JPS6352067A - Revolution indicator - Google Patents

Revolution indicator

Info

Publication number
JPS6352067A
JPS6352067A JP19632486A JP19632486A JPS6352067A JP S6352067 A JPS6352067 A JP S6352067A JP 19632486 A JP19632486 A JP 19632486A JP 19632486 A JP19632486 A JP 19632486A JP S6352067 A JPS6352067 A JP S6352067A
Authority
JP
Japan
Prior art keywords
capacitance
rotation
circuit
rotating shaft
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19632486A
Other languages
Japanese (ja)
Inventor
Michio Kudo
工藤 道夫
Rinpei Hayashibe
林部 林平
Hironari Komata
小俣 宏成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP19632486A priority Critical patent/JPS6352067A/en
Publication of JPS6352067A publication Critical patent/JPS6352067A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a small-sized, high-accuracy, and fast-response revolution indicator which easily detects information on a rotating direction in addition to a rotating speed by composing a sensor part of a couple of electrode plates and a dielectric plate as a variable capacitor. CONSTITUTION:The sensor part 2 is formed by providing the couple of electrode plates 2a and 2b or dielectric plate 2c sandwiched between them to a rotating shaft 3 for measurement and setting the shapes of the electrode plates 2a and 2b or dielectric plate 2c so that the electrostatic capacity between the electrode plates varies by the rotation of the rotating shaft asymmetrically about the center of one cycle in the time base direction, thus constituting the variable capacitor. An electrostatic capacity detection part 5 obtains a detection signal S0 corresponding to variation in the electrostatic capacity by using a charge amplifier which can measure even fine electrostatic capacity accurately. Then a signal processing part 6 finds and displays 12 the rotating speed of the rotating shaft 3 by using the number of times of the asymmetric variation in the electrostatic capacity and displays and also decides and displays 14 the rotating direction by using the shape of the asymmetric variation.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はチャージアンプを利用した静電容量検出方式に
よる回転計に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a tachometer using a capacitance detection method using a charge amplifier.

〔従来の技術〕[Conventional technology]

従来、各種機器における回転機能部の回転数を検出する
方式として、回転数をパルス化して処理するパルス変換
方式が広く用いられている。
BACKGROUND ART Conventionally, as a method for detecting the number of rotations of a rotating functional unit in various devices, a pulse conversion method in which the number of rotations is processed by converting it into pulses has been widely used.

この方式は回転軸に対し回転数に一致または比例した繰
り返し信号(パルス信号)を出力する回転数センサを利
用するもので、回転数センナとしては一般に回転軸とセ
ンサが機械的に接触している接触方式と、回転軸とセン
サが全(接触していない非接触方式に分かれ、後者の場
合には電磁形、光電形、静電形等が知られている。
This method uses a rotational speed sensor that outputs a repetitive signal (pulse signal) to the rotating shaft that is consistent with or proportional to the rotational speed, and the rotating shaft and sensor are generally in mechanical contact with the rotating speed sensor. There are contact methods and non-contact methods in which the rotating shaft and sensor are not in contact; in the latter case, electromagnetic, photoelectric, and electrostatic types are known.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、従来のパルス変換方式は単に回転数に一致また
は比例したパルス信号を得、このパルス数を計数するこ
とによって回転数を末位しているため、回転方向や位相
(回転角度)等の他の要素については検出できない難点
がある。
However, the conventional pulse conversion method simply obtains a pulse signal that matches or is proportional to the rotational speed, and calculates the rotational speed by counting the number of pulses. The problem is that the elements cannot be detected.

また、回転数センサの原理に着目すると、電磁形や光電
形はセンサ自身が大きくなり、小型化を要求される機器
には付設できない問題がある。一方、静電形は比較的狭
いスペース等であっても原理的には付設可能である。し
かし、センサを小型化すると、それに伴って検出静電容
量も小さくなるため、検出精度が低下し誤動作し易い等
の信頼性低下を沼く問題がある。
Furthermore, when focusing on the principles of rotational speed sensors, electromagnetic and photoelectric sensors have the problem of being large in size and cannot be attached to equipment that requires miniaturization. On the other hand, the electrostatic type can in principle be installed even in a relatively narrow space. However, as the size of the sensor is reduced, the detection capacitance also becomes smaller, resulting in a problem of lower reliability such as lower detection accuracy and increased susceptibility to malfunction.

さらにまた、いずれのセンサも高速応答性の面からは不
十分であり、特に回転数が大きくなった場合には検出不
能になる問題があった。
Furthermore, both sensors are insufficient in terms of high-speed response, and there is a problem in that they become undetectable especially when the rotational speed becomes large.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上述した従来技術に存在する諸問題を解決した
小型、高精度且つ高応答、しかも回転方向等の回転数以
外の情報も容易に検出できる回転計の提供を目的とする
もので、以下に示す回転計によって達成される。
The purpose of the present invention is to provide a tachometer that is compact, highly accurate, and highly responsive, and can easily detect information other than the rotational speed, such as the direction of rotation, which solves the problems that exist in the prior art described above. This is achieved by the tachometer shown in .

