JPS6352105B2 - - Google Patents

Info

Publication number
JPS6352105B2
JPS6352105B2 JP58191011A JP19101183A JPS6352105B2 JP S6352105 B2 JPS6352105 B2 JP S6352105B2 JP 58191011 A JP58191011 A JP 58191011A JP 19101183 A JP19101183 A JP 19101183A JP S6352105 B2 JPS6352105 B2 JP S6352105B2
Authority
JP
Japan
Prior art keywords
sprayed
layer
ceramic
coating
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58191011A
Other languages
Japanese (ja)
Other versions
JPS6086260A (en
Inventor
Michio Miura
Tadao Tokushima
Mamoru Kajimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Corp
Original Assignee
Yamaha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Corp filed Critical Yamaha Corp
Priority to JP58191011A priority Critical patent/JPS6086260A/en
Publication of JPS6086260A publication Critical patent/JPS6086260A/en
Publication of JPS6352105B2 publication Critical patent/JPS6352105B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Coating By Spraying Or Casting (AREA)

Description

【発明の詳細な説明】 この発明は、耐衝撃性、耐傷性、および耐摩耗
性を改善した溶射セラミツク被覆金属体に関し、
下地被覆およびセラミツク被覆の素材ならびに、
被覆厚さを特定することにより被覆の密着性(耐
衝撃性)および耐摩耗性を併せて改善せんとする
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a thermal sprayed ceramic coated metal body with improved impact resistance, scratch resistance, and abrasion resistance.
Materials for base coating and ceramic coating,
By specifying the coating thickness, the aim is to improve both the adhesion (impact resistance) and abrasion resistance of the coating.

鉄系等の金属製品は、その用途により、耐衝撃
強度、耐傷性、耐摩耗性等の性質を改善すること
が望ましい場合が多い。たとえば、ゴルフクラブ
のアイアンヘツドは、ボールとともに、芝、砂、
土等をも強打する場合があるので、耐衝撃強度に
加えて、耐傷性、耐摩耗性等の表面特性の改善が
要求される。たとえば、ゴルフクラブのアイアン
ヘツドに関しては、表面特性を改善するために、
鉄系等の金属基体上に、下地金属溶射層、セラミ
ツク溶射層を形成したのち、液状合成樹脂を含浸
して硬化させることが提案されている(特公昭53
−34537号公報)。すなわち、この技術では、下地
金属ならびにセラミツク溶射層の多孔性を利用し
て、これら溶射層の樹脂被覆のアンカリング層と
して使用するものである。しかしながら、このよ
うな被覆による表面特性改良技術にも、いくつか
の不都合が見出された。その第1は、強い衝撃を
与えたときに被覆層が剥離することである。また
その第2は、樹脂被覆の耐摩耗性が必ずしも良好
とは云えず、また金属の特質を減殺しかねないこ
とである。したがつて、樹脂被覆は、行うとして
も基体金属の選択に応じてその防錆等の観点で必
要とされる最小限に止めるべきである。
It is often desirable for iron-based metal products to have improved properties such as impact strength, scratch resistance, and abrasion resistance, depending on their use. For example, the iron head of a golf club, along with the ball, may be exposed to grass, sand, etc.
Since it may hit soil etc., it is required to improve surface properties such as scratch resistance and abrasion resistance in addition to impact resistance strength. For example, in order to improve the surface characteristics of the iron head of a golf club,
It has been proposed to form a base metal sprayed layer and a ceramic sprayed layer on a metal substrate such as iron, and then impregnate and harden it with a liquid synthetic resin.
-34537). That is, in this technique, the porosity of the base metal and the ceramic sprayed layer is utilized to serve as an anchoring layer for the resin coating of these sprayed layers. However, some disadvantages have been found in such techniques for improving surface properties using coatings. The first problem is that the coating layer peels off when a strong impact is applied. The second problem is that the abrasion resistance of the resin coating is not necessarily good, and the characteristics of the metal may be diminished. Therefore, even if resin coating is used, it should be kept to the minimum required from the viewpoint of rust prevention, etc., depending on the selection of the base metal.

