JPS6351982B2 - - Google Patents

Info

Publication number
JPS6351982B2
JPS6351982B2 JP4642784A JP4642784A JPS6351982B2 JP S6351982 B2 JPS6351982 B2 JP S6351982B2 JP 4642784 A JP4642784 A JP 4642784A JP 4642784 A JP4642784 A JP 4642784A JP S6351982 B2 JPS6351982 B2 JP S6351982B2
Authority
JP
Japan
Prior art keywords
glass
laser
appropriate
energy transfer
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4642784A
Other languages
Japanese (ja)
Other versions
JPS60191029A (en
Inventor
Hisayoshi Toratani
Tetsuo Izumitani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP4642784A priority Critical patent/JPS60191029A/en
Publication of JPS60191029A publication Critical patent/JPS60191029A/en
Publication of JPS6351982B2 publication Critical patent/JPS6351982B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/12Silica-free oxide glass compositions
    • C03C3/16Silica-free oxide glass compositions containing phosphorus
    • C03C3/17Silica-free oxide glass compositions containing phosphorus containing aluminium or beryllium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この本発明は1.5μm付近に発振波長を有するレ
ーザガラスに関するものである。 従来、レーザガラスとして実用に供されてきた
のはNd3+を活性イオンとするものがほとんどで
あつた。これは、1.05μm付近に発振波長を有し、
レーザ核融合のエネルギドライバや、レーザ測距
器の光源として用いられている。ところが最近に
なつて、1μm付近の波長は目に対して有害である
ことから、用途によつては重要な問題となつてき
ている。 これに対し、Er3+を活性イオンとするレーザガ
ラスは目に安全な1.5μm付近に発振波長を有して
いる。ところで、Er3+の1.5μm付近の発光はEr3+
413/2→ 415/2の遷移に伴うものであり、
いわゆる3準位のレーザ動作に対応する。したが
つて、反転分布を形成するためには少なくとも
Er3+の全イオン数の1/2を励起する必要があるこ
とから、Er3+の蛍光寿命が長く、かつEr3+の濃度
が低いことが望ましい。しかし、この場合は励起
のポンピング光の吸収効率も小さくなるため、
Er3+の反転分布を達成するにはエネルギ伝達を利
用した増感が是非とも必要となる。このような増
感効果をもつイオンとしてはYb3+が有効である。
しかし、Yb3+は1μm付近にしか吸収帯をもたな
いため、ガラスレーザの励起に一般に用いられる
Xeフラツシユランプの光を効率よく吸収しえな
い。そこで、Xeフラツシユランプの発光の紫外、
可視成分を吸収してYb3+を増感するイオンがさ
らに必要となる。このようなイオンとしては
Nd3+、Cr3+、Ce3+が有効である。 この発明は上記のことから、目に安全な発振波
長を有し、しかも長い蛍光寿命と大きい誘導放出
断面積と小さい屈折率温度係数とをもち、高速繰
返し発振が可能なレーザガラスを提供することを
目的とするものである。 すなわち、この発明によるレーザガラスは、モ
ル%でP2O5 55〜75、Al2O3 3〜10、K2O+
Na2O+Li2O 10〜20、BaO+SrO+CaO+MgO
0〜15、Er2O3 0.01〜0.5、Yb2O3 5〜9、
Nd2O3 0〜0.5、Cr2O3 0〜0.15、CeO2 0〜3、
Nb2O5 0.2〜1からなる組成を有している。 以下、上記組成の限定理由について説明する。 P2O5は、55%以下ではガラスが失透しやすく、
75%以上ではガラス溶解時に揮発が多くて良好な
ガラスが得られないため、55〜75%が適当であ
る。Al2O3は、ガラスの化学的耐久性を向上させ
るのに3%以上必要であるが、10%をこえると
Er3+の発光の誘導放出断面積が減少して耐熱特性
(Athermal特性)がなくなるため、3〜10%が適
当である。アルカリ酸化物(K2O、Na2O、
Li2O)は、誘導放出断面積を増大させて耐熱特
性(Athermal特性)をもたせるが、化学的耐久
性を低下させるため、合計量で10〜20%が適当で
ある。アルカリ土類酸化物(BaO、SrO、CaO、
MgO)は、ガラスの失透傾向を抑制するのに添
加することが望ましいが、15%以上では逆に失透
しやすくなるため、合計量で15%以下が適当であ
る。Er2O3は、0.01%以下では発光の強度が小さ
くて実用性がないが、0.5%以上では濃度消光に
よる蛍光寿命の減少が著るしくポンピングによる
反転分布の形成が困難となつてレーザ発振のしき
い値が上昇してしまうため、0.01〜0.5%が適当
である。Yb2O3は、ポンピング光の吸収のために
5%以上は必要であつて、その量は多いほど望ま
しいが、上限はガラスの失透傾向により9%が限
度であるため、5〜9%が適当である。 Yb3+からEr3+へのエネルギ伝達効率はEr3+
濃度の増加と共に大きくなるので、この点からは
Er2O3の濃度は大きい方が良いが、前述のような
3準位系の特徴からくる条件、すなわち、Er3+
濃度が小さいほど反転分布が形成されやすいこと
から、Er2O3は0.01〜0.5%の範囲内で発振しきい
値の最小値が組成に応じて存在する。一方、レー
ザの出力はEr2O3の多い方が大きくなる。 Nd2O3は、可視域に強い吸収帯をもち、Xeフ
ラツシユランプの光を有効に吸収してNd3+
Yb3+のエネルギ伝達によりYb3+を励起するが、
Er3+→Nd3+のエネルギ伝達過程も存在し、これ
はEr3+の励起エネルギを減少させるため、0.5%
以下が適当である。Cr2O3は、可視域に強い吸収
帯をもち、Cr3+→Yb3+のエネルギ伝達により
Yb3+を励起し、しかもこの場合Er3+→Cr3+のよ
うなEr3+の励起エネルギを減少させるエネルギ伝
達過程がないためより有効な増感剤であるが、
Cr3+→Yb3+のエネルギ伝達に伴つて放出される
フオノンよるガラスの温度上昇に伴う熱歪によつ
て上限が決まるため、0.15%以下が適当であり、
さらにCr2O3の最適値は0.01〜0.05%の範囲にあ
る。 CeO2は、ポンピング光の紫外成分を吸収して
Ce3+→Yb3+のエネルギ伝達によりYb3+を励起す
るが、3%以下が適当であり、さらにCeO2の最
