JPS6351853B2 - - Google Patents

Info

Publication number
JPS6351853B2
JPS6351853B2 JP58044353A JP4435383A JPS6351853B2 JP S6351853 B2 JPS6351853 B2 JP S6351853B2 JP 58044353 A JP58044353 A JP 58044353A JP 4435383 A JP4435383 A JP 4435383A JP S6351853 B2 JPS6351853 B2 JP S6351853B2
Authority
JP
Japan
Prior art keywords
steel pipe
polyethylene
plastic
coating
corrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58044353A
Other languages
Japanese (ja)
Other versions
JPS59171634A (en
Inventor
Mitsuo Tanaka
Fuyuhiko Ootsuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP58044353A priority Critical patent/JPS59171634A/en
Publication of JPS59171634A publication Critical patent/JPS59171634A/en
Publication of JPS6351853B2 publication Critical patent/JPS6351853B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C63/00Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor
    • B29C63/02Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor using sheet or web-like material
    • B29C63/04Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor using sheet or web-like material by folding, winding, bending or the like
    • B29C63/08Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor using sheet or web-like material by folding, winding, bending or the like by winding helically
    • B29C63/10Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor using sheet or web-like material by folding, winding, bending or the like by winding helically around tubular articles
    • B29C63/105Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor using sheet or web-like material by folding, winding, bending or the like by winding helically around tubular articles continuously

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Description

【発明の詳細な説明】 この発明は、防食のためにプラスチツクを外面
に被覆した鋼管の製造法に関するもので、特に海
洋構築物に用いられる鋼管杭の防食被覆に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a steel pipe whose outer surface is coated with plastic for corrosion protection, and particularly to the anticorrosion coating of steel pipe piles used in marine structures.

鋼管杭は橋梁、棧橋、プラツトホームなど海洋
構築物用の構造部材として多くのすぐれた性質を
もつているために、従来から使用されている。と
ころが、鉄鋼材料の宿命として腐食しやすいとい
う問題があり、特に海上は腐食にとつて陸上より
もはるかに厳しい環境にあるために、陸上におけ
る土木建築用材料よりも一層深刻な問題である。
Steel pipe piles have long been used as structural members for offshore structures such as bridges, bridges, and platforms because they have many excellent properties. However, the problem with steel materials is that they are prone to corrosion, and the problem is even more serious than that of civil engineering and construction materials on land, especially since the ocean is a much harsher environment for corrosion than on land.

これまでの知見によれば、海上は海洋環境にお
ける腐食状況から、洋上部、飛沫部、干満部、海
中部および海底部の5つに区分される。洋上部は
太陽光線や風雨に曝されるところで、陸上の大気
中に比べると空気中の塩分が多いために、腐食は
陸上大気中よりも激しいが、飛沫部や干満部より
は少ない。飛沫部は海上の直上で海水飛沫がかゝ
り、濡れと乾燥の繰返し、日光による温度上昇な
ど腐食促進要因が重なるため腐食が最も激しいと
ころで年間0.5〜1.0mmの腐食が認められる。次の
干満部は比較的少ない腐食である。ここは潮の干
満によつて乾湿が繰返えされるが、水平直下の腐
食の大きい部分と干満部がマクロセル(腐食電
池)をつくり、干満部が海面直下部に対してカソ
ードとなるためといわれる。海中部は海面に近い
ほど溶存酸素が多く、飛沫部に次いで腐食は激し
い。しかし、海底に近くなるほど腐食は小さくな
る。海底部は溶存酸素が少ないため、一般に最も
腐食が少ない部分である。
According to the knowledge so far, the ocean can be divided into five areas based on the state of corrosion in the marine environment: the oceanic area, the splash area, the tidal area, the underwater area, and the ocean floor area. The ocean area is exposed to sunlight, wind and rain, and the air contains more salt than the air on land, so corrosion is more severe than in the air on land, but less so than in the splash and tidal areas. The splash area is directly above the ocean and is exposed to seawater spray, repeating wetting and drying, and increasing temperatures due to sunlight, all of which accelerate corrosion, resulting in corrosion of 0.5 to 1.0 mm per year at the most severe locations. The next tidal zone has relatively little corrosion. This area undergoes repeated drying and wetting due to the ebb and flow of the tide, and it is said that this is because the highly corroded areas just below the horizontal and the ebb and flow areas create macrocells (corrosion batteries), and the ebb and flow areas act as cathodes for the area just below the sea level. . The closer to the sea surface, the more dissolved oxygen there is in the ocean, and corrosion is the second most severe after the splash area. However, the closer you get to the ocean floor, the less corrosion occurs. The ocean floor generally has the least amount of corrosion due to the lack of dissolved oxygen.