この発明の主要な目的は、金属基体の特質をで
きるだけ生かしつつ、その耐傷性、耐摩耗性等の
表面特性を改善し、且つ密着性(したがつて耐衝
撃性)の良好な被覆層を有するセラミツク被覆金
属体を提供することにある。
The main purpose of this invention is to improve the surface characteristics such as scratch resistance and abrasion resistance while making the best use of the characteristics of the metal substrate, and to have a coating layer with good adhesion (and therefore impact resistance). An object of the present invention is to provide a ceramic-coated metal body.

本発明者らの研究によれば、特定の組成のセラ
ミツク溶射膜を、特定の下地金属層を介して鉄系
等の金属基体上に被覆し、且つ被覆層の合計厚さ
を特定の極めて薄い厚さとすることが、上述の目
的の達成に極めて有効であることが見出された。
According to the research conducted by the present inventors, a ceramic sprayed film of a specific composition is coated on a metal substrate such as an iron-based material through a specific base metal layer, and the total thickness of the coating layer is set to a specific extremely thin layer. It has been found that increasing the thickness is extremely effective in achieving the above objectives.

この発明のセラミツク被覆金属体は、このよう
な知見に基づくものであり、更に詳しくは、鉄系
金属基体上に、Ni−Cr合金溶射膜ならびに、
Cr3C240〜86重量%およびTiO260〜14重量%から
なるセラミツク溶射膜、を順次形成してなり、溶
射膜の合計厚さが20〜200μmであることを特徴と
するものである。
The ceramic-coated metal body of the present invention is based on such knowledge, and more specifically, the ceramic-coated metal body of the present invention is based on a Ni-Cr alloy sprayed coating on an iron-based metal base, and
A ceramic sprayed film consisting of 40 to 86% by weight of Cr 3 C 2 and 60 to 14% by weight of TiO 2 is sequentially formed, and the total thickness of the sprayed film is 20 to 200 μm. .

すなわち、この発明のセラミツク被覆金属体に
おいては、鉄系等の金属基体上に、形成される下
地被覆層が、これら基体金属と密着性が良く且
つ、耐蝕性に優れたNi−Cr合金により形成され
ており、またその上のセラミツク溶射層が、金属
的性質が残存し且つNi−Cr合金と密着性の良好
なCr3C2と耐摩耗性の良好なTiO2との組合せから
なること、また被覆の合計厚さが基体に対して良
好な密着性を与える20〜200μmとされているた
め、全体として基体の金属的特性を損なわずに密
着性(したがつて耐衝撃性)が優れ且つ耐摩耗性
に優れたセラミツク被覆金属体が与えられる。
That is, in the ceramic-coated metal body of the present invention, the base coating layer formed on the metal base, such as iron, is made of a Ni-Cr alloy that has good adhesion to the base metal and has excellent corrosion resistance. and that the ceramic sprayed layer thereon is made of a combination of Cr 3 C 2 , which retains its metallic properties and has good adhesion to the Ni-Cr alloy, and TiO 2 , which has good wear resistance. In addition, the total thickness of the coating is said to be 20 to 200 μm, which provides good adhesion to the substrate, so overall the adhesion (and therefore impact resistance) is excellent without impairing the metallic properties of the substrate. A ceramic coated metal body with excellent wear resistance is provided.

以下、この発明を更に詳細に説明する。以下の
記載において、量比を表わす「%」および「部」
は得に断らない限り重量基準とする。
This invention will be explained in more detail below. In the following descriptions, "%" and "parts" represent quantitative ratios.
are based on weight unless otherwise specified.

本発明のセラミツク被覆金属体の基体金属とし
ては、鉄系金属またはチタン系金属等が好ましく
用いられる。その好ましい具体例としては、ステ
ンレススチール(SUS304等)ならびに構造用鋼
材(SS30等)が挙げられる。
As the base metal of the ceramic-coated metal body of the present invention, iron-based metals, titanium-based metals, and the like are preferably used. Preferred specific examples include stainless steel (SUS304, etc.) and structural steel (SS30, etc.).