即ち、本発明に係る回転計(1)の特徴は、一対の電極
板(2a)、(2b)、または各電極板(2a)、(2
b)に挟まれる誘電体板(2c)の一方を被測定用回転
軸(3)に設けるとともに、当該回転軸(3)の回転に
より電極板間静電容量が一周期の中心に対し時間軸方向
へ非対称変化するように電極板(2a)、(2b)、ま
たは誘電体板(2c)の形状を設定したセンサ部(2)
と、当該静電容量の変化を計測するチャージアンプ(4
)を用いた静電容量検出部(5)と、当該静電容量検出
部(5)からの静電容量変化に対応した検出信号を処理
して当該回転軸(3)の回転数、回転方向等の回転情報
を得る信号処理部(6)とを備えた点にある。
That is, the tachometer (1) according to the present invention is characterized by a pair of electrode plates (2a), (2b) or each electrode plate (2a), (2
One of the dielectric plates (2c) sandwiched between the electrodes (2c) is installed on the rotating shaft (3) to be measured, and the rotation of the rotating shaft (3) changes the capacitance between the electrode plates relative to the center of one cycle on the time axis. A sensor unit (2) in which the shape of the electrode plate (2a), (2b) or dielectric plate (2c) is set so as to change asymmetrically in the direction.
and a charge amplifier (4) that measures the change in capacitance.
) and processes the detection signal corresponding to the capacitance change from the capacitance detector (5) to determine the rotation speed and rotation direction of the rotating shaft (3). The present invention also includes a signal processing unit (6) for obtaining rotation information such as the following.

〔作  用〕[For production]

次に、本発明の作用について説明する。 Next, the operation of the present invention will be explained.

本発明に係る回転計(1)はセンサ部(2)を一対の電
極板(2a)、(2b)、及び誘電体板(2c)によっ
て可変コンデンサとして構成するため、被測定用回転軸
(3)の回転に伴って電極板間の静電容量が変化し、こ
の変化は第3図のような一周期の中心に対し時間軸方向
へ非対称となる。一方、静電容量検出部(5)は微小静
電容量も正確に計測できるチャージアンプ(4)を用い
て静電容量変化に対応した検出信号を得る。そして、信
号処理部(6)は静電容量の非対称変化の繰り返し回数
によって回転軸(4)の回転数を末鎖するとともに、非
対称変化の形によって回転方向を判別する。
The tachometer (1) according to the present invention has a sensor section (2) configured as a variable capacitor by a pair of electrode plates (2a), (2b) and a dielectric plate (2c). ), the capacitance between the electrode plates changes, and this change is asymmetrical in the time axis direction with respect to the center of one cycle as shown in FIG. On the other hand, the capacitance detection section (5) obtains a detection signal corresponding to a change in capacitance using a charge amplifier (4) that can accurately measure even minute capacitances. Then, the signal processing unit (6) determines the rotation speed of the rotating shaft (4) based on the number of repetitions of the asymmetric change in capacitance, and determines the rotation direction based on the shape of the asymmetric change.

〔実 施 例〕〔Example〕

以下には本発明に係る好適な実施例を図面に基づき詳細
に説明する。
Hereinafter, preferred embodiments of the present invention will be described in detail based on the drawings.

第1図は本発明に係る回転計のブロック回路図、第2図
は同回転計におけるセンサ部の外観斜視図、第3図は同
センサ部における回転角度対静電容量変化を示す特性図
、第4図は同回転計における静電容量検出部の回路図、
第5図は同回転計における信号変換回路のブロック回路
図、第6図は同変換回路における信号のタイムチャート
図、第7図は同回転計における回転数検出回路及び回転
数表示部のブロック回路図、第8図は同検出回路におけ
る信号のタイムチャート図、第9図は回転方向検出回路
及び回転方向表示部の電気回路図である。
Fig. 1 is a block circuit diagram of a tachometer according to the present invention, Fig. 2 is an external perspective view of a sensor section in the tachometer, and Fig. 3 is a characteristic diagram showing rotation angle versus capacitance change in the sensor section. Figure 4 is a circuit diagram of the capacitance detection section in the same tachometer.
Figure 5 is a block circuit diagram of the signal conversion circuit in the tachometer, Figure 6 is a time chart of signals in the conversion circuit, and Figure 7 is a block circuit of the rotation speed detection circuit and rotation speed display section in the tachometer. 8 is a time chart of signals in the detection circuit, and FIG. 9 is an electric circuit diagram of the rotation direction detection circuit and rotation direction display section.

まず、第1図を参照して本回転計(1)の全体的構成に
ついて説明する。
First, the overall configuration of the present tachometer (1) will be explained with reference to FIG.