適値は1〜3%の範囲にある。Nb2O5は、ソーラ
リゼーシヨンの防止剤として必要であり、0.2%
以上で効果があるが、1%以下で充分である。 Er3+レーザの発振波長である1.5μm付近は、ガ
ラス中に残留しているOH基による吸収がNd3+
ーザの1.06μm付近に比べて大きいため、OH基に
よる発光の消光が大きい。従つて、ガラスの製造
に際しては、充分な脱水(脱OH基)を行うこと
が重要である。発振特性を著しく悪化させないた
めに要求される残留OH濃度の上限は、3μmでの
ガラスの吸収係数で5cm-1以下である。 この発明の実施例(各成分はモル%)を次表に
示す。
The present invention relates to a laser glass having an oscillation wavelength around 1.5 μm. Until now, most of the laser glasses that have been put into practical use have had Nd 3+ as an active ion. This has an oscillation wavelength around 1.05μm,
It is used as an energy driver for laser fusion and as a light source for laser range finders. However, recently, wavelengths around 1 μm are harmful to the eyes, and this has become an important issue for some applications. On the other hand, laser glass with Er 3+ as active ions has an oscillation wavelength around 1.5 μm, which is safe for the eyes. By the way, the emission of Er 3+ around 1.5 μm is Er 3+
This is due to the transition from 4 13/2 to 4 15/2,
This corresponds to so-called three-level laser operation. Therefore, in order to form a population inversion, at least
Since it is necessary to excite 1/2 of the total number of Er 3+ ions, it is desirable that the fluorescence lifetime of Er 3+ is long and the concentration of Er 3+ is low. However, in this case, the absorption efficiency of the pumping light for excitation also decreases, so
To achieve Er 3+ population inversion, sensitization using energy transfer is absolutely necessary. Yb 3+ is effective as an ion having such a sensitizing effect.
However, since Yb 3+ has an absorption band only around 1 μm, it is generally used for excitation of glass lasers.
Xe flash lamp light cannot be absorbed efficiently. Therefore, the ultraviolet light emitted by the Xe flash lamp,
Additional ions are needed to absorb visible components and sensitize Yb 3+ . As such an ion
Nd 3+ , Cr 3+ , and Ce 3+ are effective. In view of the above, it is an object of the present invention to provide a laser glass that has an oscillation wavelength that is safe for the eyes, has a long fluorescence lifetime, a large stimulated emission cross section, and a small temperature coefficient of refractive index, and is capable of high-speed repetitive oscillation. The purpose is to That is, the laser glass according to the present invention contains P 2 O 5 55-75, Al 2 O 3 3-10, K 2 O+ in mol%.
Na 2 O + Li 2 O 10~20, BaO + SrO + CaO + MgO
0~15, Er2O3 0.01 ~0.5, Yb2O3 5 ~9,
Nd2O3 0-0.5 , Cr2O3 0-0.15 , CeO2 0-3 ,
It has a composition of 0.2 to 1 Nb 2 O 5 . The reasons for limiting the above composition will be explained below. When P 2 O 5 is less than 55%, the glass tends to devitrify;
If it exceeds 75%, there will be too much volatilization during glass melting and good glass will not be obtained, so 55 to 75% is appropriate. Al 2 O 3 is required at least 3% to improve the chemical durability of glass, but if it exceeds 10%
Since the stimulated emission cross section of Er 3+ light emission decreases and the heat resistance properties (thermal properties) are lost, 3 to 10% is appropriate. Alkali oxides (K 2 O, Na 2 O,
Li 2 O) increases the stimulated emission cross section and provides athermal properties, but it reduces chemical durability, so the total amount is suitably 10 to 20%. Alkaline earth oxides (BaO, SrO, CaO,