このような金属基体の被覆所要部、たとえばア
イアンクラブのヘツドフエースの打球面部ならび
にその少なくとも地面と接触する下方延長部に、
まずNi−Cr合金の下地溶射膜を形成する。この
Ni−Cr合金下地溶射膜は、被覆層全体の密着性
を向上しまた耐蝕性の向上にも若干の寄与をする
ものであり、Ni−Cr合金としては、Cr5〜30%を
含有し、残部が主としてNiからなるものが好ま
しく用いられる。このNi−Cr下地溶射膜は、比
較的薄くとも、その効果を発揮するが、好ましく
は5〜20μmの厚さに形成される。
The necessary parts of such a metal base to be coated, for example, the ball hitting surface of the head face of an iron club and at least its downward extension that contacts the ground,
First, a base thermal spray coating of Ni-Cr alloy is formed. this
The Ni-Cr alloy base thermal spray coating improves the adhesion of the entire coating layer and also slightly contributes to improving the corrosion resistance. A material mainly composed of Ni is preferably used. Although this Ni--Cr undercoating sprayed film exhibits its effects even if it is relatively thin, it is preferably formed to a thickness of 5 to 20 μm.

なお、上記した被覆所要部以外のヘツドフエー
ス面については、基体がステンレススチールの場
合には、バフ仕上げが多く行われるが、SS30の
ような鋼材の場合には、一般に硬質クロムメツキ
が行なわれる。
Note that the head face surface other than the above-mentioned areas requiring coating is often buffed if the base is made of stainless steel, but if it is made of steel such as SS30, hard chrome plating is generally performed.

次いで、Ni−Cr下地溶射膜上に、実質的に
Cr3C240〜86%、好ましくは50〜70%、TiO260〜
14%、好ましくは50〜30%の組成を有するセラミ
ツク溶射膜を形成し、溶射膜の合計厚さを20〜
200μm、特に好ましくは60〜100μm、とする。
Cr3C2は、先にも述べたように金属的性質が残存
することに起因すると推測されるが、Ni−Cr合
金との良好な密着性を与えるのに効果があり、40
%未満では良好な密着性を与えることができず、
86%を超えて添加すると被覆層の耐摩耗性が低下
する。一方、TiO2はセラミツク被覆層の耐摩耗
性の向上に効果があり、14%未満では効果が乏し
く、60%を越えて使用すると、被覆層の密着性が
低下する。また溶射層の合計厚さが20μm未満で
は、溶射層表面に粗面が残り、耐摩性ならびに被
覆層の耐久性が不足してくるとともに、溶射層の
気孔性効果による衝撃減衰能が低下してしまう。
一方、溶射層の合計厚さが200μmを超えると、溶
射層と基体との熱膨張の差によりストレスが増大
するため、その密着強度が不足し、耐衝撃性が不
足してくる。
Next, on the Ni-Cr base spray coating, substantially
Cr3C2 40~86 % , preferably 50~70%, TiO2 60~
Form a ceramic sprayed film with a composition of 14%, preferably 50-30%, and make the total thickness of the sprayed film 20-30%.
200 μm, particularly preferably 60 to 100 μm.
Cr 3 C 2 is effective in providing good adhesion to the Ni-Cr alloy, which is presumed to be due to residual metallic properties as mentioned above.
If it is less than %, good adhesion cannot be provided;
When added in excess of 86%, the wear resistance of the coating layer decreases. On the other hand, TiO 2 is effective in improving the abrasion resistance of the ceramic coating layer, but if it is less than 14%, the effect is poor, and if it is used in excess of 60%, the adhesion of the coating layer will decrease. If the total thickness of the sprayed layer is less than 20 μm, a rough surface will remain on the surface of the sprayed layer, resulting in a lack of wear resistance and durability of the coating layer, and the impact damping ability due to the porosity of the sprayed layer will decrease. Put it away.
On the other hand, if the total thickness of the sprayed layer exceeds 200 μm, stress increases due to the difference in thermal expansion between the sprayed layer and the substrate, resulting in insufficient adhesion strength and impact resistance.