(2)はセンサ部であり、それ自体は被測定用回転軸(
3)の回転に伴って静電容量が変化する可変コンデンサ
を構成する。また、センサ部(2)はチャージアンプ(
4)を利用した静電容量検出部(5)に接続する。この
検出部(5)は当該静電容量の大きさを検出し、この大
きさに比例した検出信号(So)を出力する。そして、
この検出信号(SO)は信号処理部(6)に供給される
。この処理部(6)は当該信号(So)をパルス化する
信号変換回路(10)と、このパルス化されたパルス信
号(Sl)のパルスを計数して回転数を求める回転数検
出回路(11)と、この回路(11)で得た回転数を表
示する回転数表示部(12)と、信号(Sl)における
パルスの形によって回転方向を判別する回転方向検出回
路(13)と、この回路(13)で得た回転方向を表示
する回転方向表示部(14)からなる。
(2) is the sensor section, which itself is the rotating shaft to be measured (
3) constitutes a variable capacitor whose capacitance changes with rotation. In addition, the sensor section (2) is equipped with a charge amplifier (
4) is connected to the capacitance detection section (5) using the capacitance detection section (5). This detection section (5) detects the magnitude of the capacitance and outputs a detection signal (So) proportional to this magnitude. and,
This detection signal (SO) is supplied to a signal processing section (6). This processing unit (6) includes a signal conversion circuit (10) that converts the signal (So) into pulses, and a rotation speed detection circuit (11) that counts the pulses of this pulsed pulse signal (Sl) to determine the rotation speed. ), a rotation speed display section (12) that displays the rotation speed obtained by this circuit (11), a rotation direction detection circuit (13) that determines the rotation direction based on the shape of the pulse in the signal (Sl), and this circuit. It consists of a rotation direction display section (14) that displays the rotation direction obtained in (13).

次に、各部の構成について具体的に説明する。Next, the configuration of each part will be specifically explained.

まず、第2図及び第3図を参照してセンサ部(2)の構
成及び機能について説明する。
First, the configuration and function of the sensor section (2) will be explained with reference to FIGS. 2 and 3.

センサ部(2)は機器等の被測定用回転軸(3)に直角
に取り付けた誘電体板(2c)と、この誘電体板(2c
)の両端面を挟む一対の電極板(2a)、(2b)から
なる。
The sensor unit (2) consists of a dielectric plate (2c) attached perpendicularly to the rotating shaft (3) for measurement of equipment, etc.;
) consists of a pair of electrode plates (2a) and (2b) sandwiching both end surfaces of the electrode plate (2a) and (2b).

誘電体板(2c)は回転軸(3)の回転角度位置が進む
に従ってラジアル方向の長さが順次大きくなる形状(渦
状曲線の一種)に形成する。これによって、電極板(2
a)と(2b)間の静電容量(Cx)は−周期の中心に
対し時間軸方向へ非対称変化、つまり茅3図(a)のよ
うに回転軸(3)の回転角度(左へ等速回転)に対し鋸
刃状(非対称三角形)になる。なお、回転軸(3)が反
対方向(右方向)へ回転した場合には第3図(b)のよ
うに静電容量変化も反対になる。
The dielectric plate (2c) is formed in a shape (a kind of spiral curve) in which the length in the radial direction increases successively as the rotation angle position of the rotation shaft (3) advances. By this, the electrode plate (2
The capacitance (Cx) between a) and (2b) changes asymmetrically in the time axis direction with respect to the center of the period, that is, as shown in Figure 3 (a), the rotation angle of the rotation axis (3) (e.g. to the left) (speed rotation), it becomes saw-blade shaped (asymmetrical triangle). Note that when the rotating shaft (3) rotates in the opposite direction (to the right), the capacitance changes also in the opposite direction as shown in FIG. 3(b).

次に、第4図を参照して静電容量検出部(5)について
説明する。
Next, the capacitance detection section (5) will be explained with reference to FIG.

この検出1i!IK(5)はチャージアンプ(4)によ
って構成し、このようなチャージアンプ(4)を用いた
微小静電容量検出回路は既に本発明者によって提案され
ている(特願昭60−203798号)。同アンプ(4
)において、(20)はオペアンプで、このオペアンプ
(20)の反転入力端子(20a)に前記センサ部(2
)の一方の電極板(2a)を接続するとともに、他方の
電極板(2b)に交流電源(21)を直列接続する。こ
の場合、交流電源(21)の電圧は(Ei)、周波数は
(f)であり、後述する条件によって設定される。なお
、オペアンプ(20)の非反転入力端子(20b)は接
地する。また、(22)、(23)は前記電極板(2a
)、(2b)の接続端子を示す。
This detection 1i! The IK (5) is constituted by a charge amplifier (4), and a minute capacitance detection circuit using such a charge amplifier (4) has already been proposed by the present inventor (Japanese Patent Application No. 60-203798). . The same amplifier (4
), (20) is an operational amplifier, and the sensor section (20) is connected to the inverting input terminal (20a) of this operational amplifier (20).
) is connected to one electrode plate (2a), and an AC power source (21) is connected in series to the other electrode plate (2b). In this case, the voltage of the AC power supply (21) is (Ei) and the frequency is (f), which are set according to the conditions described later. Note that the non-inverting input terminal (20b) of the operational amplifier (20) is grounded. Further, (22) and (23) are the electrode plate (2a
) and (2b) are shown.

