the number of stress corrosion cracks tends to increase every year.
The heat exchanger of the present invention, which has an improved structure, did not suffer from stress corrosion cracking for 4 years, and was found to be highly effective.

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の竪型固定管板式熱交換器の破砕
縦断面図である。第2図は本発明に係る前記熱交
換器の破砕縦断面図である。第3図は流体導出口
付近の部分拡大図である。 1……熱交換器、2……シエル、3……下部固
定管板、4……上部固定管板、5……ステンレス
鋼チユーブ、6……流体導入口、7……流体導出
口、8……下部チヤンネル、9……上部チヤンネ
ル、10……ガス抜き管、11……排出管、12
……ジヤケツト。
FIG. 1 is a fragmented longitudinal sectional view of a conventional vertical fixed tube plate heat exchanger. FIG. 2 is a fragmented longitudinal sectional view of the heat exchanger according to the present invention. FIG. 3 is a partially enlarged view of the vicinity of the fluid outlet. DESCRIPTION OF SYMBOLS 1... Heat exchanger, 2... Shell, 3... Lower fixed tube sheet, 4... Upper fixed tube sheet, 5... Stainless steel tube, 6... Fluid inlet, 7... Fluid outlet, 8 ... lower channel, 9 ... upper channel, 10 ... gas vent pipe, 11 ... discharge pipe, 12
...jacket.

Claims (1)

【特許請求の範囲】[Claims] 1 円筒状の竪型のシエル、該シエルの上端部お
よび下端部のそれぞれに取り付けられた上、下部
の固定管板、該上下部の固定管板にそれらを貫通
させて前記シエルの長さ方向に沿つて取り付けら
れた多数本のステンレス鋼チユーブ、および前記
シエルの上方と下方に該シエル内に流体を導入
し、また導入された流体を導出するために取り付
けられた液体導入口と液体導出口ならびに前記チ
ユーブに流体を分配して導くために下部固定管板
に取り付けられた下部チヤンネルならびに前記チ
ユーブから熱交換された流体を集めて排出するた
めに、前記上部管板に取り付けられた上部チヤン
ネルからなる熱交換器において、前記液体導出口
を、該導出口から導出される流体の流面の高さ
が、前記上部固定管板の下面と同じか、またはそ
れより高くなるように位置せしめたことを特徴と
する竪型固定管板式熱交換器。
1. A cylindrical vertical shell, an upper and lower fixed tube sheet attached to the upper and lower ends of the shell, and a tube plate that is passed through the upper and lower fixed tube sheets in the longitudinal direction of the shell. a number of stainless steel tubes installed along the shell, and liquid inlets and outlets installed above and below the shell for introducing fluid into the shell and for removing the introduced fluid. and a lower channel attached to the lower fixed tubesheet for distributing and directing fluid to said tube and an upper channel attached to said upper tubesheet for collecting and discharging heat exchanged fluid from said tube. In the heat exchanger, the liquid outlet is positioned such that the height of the flow surface of the fluid led out from the outlet is the same as or higher than the lower surface of the upper fixed tube plate. A vertical fixed tube plate heat exchanger featuring:
JP3113481A 1981-03-06 1981-03-06 Heat exchanger having vertical stationary pipe plate Granted JPS57148198A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3113481A JPS57148198A (en) 1981-03-06 1981-03-06 Heat exchanger having vertical stationary pipe plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3113481A JPS57148198A (en) 1981-03-06 1981-03-06 Heat exchanger having vertical stationary pipe plate

Publications (2)

Publication Number Publication Date
JPS57148198A JPS57148198A (en) 1982-09-13
JPS6352311B2 true JPS6352311B2 (en) 1988-10-18

Family

ID=12322954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3113481A Granted JPS57148198A (en) 1981-03-06 1981-03-06 Heat exchanger having vertical stationary pipe plate

Country Status (1)

Country Link
JP (1) JPS57148198A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5848117B2 (en) * 2011-03-28 2016-01-27 三菱重工業株式会社 Heat exchanger

Also Published As

Publication number Publication date
JPS57148198A (en) 1982-09-13

Similar Documents

Publication Publication Date Title
US1946234A (en) Heat exchanger
US4273076A (en) Steam generator sludge lancing apparatus
US4199537A (en) Liquid distributor for thin-film, tube-bundle apparatus
US2078288A (en) Method and apparatus for heating and deaerating boiler feed water
JPH0462770B2 (en)
US4289198A (en) Heat exchanger
EP0095203B1 (en) Method of operating a liquid-liquid heat exchanger
DE2448832C2 (en) Liquid metal / water heat exchanger with exchangeable tube bundles
JPS6352311B2 (en)
JPS5931668B2 (en) Vertical fixed tube sheet heat exchanger
CN210833162U (en) Tube plate heat exchanger
US1789880A (en) Oil-refinery condenser
CN217503972U (en) Positive displacement water heater
US2071277A (en) Heat exchanger
US4558734A (en) Heat exchanger having a set of pipes
US2267695A (en) Heat exchanger
US2535996A (en) Evaporator
US1857308A (en) Catalytic apparatus
US3586487A (en) Apparatus for continuously digesting alumina
CA2948234C (en) Heat exchanger constructive arrangement
CN216282961U (en) Air preheating device containing sulfur dioxide flue gas
US4737281A (en) Cold trap for purifying liquid sodium containing impurities
CN207335496U (en) A kind of rapid-cooling heat exchanger
DE692836C (en) r catalytic gas reactions
CN218583834U (en) Heat exchanger for preventing vapor-liquid alternate corrosion