下地被覆層およびセラミツク被覆層の溶射は、
通常のプラズマ溶射により行うことができ、プラ
ズマ用キヤリヤガスとしては、溶射材料の酸化あ
るいは窒化を防止して密着性の良い溶射層を形成
するために、アルゴン−Heを使用することが好
ましく、また密着性を良好とするために、基体を
100〜150℃程度に予熱して溶射を行うことが好ま
しい溶射材料の粒径は、下地Ni−Cr合金につい
ては、1〜15μm、Cr3C2およびTiO2粉末につい
ては、1〜10μmの範囲が好ましく用いられる。
Thermal spraying of base coating layer and ceramic coating layer is
It can be carried out by ordinary plasma spraying, and it is preferable to use argon-He as the plasma carrier gas to prevent oxidation or nitridation of the sprayed material and form a sprayed layer with good adhesion. In order to improve the properties of the substrate,
The particle size of the thermal spraying material, which is preferably preheated to about 100 to 150°C before thermal spraying, is in the range of 1 to 15 μm for the base Ni-Cr alloy, and 1 to 10 μm for Cr 3 C 2 and TiO 2 powder. is preferably used.

このようにして基体上に得られる溶射層は、一
般に多孔質となるため、基体がSS30のように発
錆性である場合には、ポリウレタン樹脂、エポキ
シ樹脂等の樹脂を5〜30μmの厚さに塗布して耐
食性を向上することが好ましい。
The sprayed layer obtained on the substrate in this way is generally porous, so if the substrate is rust-prone like SS30, a resin such as polyurethane resin or epoxy resin is applied to a thickness of 5 to 30 μm. It is preferable to apply the coating to improve corrosion resistance.

上述したように、この発明によれば、鉄系等の
基体金属を、Ni−Cr溶射下地層を介してセラミ
ツク溶射被覆するに際して、セラミツク溶射材と
してCr3C2とTiO2との混合物を用い、且つ溶射層
の合計厚さを、20〜200μmと比較的薄い範囲に限
定することにより、金属基体の特質をできるだけ
生かしつつ、その耐傷性、耐摩耗性、衝撃減衰能
等の表面特性を改善し、且つ密着性(したがつて
耐衝撃性)の良好な被覆層を有するセラミツク被
覆金属体が提供される。この発明のセラミツク被
覆金属体は、ゴルフクラブのアイアンヘツド以外
にも、耐傷性、耐摩耗性、耐衝撃性が要求される
鉄系等の金属製品に一般に好適に使用される。
As described above, according to the present invention, a mixture of Cr 3 C 2 and TiO 2 is used as the ceramic spraying material when coating a base metal such as iron with ceramic spraying through a Ni-Cr spraying base layer. , and by limiting the total thickness of the sprayed layer to a relatively thin range of 20 to 200 μm, the characteristics of the metal substrate are utilized as much as possible while improving surface properties such as scratch resistance, abrasion resistance, and impact attenuation ability. However, a ceramic-coated metal body having a coating layer with good adhesion (and therefore impact resistance) is provided. The ceramic-coated metal body of the present invention is generally suitably used for iron-based metal products that require scratch resistance, abrasion resistance, and impact resistance, in addition to iron heads of golf clubs.

以下、この発明を実施例、比較例により、更に
具体的に説明する。
Hereinafter, this invention will be explained in more detail with reference to Examples and Comparative Examples.

例 1 SUS304製ならびにSS30製の各基材を、100〜
150℃に加熱しつつ、Cr20%−Ni残部の組成を有
するNi−Cr合金(平均粒径約10μm)を、プラズ
マガン(メトコ製)を用い、40V、800Aの入力
でアルゴン−Heプラズマにより溶射して、約
15μmの厚さの溶射層を形成した。
Example 1 Each base material made of SUS304 and SS30 is
While heating to 150℃, a Ni-Cr alloy with a composition of 20% Cr and the balance of Ni (average grain size approximately 10 μm) is sprayed with Argon-He plasma using a plasma gun (manufactured by Metco) at an input of 40 V and 800 A. and about
A sprayed layer with a thickness of 15 μm was formed.