一方、反転入力端子(20a)とオペアンプ(20)の
出力端子(20c)間には標準静電容ffi (Cf)
を有するコンデンサと抵抗値(Rr)を有する負帰還抵
抗の並列回路を接続し、この(Cr)、(Rf)の大き
さも後述する条件によって設定する。なお、(C1)は
電源(21)及びアンプ(20)からセンナ部(2)へ
接続する接続導線間に直接結合した場合に存在する浮遊
容量、(C2)、(C3)はセンサ部(2)の静電容f
fi (Cx)の両端子における各端子と接地間に生じ
る浮遊容量をそれぞれ示すが、実用レベルでは無視でき
る。また、(25)、(26)は検出部(5)の出力端
子である。
On the other hand, there is a standard capacitance ffi (Cf) between the inverting input terminal (20a) and the output terminal (20c) of the operational amplifier (20).
A parallel circuit of a capacitor having a resistance value (Rr) and a negative feedback resistor having a resistance value (Rr) is connected, and the magnitudes of (Cr) and (Rf) are also set according to the conditions described later. Note that (C1) is the stray capacitance that exists when there is a direct connection between the connecting wires connecting the power supply (21) and the amplifier (20) to the sensor section (2), and (C2) and (C3) are the stray capacitances that exist when there is a direct connection between the connecting conductors that connect the power supply (21) and the amplifier (20) to the sensor section (2). ) capacitance f
The stray capacitances generated between each terminal and ground at both terminals of fi (Cx) are shown, but they can be ignored at a practical level. Further, (25) and (26) are output terminals of the detection section (5).

よって、出力端子(25)、(26)には前記センサ部
(2)の静電容量(Cx)に正比例した出力電圧(Eo
)を得ることができる。
Therefore, the output terminals (25) and (26) have an output voltage (Eo) that is directly proportional to the capacitance (Cx) of the sensor section (2).
) can be obtained.

ここで、チャージアンプ(4)の回路定数は次の条件に
従って設定するすることが望ましい。
Here, it is desirable that the circuit constants of the charge amplifier (4) be set according to the following conditions.

(a)    r  ≧ 10 kHzに設定する。(a) Set r ≧ 10 kHz.

また、標準容量となる(cr)の値は Gmax       Gm1n の範囲に設定する。なお、Cxmin=Cxmaxは検
出する静電容量範囲、GffIin≧(読み取り可能な
出力電圧Eo/Ei)、G11ax≧(Cx/Cr)で
ある。
Further, the value of (cr) which becomes the standard capacity is set in the range of Gmax Gm1n. Note that Cxmin=Cxmax is the capacitance range to be detected, GffIin≧(readable output voltage Eo/Ei), and G11ax≧(Cx/Cr).

一方、(Rf)の値は に設定する。なお、Ao:オペアンプ(−次特性)の直
流オーブン利得、To:オペアンプの実効時定数、eO
:目標とする測定相対誤差〔t〕である。
On the other hand, the value of (Rf) is set to . In addition, Ao: DC oven gain of operational amplifier (-order characteristic), To: effective time constant of operational amplifier, eO
: Target measurement relative error [t].

さらに、(Cf)と(Rf)は A。Furthermore, (Cf) and (Rf) are A.

(d)    Cr−Rf=  − To(2πr)2 を満足し、かつ上記(C)、(d)双方の範囲内の(C
f)、(Rf)の組み合わせを選択する。なお、この場
合、出力電圧が大きくなるように(cr)を最小値に設
定することが望ましい。
(d) Cr-Rf=-To(2πr)2 and within the range of both (C) and (d) above
Select a combination of f) and (Rf). Note that in this case, it is desirable to set (cr) to a minimum value so that the output voltage becomes large.

よって、以上の条件により入力端子(Ei)の周波数(
r)をハム雑音周波数の40dB以上、即ち1QkHz
以上に設定してハム雑音の除去を容易にしているととも
に、オペアンプ(20)に接続する周辺回路の回路素子
、特に(cr)、(Rf)の値を有限な(Ao)、(T
o)の値を用いて最適に設定したため、被検出静電容量
である(CX)が時間とともに急峻に変動する場合であ
っても、極めて応答性がよく、高精度に検出でき、前記
センサ部(2)のような検出対象に用いて最適となる。
Therefore, under the above conditions, the frequency of the input terminal (Ei) (
r) at 40 dB or higher than the hum noise frequency, i.e. 1QkHz
The settings above facilitate the removal of hum noise, and the circuit elements of the peripheral circuit connected to the operational amplifier (20), especially the values of (cr) and (Rf), are set to finite (Ao) and (T
o) is optimally set using the value of It is most suitable for use in detection targets such as (2).

次に、第5図及び第6図を参照して信号変換回路(10
)について説明する。
Next, with reference to FIGS. 5 and 6, the signal conversion circuit (10
) will be explained.