It is desirable to add MgO to suppress the tendency of glass to devitrify, but if it exceeds 15%, devitrification tends to occur, so a total amount of 15% or less is appropriate. When Er 2 O 3 is less than 0.01%, the emission intensity is so small that it is not practical, but when it is more than 0.5%, the fluorescence lifetime decreases significantly due to concentration quenching, making it difficult to form population inversion by pumping, which makes laser oscillation difficult. Therefore, 0.01 to 0.5% is appropriate. 5% or more of Yb 2 O 3 is required for the absorption of pumping light, and the higher the amount, the more desirable it is, but the upper limit is 9% due to the tendency of glass to devitrify, so it should be 5 to 9%. is appropriate. From this point of view, the energy transfer efficiency from Yb 3+ to Er 3+ increases as the concentration of Er 3+ increases.
The higher the concentration of Er 2 O 3 , the better, but the conditions arising from the characteristics of the three-level system as mentioned above, that is, the smaller the concentration of Er 3+ , the easier it is to form population inversion. There is a minimum value of the oscillation threshold within the range of 0.01-0.5% depending on the composition. On the other hand, the laser output increases as the amount of Er 2 O 3 increases. Nd 2 O 3 has a strong absorption band in the visible region and effectively absorbs the light from the Xe flash lamp, converting Nd 3+
Yb 3+ is excited by energy transfer of Yb 3+ , but
There is also an energy transfer process of Er 3+ → Nd 3+ , which reduces the excitation energy of Er 3+ by 0.5%
The following are appropriate. Cr 2 O 3 has a strong absorption band in the visible range, and due to energy transfer from Cr 3+ → Yb 3+
It is a more effective sensitizer because it excites Yb 3+ and in this case there is no energy transfer process that reduces the excitation energy of Er 3+ , such as Er 3+ → Cr 3+ .
The upper limit is determined by the thermal strain caused by the temperature rise of the glass due to the phonons released during the energy transfer of Cr 3+ → Yb 3+ , so 0.15% or less is appropriate.
Furthermore, the optimum value of Cr2O3 is in the range of 0.01-0.05%. CeO2 absorbs the ultraviolet component of the pumping light and
Yb 3+ is excited by the energy transfer of Ce 3+ →Yb 3+ , but the appropriate value is 3% or less, and the optimum value for CeO 2 is in the range of 1 to 3%. Nb2O5 is needed as an inhibitor of solarization, 0.2%
A content of 1% or less is effective, but a content of 1% or less is sufficient. At around 1.5 μm, which is the oscillation wavelength of the Er 3+ laser, the absorption by the OH groups remaining in the glass is greater than at around 1.06 μm for the Nd 3+ laser, so the quenching of the emission by the OH groups is large. Therefore, when manufacturing glass, it is important to perform sufficient dehydration (removal of OH groups). The upper limit of the residual OH concentration required in order not to significantly deteriorate the oscillation characteristics is an absorption coefficient of glass at 3 μm of 5 cm −1 or less. Examples of this invention (each component is mol %) are shown in the following table.