次いで、上記下地被覆基体上に、Cr3C2含量
が、それぞれ20,30,40,60,80,100容積%
(重量基準で、28,40,51,70,86,100%)の
Cr3C2−TiO2複合溶射粉末(平均粒径約5μ)を、
上記と同様なプラズマ溶射条件で溶射し、厚さ約
25μmのセラミツク被覆層を形成し、被覆層の合
計厚さを40μmとした。
Then, Cr 3 C 2 contents of 20, 30, 40, 60, 80, and 100% by volume were applied to the undercoat substrate, respectively.
(28, 40, 51, 70, 86, 100% by weight)
Cr 3 C 2 −TiO 2 composite thermal spray powder (average particle size approximately 5μ),
Sprayed under the same plasma spraying conditions as above to a thickness of approx.
A ceramic coating layer of 25 μm was formed, making the total thickness of the coating layer 40 μm.

次いで、これらの溶射膜の面に直径25mmの鉄棒
の端面をエポキシ樹脂で接着し、棒軸方向に引張
り、溶射膜の破断に要する張力を測定した。
Next, the end face of a 25 mm diameter iron rod was adhered to the surface of these sprayed films using epoxy resin, and the rod was pulled in the axial direction to measure the tension required to break the sprayed film.

測定結果を第1図に示す。 The measurement results are shown in Figure 1.

別途、上記と同様の溶射被覆条件で、SUS304
製アイアンヘツド基体のフエース標準打球面およ
び地面との接触面に、Ni−Cr下地層およびCr3C2
溶射層を合計厚さ40μmに形成し、このヘツドを
装着したゴラフクラブ(7番)を、粒径が2〜3
mmの砂粒中に40m/秒の速度で300回打込み、最
大摩耗部(標準打球面上のスイートスポツトの位
置)の残存膜厚を測定した。この測定結果も、第
1図に示す。
Separately, under the same thermal spray coating conditions as above, SUS304
Ni-Cr base layer and Cr3C2
The sprayed layer was formed to a total thickness of 40 μm, and a golf club (No. 7) equipped with this head was
The ball was struck 300 times at a speed of 40 m/sec into sand grains of 1 mm in diameter, and the remaining film thickness at the most worn area (the position of the sweet spot on the standard ball hitting surface) was measured. The measurement results are also shown in FIG.

第1図の結果を見れば、Cr3C2−TiO2被覆層中
のCr3C2含量が、この発明に従い、30〜80容積
%、特に40〜60容積%の範囲において、密着性
(引張強度)と耐摩耗性(残存膜厚)がともに良
好な被覆層を与えることがわかる。
Looking at the results in FIG. 1, it can be seen that when the Cr 3 C 2 content in the Cr 3 C 2 -TiO 2 coating layer is in the range of 30 to 80 volume %, especially 40 to 60 volume %, the adhesion ( It can be seen that the coating layer has good tensile strength) and abrasion resistance (residual film thickness).

例 2 例1と同様にして、SUS304およびSS30基体上
に、厚さ15μmのNi−Cr下地層を形成し、その上
にCr3C2を40容積%の割合で含む複合溶射材料
(平均粒径約5μm)を、例1と同様の条件で溶射
し、合計厚さが20〜300μmの溶射被覆層を形成
し、例1と同様に引張強度を測定した。その結
果、第2図の測定結果を得た。
Example 2 In the same manner as in Example 1, a Ni-Cr base layer with a thickness of 15 μm was formed on SUS304 and SS30 substrates, and a composite thermal sprayed material containing 40% by volume of Cr 3 C 2 (average grain (diameter of about 5 μm) was thermally sprayed under the same conditions as in Example 1 to form a thermally sprayed coating layer with a total thickness of 20 to 300 μm, and the tensile strength was measured in the same manner as in Example 1. As a result, the measurement results shown in FIG. 2 were obtained.

第2図の結果は、溶射層厚(特にセラミツク溶
射層厚)の増大とともに、被覆の密着性(引張強
度)が低下することを示している。
The results in FIG. 2 show that as the sprayed layer thickness (particularly the ceramic sprayed layer thickness) increases, the adhesion (tensile strength) of the coating decreases.