同回路(10)は萌段からバイパスフィルタ(30)、
アンプ(31)、ディテクタ(32)、コンデンサ(C
d)、ローパスフィルタ(33)、コンパレータ(34
)を接続して構成する。なお、(35)は前記静電容量
検出部(5)の出力電圧(Eo)が供給される入力端子
、(36)は同回路(10)の出力端子である。同回路
(10)の動作は次のようになる。まず、前記出力電圧
(Eo)は、(Cx)の変動分を変調信号、また前記入
力信号(Ei)を搬送波とする第6図(Sl)に示す振
幅変調波となる。
The circuit (10) includes a bypass filter (30) from the Moe stage,
Amplifier (31), detector (32), capacitor (C
d), low-pass filter (33), comparator (34)
) to connect and configure. Note that (35) is an input terminal to which the output voltage (Eo) of the capacitance detection section (5) is supplied, and (36) is an output terminal of the same circuit (10). The operation of the circuit (10) is as follows. First, the output voltage (Eo) becomes an amplitude modulated wave shown in FIG. 6 (Sl) in which the variation of (Cx) is used as a modulation signal and the input signal (Ei) is used as a carrier wave.

よって、入力端子(35)に供給される振幅変調波(S
l)(出力電圧(Eo))はバイパスフィルタ(30)
によりチャージアンプ(5)等の入力端で混入するハム
が除去され、さらにアンプ(31)により必要な大きさ
に増幅される。そして、ディテクタ(32)によって直
線検波され搬送波が除去されるとともに、コンデンサ(
Cd)によって直流分が除去され、さらにローパスフィ
ルタ(33)を通して同図(Sl)に示す低周波信号、
つまり、前記静電容量(Cx)の大きさに比例した信号
となる。また、コンパレータ(34)は定電圧上Vrを
しきい値とするヒステリシス特性を有し、雑音に対しz
xlvrlの余裕度をもつ。よって、コンパレータ(3
4)の出力信号は同図(S3)のようにしきい値±Vr
によってオン−オフされるパルス信号となる。この場合
、出力信号(S3)は無パルス期間(TI)とパルス期
間(T2)の関係が(TI) > (T2)となるため
時間軸上での負電圧の占める面積が正電圧のそれよりも
大きい。なお、逆回転の場合には(T2) > (Tl
)となり、これにより、後述する回転方向が判別される
Therefore, the amplitude modulated wave (S
l) (Output voltage (Eo)) is a bypass filter (30)
This removes the hum mixed in at the input end of the charge amplifier (5), etc., and further amplifies it to a required size by the amplifier (31). Then, the detector (32) performs linear detection and removes the carrier wave, and the capacitor (32)
The DC component is removed by Cd), and the low frequency signal shown in the figure (Sl) is further passed through a low pass filter (33).
In other words, the signal is proportional to the magnitude of the capacitance (Cx). In addition, the comparator (34) has a hysteresis characteristic with Vr as a threshold value on a constant voltage, and has z
It has a margin of xlvrl. Therefore, the comparator (3
The output signal of 4) has a threshold value ±Vr as shown in the same figure (S3).
It becomes a pulse signal that is turned on and off by. In this case, the output signal (S3) has a relationship between the non-pulse period (TI) and the pulse period (T2) such that (TI) > (T2), so the area occupied by the negative voltage on the time axis is larger than that of the positive voltage. It's also big. In addition, in the case of reverse rotation, (T2) > (Tl
), and thereby the rotation direction, which will be described later, is determined.

次に、第7図及び第8図を参照して回転数検出回路(1
1)及び回転数表示部(12)について説明する。
Next, referring to FIGS. 7 and 8, the rotation speed detection circuit (1
1) and the rotation speed display section (12) will be explained.

検出回路(11)の構成は、まず基準クロック発生回路
(40)を備え、この回路(40)の出力パルス信号は
デバイダ(41)によって周期1秒のクロック信号(3
4X第8図)及び周期2秒のクロック信号(S5) (
第8図)に分周される。そして、信号(S4)は直接に
、また信号(S5)は反転してNANDAND回路)に
供給され、その出力には第8図(S6)のラッチ信号を
得る。また、信号(S4)、(S5)はともに反転して
AND回路(43)に供給され、その出力には同図(S
7)のリセット信号を得る。一方、(44)はカウンタ
であり、前記ラッチ信号(S6)及びリセット信号(S
7)が入力する。他方、(46)は前記信号変換回路(
lO)の出力信号(S3)が供給される入力端子であり
、AND回路(45)の入力端に接続する。また、回路
(45)の他の入力端にはパルス信号(S4)が供給さ
れるとともに、回路(45)の出力端子はカウンタ(4
4)に接続する。よって、パルス信号(S5)は1秒間
のインターバルをもつため、この間で前記出力信号(S
3)のパルス数が計数され、回転数が求められる。この
回転数はカウンタ(44)に接続した回転数表示部(1
2)に例えばディジタル表示される。なお、ラッチ信号
(S6)の立下がりでカウンタ(44)の内容をラッチ
してLED等に表示するとともに、ラッチ後のカウンタ
内容はリセット信号(S7)の立上がりで毎回クリアさ
れ、次の周期に備える。
The configuration of the detection circuit (11) first includes a reference clock generation circuit (40), and the output pulse signal of this circuit (40) is converted into a clock signal (3) with a period of 1 second by a divider (41).
4X Fig. 8) and a clock signal with a period of 2 seconds (S5) (
(Fig. 8). Then, the signal (S4) is directly supplied, and the signal (S5) is inverted and supplied to a NANDAND circuit (NANDAND circuit), and the latch signal shown in FIG. 8 (S6) is obtained at its output. In addition, the signals (S4) and (S5) are both inverted and supplied to the AND circuit (43), whose output is
7) Obtain the reset signal. On the other hand, (44) is a counter, which includes the latch signal (S6) and the reset signal (S6).
7) is input. On the other hand, (46) represents the signal conversion circuit (
This is an input terminal to which the output signal (S3) of IO) is supplied, and is connected to the input terminal of the AND circuit (45). Further, the pulse signal (S4) is supplied to the other input terminal of the circuit (45), and the output terminal of the circuit (45) is supplied to the counter (4).
4) Connect to. Therefore, since the pulse signal (S5) has an interval of 1 second, the output signal (S5)
3) The number of pulses is counted and the number of rotations is determined. This number of revolutions is displayed on the number of revolutions display section (1) connected to the counter (44).
2) is displayed digitally, for example. Note that the contents of the counter (44) are latched at the falling edge of the latch signal (S6) and displayed on an LED, etc., and the counter contents after latching are cleared every time at the rising edge of the reset signal (S7), and are used in the next cycle. Be prepared.