【表】【table】

【表】 この発明は上記のように構成したので、目に安
全な1.5μm付近に発振波長を有し、しかも蛍光寿
命が長く、誘導放出断面積が大きく、屈折率温度
係数が小さく、そのため高速繰返し発振が可能で
ある等のすぐれた効果を有するものである。
[Table] Since the present invention is configured as described above, it has an oscillation wavelength near 1.5 μm that is safe for the eyes, has a long fluorescence lifetime, has a large stimulated emission cross section, has a small refractive index temperature coefficient, and has a high speed. It has excellent effects such as being able to repeatedly oscillate.

Claims (1)

【特許請求の範囲】 1 モル%で P2O5 55〜75 Al2O3 3〜10 K2O+Na2O+Li2O 10〜20 BaO+SrO+CaO+MgO 0〜15 Er2O3 0.01〜0.5 Yb2O3 5〜9 Nd2O3 0〜0.5 Cr2O3 0〜0.15 CeO2 0〜3 Nb2O5 0.2〜1 からなる組成を有するレーザガラス。 2 Cr2O3がモル%で0.01〜0.05である特許請求
の範囲第1項記載のレーザガラス。 3 CeO2がモル%で1〜3である特許請求の範
囲第1項記載のレーザガラス。
[Claims] In 1 mol% P 2 O 5 55-75 Al 2 O 3 3-10 K 2 O + Na 2 O + Li 2 O 10-20 BaO + SrO + CaO + MgO 0-15 Er 2 O 3 0.01-0.5 Yb 2 O 3 5 -9 Nd2O30-0.5Cr2O30-0.15CeO20-3Nb2O50.2-1 Laser glass having a composition . 2. The laser glass according to claim 1, wherein the mol% of Cr2O3 is 0.01 to 0.05. 3. The laser glass according to claim 1, wherein the CeO2 content is 1 to 3 in mole %.
JP4642784A 1984-03-13 1984-03-13 Laser glass Granted JPS60191029A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4642784A JPS60191029A (en) 1984-03-13 1984-03-13 Laser glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4642784A JPS60191029A (en) 1984-03-13 1984-03-13 Laser glass

Publications (2)

Publication Number Publication Date
JPS60191029A JPS60191029A (en) 1985-09-28
JPS6351982B2 true JPS6351982B2 (en) 1988-10-17