例 3 例2と同様にして、SUS304基材を用いる場合
について、セラミツク溶射層の厚さを変えて合計
厚さが、20〜65μmの溶射層の表面粗さ(凹凸の
頂部から谷部までの深さ)を測定した。その結果
を第3図に示す。
Example 3 In the same manner as in Example 2, when using SUS304 base material, the thickness of the ceramic sprayed layer was changed and the total thickness of the sprayed layer was 20 to 65 μm. depth) was measured. The results are shown in FIG.

第3図の結果は、溶射層厚が小さ過ぎると、被
覆表面に大きな凹凸が存在することを示してい
る。
The results shown in FIG. 3 show that when the sprayed layer thickness is too small, large irregularities exist on the coating surface.

例 4 Ni−Cr下地層の効果を見るために、例2にお
いてSUS304基体上に、厚さ15μmのNi−Cr下地
層を形成し、その上にCr3C240容積%を含むTiO2
−Cr3C2複合溶射被覆層を、合計厚さ20〜300μm
の厚さに形成する例と対照して、同一条件でNi
−Cr下地層を除いて、TiO2−Cr3C2複合溶射被覆
層のみを形成し、例1と同様にして引張強度を測
定した。測定結果を例2のそれとともに、第4図
に示す。
Example 4 In order to see the effect of the Ni-Cr underlayer, a 15 μm thick Ni-Cr underlayer was formed on the SUS304 substrate in Example 2, and TiO 2 containing 40% by volume of Cr 3 C 2 was added on top of the Ni-Cr underlayer with a thickness of 15 μm.
−Cr 3 C 2 composite spray coating layer, total thickness 20~300μm
In contrast to the example in which Ni was formed to a thickness of
Except for the -Cr base layer, only the TiO 2 -Cr 3 C 2 composite thermal spray coating layer was formed, and the tensile strength was measured in the same manner as in Example 1. The measurement results are shown in FIG. 4 together with those of Example 2.

第4図によればNi−Cr下地層がない場合は、
被膜膜厚の増大とともに引張強度(したがつて溶
射層の密着力)が低下することがわかる。これは
境界面の応力が大きくなるためと考えられ、Ni
−Cr下地層は金属基体と溶射材の性質を有し応
力緩和の役割を果すものと解される。
According to Figure 4, if there is no Ni-Cr underlayer,
It can be seen that the tensile strength (and therefore the adhesion of the sprayed layer) decreases as the coating thickness increases. This is thought to be due to the increase in stress at the interface, and Ni
It is understood that the -Cr underlayer has the properties of a metal base and a thermal spray material, and plays the role of stress relaxation.

さらに上記二種の被覆層について、JISの簡便
法として、赤熱後ハンマーでたたく試験を行つた
ところ、下地層がない場合は、膜厚40μm程度で
数回の処理により剥離が起つたが、Ni−Cr下地
層を設けた場合は、20回の処理によつても剥離が
起らなかつた。
Furthermore, when we conducted a test of hitting the above two types of coating layers with a hammer after red heat as a simple method according to JIS, we found that when there was no base layer, peeling occurred after several treatments at a thickness of about 40 μm, but Ni - When a Cr underlayer was provided, no peeling occurred even after 20 treatments.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第4図は、実施例および比較例による
溶射被覆層の特性評価結果を示すグラフであり、
第1図は密着性(引張強度)および耐摩耗性(残
存膜厚)のセラミツク溶射材中のCr3C2含量に対
する依存性を、第2図および第4図は密着性(引
張強度)の被覆層厚依存性を、第3図は表面粗さ
の被覆層厚依存性を、それぞれ示す。
FIG. 1 to FIG. 4 are graphs showing the characteristics evaluation results of thermal spray coating layers according to Examples and Comparative Examples,
Figure 1 shows the dependence of adhesion (tensile strength) and abrasion resistance (residual film thickness) on the Cr 3 C 2 content in ceramic sprayed materials, and Figures 2 and 4 show the dependence of adhesion (tensile strength) on the Cr 3 C 2 content. FIG. 3 shows the dependence of surface roughness on the coating layer thickness.