次に、第9図を参照して回転方向識別回路(13)及び
その表示部(14)について説明する。
Next, the rotation direction identification circuit (13) and its display section (14) will be explained with reference to FIG.

まず、回転方向識別回路(13)は主に時定数τ0=c
o−ROを有するOR回路(50)、F E T (5
1)、インバータ(52)〜(56)、D形フリップフ
ロップ(57)、(58)からなる。同回路(13)に
おいて、入力端子(59)には前記コンパレータ(34
)の出力信号(S3)が供給され、OR回路(50)の
時定数τ0に従って(Co)が充電される。よって、F
 E T (51)のゲートには回転方向に応じて正(
右回転)または負(左回転)となる電圧が付与され、F
 E T (51)は回転方向に応じてオンまたはオフ
させられる。したがって、例えば左回転の場合にはフリ
ップフロップ(57)、(5g)のデータ入力端子(D
I)、(D2)がそれぞれ“1”、“0”となる。
First, the rotation direction identification circuit (13) mainly uses a time constant τ0=c
OR circuit (50) with o-RO, FET (5
1), inverters (52) to (56), and D-type flip-flops (57) and (58). In the circuit (13), the input terminal (59) is connected to the comparator (34).
) is supplied, and (Co) is charged according to the time constant τ0 of the OR circuit (50). Therefore, F
The gate of E T (51) has a positive (
A voltage is applied that causes clockwise rotation) or negative (counterclockwise rotation), and F
E T (51) is turned on or off depending on the direction of rotation. Therefore, for example, in the case of counterclockwise rotation, the data input terminals (D
I) and (D2) become "1" and "0", respectively.

また、フリップフロップ(57)、(58)のクロック
入力端子(CLI)、(Cl3)には前記出力信号(S
3)の立上がり時に同期したパルス信号(Pc)が人力
する。この結集、パルス信号(Pc)に同期してフリッ
プフロップ(57)、(58)の出力(Ql)、(Q2
)はそれぞれ“1°ご0”となり、回転方向表示部(1
4)を構成する発光ダイオード(60)を点灯、発光ダ
イオード(61)を消灯する。また、周期1秒のリセッ
ト用パルス信号(Pr)によってフリップフロップ(5
7)、(58)を初期化する。なお、右回転の場合には
フリップフロップ(57)、(5g)の出力(Ql)、
(Q2)がそれぞれ“0”、“loとなり、ダイオード
(60)が消灯、ダイオード(61)が点灯する。つま
り、回転方向を識別して表示することができる。なお、
回転していない場合にはフリップフロップ(57)、(
58)の入力端子(Dl)、(D2)のレベルは不定と
なるが、パルス信号(Pc)は入力せず、またパルス信
号(Pr)によりリセット動作のみ行われるので、フリ
ップフロップの出力端子(Ql)、(Q2)は双方とも
“0”レベルとなり、発光ダイオード(60)、(61
)も双方とも消灯する。
Furthermore, the clock input terminals (CLI) and (Cl3) of the flip-flops (57) and (58) are connected to the output signal (S).
3) A pulse signal (Pc) synchronized with the rising edge is manually input. This concentration causes outputs (Ql) and (Q2) of flip-flops (57) and (58) in synchronization with the pulse signal (Pc).
) are respectively “1° to 0”, and the rotation direction display section (1°
4) The light emitting diode (60) constituting the light emitting diode (60) is turned on and the light emitting diode (61) is turned off. In addition, the flip-flop (5
7) and (58) are initialized. In addition, in the case of clockwise rotation, the output (Ql) of the flip-flop (57), (5g),
(Q2) becomes "0" and "lo", respectively, and the diode (60) goes out and the diode (61) lights up.In other words, the rotation direction can be identified and displayed.
If it is not rotating, the flip-flop (57), (
The levels of the input terminals (Dl) and (D2) of the flip-flop (58) are undefined, but since the pulse signal (Pc) is not input and only the reset operation is performed by the pulse signal (Pr), the output terminal (D2) of the flip-flop Ql) and (Q2) both become "0" level, and the light emitting diodes (60) and (61
) are both turned off.