Family

ID=12746849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4642784A Granted JPS60191029A (en) 1984-03-13 1984-03-13 Laser glass

Country Status (1)

Country Link
JP (1) JPS60191029A (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4929387A (en) * 1988-08-31 1990-05-29 Schott Glass Technologies, Inc. Phosphate glass useful in high power lasers
US5032315A (en) * 1989-04-03 1991-07-16 Schott Glass Technologies, Inc. Phosphate glass useful in high power lasers
JP2811811B2 (en) * 1989-10-03 1998-10-15 三菱電機株式会社 Liquid crystal display
US5225925A (en) * 1991-01-23 1993-07-06 Amoco Corporation Sensitized erbium fiber optical amplifier and source
JP3498895B2 (en) 1997-09-25 2004-02-23 シャープ株式会社 Substrate cutting method and display panel manufacturing method
JP3494859B2 (en) * 1997-10-02 2004-02-09 シャープ株式会社 Liquid crystal panel and manufacturing method thereof
CN101885583B (en) * 2010-06-11 2012-01-25 陕西科技大学 Method for preparing erbium-containing red glass
US8526475B2 (en) * 2010-08-06 2013-09-03 Schott Corporation Broadening of rare earth ion emission bandwidth in phosphate based laser glasses
US9006120B2 (en) * 2012-11-28 2015-04-14 Schott Corporation Ultra-broad bandwidth laser glasses for short-pulse and high peak power lasers
US9118166B2 (en) * 2012-11-28 2015-08-25 Schott Corporation Tuning rare earth ion emission wavelength in phosphate based glasses using cerium oxide
CN108840564B (en) * 2014-12-16 2021-07-27 成都光明光电有限责任公司 Phosphate laser neodymium glass without thermal effect
US9834469B2 (en) * 2016-02-02 2017-12-05 Schott Corporation Aluminophosphate glass composition
CN105924001A (en) * 2016-04-28 2016-09-07 华南理工大学 Er<3+>/Yb<3+> co-doped multi-component phosphate glass material with uniformly distributed silver nano-particles, and preparation method thereof

Also Published As

Publication number Publication date
JPS60191029A (en) 1985-09-28

Similar Documents

Publication Publication Date Title
US4962067A (en) Erbium laser glass compositions
US5032315A (en) Phosphate glass useful in high power lasers
US4075120A (en) Laser phosphate glass compositions
US4248732A (en) Laser phosphate glass compositions
EP2436659B1 (en) Aluminophosphate glass composition
US5526369A (en) Phosphate glass useful in high energy lasers
JPS6351982B2 (en)
US4217382A (en) Edge-cladding glass of disc laser glass
JPH07291652A (en) Glass for optical signal amplifier and production of opticalsignal amplifier
KR102166973B1 (en) Ultra-broad bandwidth laser glasses for short-pulse and high peak power lasers
US7531473B2 (en) Ytterbium-phosphate glass
US9263850B2 (en) Broadening the rare earth ion emission bandwidth, increasing emission cross section, and or shifting peak emission wavelength in nd doped aluminate or silicate glasses
JPH012025A (en) phosphate laser glass single mode fiber
RU2636985C2 (en) Adjustment of emission wavelength of rare-earth ion in phosphate-based glass using cerium oxide
US7298768B1 (en) Thulium-doped heavy metal oxide glasses for 2UM lasers
EP1732856B1 (en) Glass for optical amplifier fiber
CN102203023B (en) Light-amplifying glass
JPS6218495B2 (en)
JPS6321240A (en) Phosphate laser glass multiple mode fiber
Rapp Bulk Glasses
JP2004277252A (en) Optical amplification glass and optical waveguide
JPH0826768A (en) Yb laser glass and laser using the glass
GB1111857A (en) Improvements in or relating to laserable materials
US3755757A (en) High efficiency erbium glass laser
KR100477802B1 (en) Tm ION-DOPED SILICATE GLASS AND THE USE THEREOF

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term