Claims (1)

【特許請求の範囲】[Claims] 1 金属基体上に、Ni−Cr合金溶射膜ならびに
Cr3C240〜86重量%およびTiO260〜14重量%から
なるセラミツク溶射膜を形成してなり、溶射膜の
合計厚さが20〜200μmであることを特徴とするセ
ラミツク被覆金属体。
1 Ni-Cr alloy thermal spray coating and
1. A ceramic-coated metal body formed by forming a ceramic sprayed film consisting of 40 to 86% by weight of Cr 3 C 2 and 60 to 14% by weight of TiO 2 , wherein the total thickness of the sprayed film is 20 to 200 μm.
JP58191011A 1983-10-14 1983-10-14 Ceramic coated metal body Granted JPS6086260A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58191011A JPS6086260A (en) 1983-10-14 1983-10-14 Ceramic coated metal body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58191011A JPS6086260A (en) 1983-10-14 1983-10-14 Ceramic coated metal body

Publications (2)

Publication Number Publication Date
JPS6086260A JPS6086260A (en) 1985-05-15
JPS6352105B2 true JPS6352105B2 (en) 1988-10-18

Family

ID=16267387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58191011A Granted JPS6086260A (en) 1983-10-14 1983-10-14 Ceramic coated metal body

Country Status (1)

Country Link
JP (1) JPS6086260A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997020961A1 (en) * 1995-12-06 1997-06-12 Black Ice Golf Company, L.L.C. Method for coating a golf club striking surface
US5932356A (en) * 1996-03-21 1999-08-03 United Technologies Corporation Abrasive/abradable gas path seal system
US5851158A (en) * 1997-04-03 1998-12-22 Winrow; Thomas L. Coating for sports implements
CN113913728A (en) * 2021-09-28 2022-01-11 德清创智科技股份有限公司 Method for improving bonding strength of plasma spraying AT coating on surface of overfeed roller disc
CN113897573B (en) * 2021-09-28 2023-12-12 德清创智科技股份有限公司 Preparation method of aluminum-based rotary cup ceramic coating suitable for chemical fiber two-for-one twister

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49121564A (en) * 1973-03-20 1974-11-20
JPS5248584A (en) * 1975-10-16 1977-04-18 Goi Kasei Kk Method of regenerating solid acid catalyst

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49121564A (en) * 1973-03-20 1974-11-20
JPS5248584A (en) * 1975-10-16 1977-04-18 Goi Kasei Kk Method of regenerating solid acid catalyst

Also Published As

Publication number Publication date
JPS6086260A (en) 1985-05-15

Similar Documents

Publication Publication Date Title
US9440121B2 (en) Coated golf club head/component
US6059670A (en) Golf club having a head with a hard multilayer striking surface and method for making the same
JP5765827B2 (en) Golf club head and method of manufacturing golf club head
JP7441225B2 (en) Brake disc manufacturing method and brake disc for disc brakes
Kulu et al. Selection criteria for wear resistant powder coatings under extreme erosive wear conditions
JP2000505146A (en) Coatings for cooking containers
JPS6352105B2 (en)
JP3106103B2 (en) Golf club head
US4868069A (en) Abrasion-resistant coating
US20060081090A1 (en) Thermal spraying powder, thermal spraying method, and method for forming thermal spray coating
JPH05345966A (en) Composite coating by flame spraying
JPS58173570A (en) Golf club head
JPH0852243A (en) Head of golf club
JPH10250A (en) Golf club head
JP2949443B2 (en) Method for forming molten metal corrosion resistant film
JPH0214420B2 (en)
JPH10314346A (en) Golf club head and manufacture thereof
US4996114A (en) Abrasion-resistant coating
JPS6083678A (en) Iron head of golf club and its production
JPH1085370A (en) Golf club head
JPH0813116A (en) Surface treatment for metallic parts
Kulu et al. Wear resistance of high velocity thermal sprayed coatings
JPH03126856A (en) Protective coating of a knitting and weaving member
JPH02294484A (en) Metallic coating method for organic material
JPS58161762A (en) Intermediate barrel of mad gun