このような回路構成によって本回転計(1)は直線性、
確度、データのバラツキの点で極めて良好な結果を得、
測定可能上限回転数は約5X 103rpsまで安定し
て計測できる。また、システムにMO3FET素子を利
用し、回転軸(3)にローラを直結し、また電源として
電池を内蔵させれば小型のポータプルセンサとして構成
できる。
With this circuit configuration, this tachometer (1) has linearity,
Obtained extremely good results in terms of accuracy and data dispersion,
The measurable upper limit rotation speed can be stably measured up to approximately 5X 103 rps. Furthermore, if the system uses an MO3FET element, directly connects a roller to the rotating shaft (3), and incorporates a battery as a power source, it can be configured as a small portable sensor.

以上、実施例について説明したが、本発明はこのような
実施例に限定されるものではない。例えばセンサ部(2
)の構成は静電容量が非対称変化すればよく、電極板、
誘電体板の形状は任意である。また、信号処理部(6)
の回路も同機能を有する他の回路で置換できるとともに
、他に位相検出できる回路等を付加してもよい。さらに
また、本発明は名称を回転計としたが、任意物体の振動
数を測定できる振動計としても使用することができる。
Although the embodiments have been described above, the present invention is not limited to these embodiments. For example, the sensor part (2
), it is sufficient that the capacitance changes asymmetrically, and the electrode plate,
The shape of the dielectric plate is arbitrary. In addition, the signal processing section (6)
This circuit can also be replaced with another circuit having the same function, and another circuit capable of phase detection may be added. Furthermore, although the present invention is named as a tachometer, it can also be used as a vibrometer that can measure the frequency of any object.

この場合、センサ部(2)の形状を変更するのみでよい
In this case, it is only necessary to change the shape of the sensor section (2).

その他、細部の構成、形状、配列、素材等において本発
明の要旨を逸脱しない範囲で任意に変更実施できる。
Other changes may be made in the detailed structure, shape, arrangement, material, etc., without departing from the gist of the present invention.

〔発明の効果〕〔Effect of the invention〕

このように、本発明に係る回転計は静電容量検出方式の
センサ部を設けるとともに、その静電容量検出をチャー
ジアンプを用いた検出部で行うようにしたため、次のよ
うな著効を得る。
As described above, the tachometer according to the present invention is provided with a sensor section using a capacitance detection method, and the capacitance detection is performed by a detection section using a charge amplifier, thereby achieving the following significant effects. .

■応答性がきわめて高いため、時間的に変動する静電容
量も正確に計測でき、回転計にとっては回転数の検出可
能範囲を大幅に拡大することができるとともに、検出精
度も向上できる。
■Due to extremely high responsiveness, it is possible to accurately measure capacitance that fluctuates over time, and for tachometers, it is possible to significantly expand the detectable range of rotational speed and improve detection accuracy.

■複雑な静電容量変化も正確に検出できるため、回転数
のみならず、回転方向、位相等の他の情報も信号処理に
よって容易に検出でき、機能性に優れる。
■Since complex changes in capacitance can be detected accurately, not only the number of rotations but also other information such as rotation direction and phase can be easily detected through signal processing, resulting in excellent functionality.

■高精度のためセンサ部の小型化が容易に図れるため機
器への付設形の回転計とした場合にはせンサ部を小型機
器にも容易に付設でき、機器の小型化を図れるとともに
、一方、単独のポータプル形とした場合には回転計のコ
ンパクト化を図れ、小型軽量、低コスト化に資する。
■Because of its high accuracy, the sensor part can be easily miniaturized, so when it is used as a tachometer attached to equipment, the sensor part can be easily attached to small equipment, making it possible to miniaturize the equipment, and at the same time In the case of a single portaple type, the tachometer can be made more compact, contributing to smaller size, lighter weight, and lower cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図二本発明に係る回転計のブロック回路図、第2図
:同回転計におけるセンサ部の外観斜視図、 第3図:同センサ部における回転角度対P%電電量量変
化示す特性図、 第4図二同回転計における静電容量検出部の回路図、 第5図:同回転計における信号変換回路のブロック回路
図、 第6図:同変換回路における信号のタイムチャート図、 第7図:同回転計における回転数検出回路及び回転数表
示部のブロック回路図、 第8図:同検出回路における信号のタイムチャート図、 第9図:回転方向検出回路及び回路方向表示部の電気回
路図、 尚図面中、 (1)二回転計      (2):センサ部(2a)
 、 (2b) :電極板   (3):被測定用回転
軸(4):チャージアンプ  (5):静電容量検出部
(6):信号処理部
Fig. 1.2 Block circuit diagram of the tachometer according to the present invention. Fig. 2: External perspective view of the sensor section in the tachometer. Fig. 3: Characteristic diagram showing changes in rotation angle versus P% electric power amount in the sensor section. , Figure 4: Circuit diagram of the capacitance detection section in the tachometer, Figure 5: Block circuit diagram of the signal conversion circuit in the tachometer, Figure 6: Time chart of signals in the conversion circuit, 7 Figure: Block circuit diagram of the rotation speed detection circuit and rotation speed display section in the same tachometer, Figure 8: Time chart diagram of signals in the same detection circuit, Figure 9: Electric circuit of the rotation direction detection circuit and circuit direction display section In the drawing, (1) Double tachometer (2): Sensor part (2a)
, (2b): Electrode plate (3): Rotating shaft to be measured (4): Charge amplifier (5): Capacitance detection section (6): Signal processing section

Claims (1)

【特許請求の範囲】[Claims] 一対の電極板または各電極板に挟まれる誘電体板の一方
を被測定用回転軸に設けるとともに、前記回転軸の回転
により電極板間静電容量が一周期の中心に対し時間軸方
向へ非対称変化するように前記電極板または誘電体板の
形状を設定したセンサ部と、前記静電容量の変化を計測
するチャージアンプを用いた静電容量検出部と、前記静
電容量検出部からの静電容量変化に対応した検出信号を
処理して前記回転軸の回転数、回転方向等の回転情報を
得る信号処理部とを備えたことを特徴とする回転計。
A pair of electrode plates or one of the dielectric plates sandwiched between each electrode plate is provided on the rotating shaft to be measured, and due to the rotation of the rotating shaft, the capacitance between the electrode plates is asymmetrical in the time axis direction with respect to the center of one cycle. A sensor section in which the shape of the electrode plate or dielectric plate is set to change, a capacitance detection section using a charge amplifier that measures a change in the capacitance, and a capacitance detection section that uses static electricity from the capacitance detection section. A tachometer comprising: a signal processing section that processes a detection signal corresponding to a change in capacitance to obtain rotation information such as the rotation speed and rotation direction of the rotation shaft.
JP19632486A 1986-08-21 1986-08-21 Revolution indicator Pending JPS6352067A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19632486A JPS6352067A (en) 1986-08-21 1986-08-21 Revolution indicator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19632486A JPS6352067A (en) 1986-08-21 1986-08-21 Revolution indicator

Publications (1)

Publication Number Publication Date
JPS6352067A true JPS6352067A (en) 1988-03-05

Family

ID=16355924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19632486A Pending JPS6352067A (en) 1986-08-21 1986-08-21 Revolution indicator

Country Status (1)

Country Link
JP (1) JPS6352067A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007047128A (en) * 2005-08-12 2007-02-22 Hitachi Ltd Rotation angle sensitive device of rotating body
JP2013516616A (en) * 2010-01-05 2013-05-13 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Rotation angle sensor
US9568337B2 (en) 2013-05-31 2017-02-14 Denso Corporation Rotation state detection device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS495347A (en) * 1972-05-02 1974-01-18
JPS5057660A (en) * 1973-09-22 1975-05-20

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS495347A (en) * 1972-05-02 1974-01-18
JPS5057660A (en) * 1973-09-22 1975-05-20

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007047128A (en) * 2005-08-12 2007-02-22 Hitachi Ltd Rotation angle sensitive device of rotating body
JP2013516616A (en) * 2010-01-05 2013-05-13 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Rotation angle sensor
US8854054B2 (en) 2010-01-05 2014-10-07 Robert Bosch Gmbh Rotation angle sensor
US9568337B2 (en) 2013-05-31 2017-02-14 Denso Corporation Rotation state detection device

Similar Documents

Publication Publication Date Title
US6828801B1 (en) Capacitive sensor
US4142153A (en) Tachometer for measuring speed and direction of shaft rotation with a single sensing element
EP0698780B1 (en) Differential capacitance detector
CA2174900C (en) Method and apparatus for measuring the change in capacitance values in dual capacitors
US5033300A (en) Device for measuring displacement
JPS62161058A (en) Method for detecting rotational speed of motor
US4914421A (en) Detector for disc records
CA2130093C (en) Method and apparatus for measuring voltage
US4949364A (en) Count error detecting device for count type measuring instruments
JPH0769186B2 (en) Reflected electrostatic field angle resolver
JPS6352067A (en) Revolution indicator
US4922187A (en) Pulse initiator circuit
EP0166699B1 (en) Circuit for detecting the passage through zero of the signal generated by an electromagnetic sensor of the phonic wheel type
US3840805A (en) Device for measuring parameters of resonant lc-circuit
JPH084389B2 (en) DC motor rotation speed measuring device
JP3433875B2 (en) Touch keys
Li et al. A new method for the measurement of low speed using a multiple-electrode capacitive sensor
JP2856521B2 (en) Electromagnetic flow meter
JP2502585B2 (en) Pulse oscillator
JPH11281503A (en) Phase difference detecting circuit
US7224193B2 (en) Current-voltage conversion circuit
US3947682A (en) Apparatus for measuring angular displacement
SU1709239A1 (en) Device for measuring conductivity
RU2034301C1 (en) Bridge for measuring parameters of three-element non-resonant two-poles
SU1226180A1 (en) Device for measuring length of microopening in conductometric pulse transducer