このような腐食環境にある海洋構築物用の鋼材
の腐食対策として従来とられてきた方法が大きく
分けて二つある。一つは腐食量に見合つた腐食代
を予めとつて鋼材の厚さを厚くして用いる方法で
ある。しかし、この方法は大形構造物であるほ
ど、全体の重量増加が大きくなり経済的に不合理
である。他の一つは防食法を施すことである。防
食法としてはジンクリツチ塗料、タールエポキシ
樹脂塗料、塩化ゴム塗料などによる塗装、モネ
ル、ステンレス鋼、犠牲鋼などの金属ライニン
グ、コンクリートライニング、ゴム、ポリエチレ
ン、ポリエステルなどの有機高分子ライニングが
代表的である。更にまた、海中部や海底部では電
気防食が用いられている。なお、クロムを鋼中に
添加した耐海水性鋼が用いられることもある。こ
れらの防食法は洋上部や飛沫部などそれぞれの部
分に応じ適切な方法が単独もしくは組合せて用い
られる。
There are broadly two methods that have been used to prevent corrosion of steel materials for marine structures in such corrosive environments. One method is to increase the thickness of the steel material by preparing in advance a corrosion allowance commensurate with the amount of corrosion. However, this method is economically unreasonable as the larger the structure is, the greater the increase in overall weight becomes. Another method is to apply anti-corrosion methods. Typical corrosion prevention methods include coating with zinc-rich paint, tar epoxy resin paint, chlorinated rubber paint, etc., metal linings such as Monel, stainless steel, and sacrificial steel, concrete linings, and organic polymer linings such as rubber, polyethylene, and polyester. . Furthermore, cathodic protection is used in the ocean and undersea areas. Note that seawater-resistant steel with chromium added thereto may also be used. Appropriate methods for these corrosion prevention methods are used alone or in combination depending on each area, such as the offshore area or the splash area.

ところが、これまでの方法は性能の点や経済的
に満足できるものが少なく、よりすぐれた防食方
法が望まれていた。たとえば、塗装系は塗膜寿命
が短かく3〜5年で塗り替えが必要であり、モネ
ルやステンレス鋼のライニングは性能は十分であ
つてもきわめて高価であるため一般的ではない。
コンクリートや有機高分子のライニングも現地施
工であるため作業費が高くなるという問題があつ
た。
However, few of the conventional methods have been satisfactory in terms of performance or economy, and a better corrosion prevention method has been desired. For example, painted systems have a short coating life and must be repainted every 3 to 5 years, and Monel or stainless steel linings are not common because they are extremely expensive even though they have sufficient performance.
Concrete and organic polymer linings also had to be constructed on-site, resulting in high work costs.

この発明は、このような問題を解決して経済的
でかつ長期間の防食性能がすぐれたプラスチツク
被覆鋼管を製造することを目的としてなされたも
のである。
The present invention was made with the object of solving these problems and producing a plastic-coated steel pipe that is economical and has excellent long-term corrosion protection performance.

ポリエチレンやポリプロピレンなどのプラスチ
ツクを外面に被覆した鋼管が、ガスや石油を輸送
するパイプラインに用いられていることはよく知
られている。鋼管の表面のミルスケールをシヨツ
トブラストで除去してから140℃以上に加熱して
変性ポリオレフイン系の接着剤を介してポリエチ
レンやポリプロピレンを2.5mmないし3.0mmの厚さ
に被覆したもので、プラスチツクの化学的な安定
性と機械的な強度などのすぐれた性質から、地下
や海底に敷設される鋼管の腐食を防止して、数10
年に及ぶ耐用年数が期待されている。
It is well known that steel pipes coated with plastic such as polyethylene or polypropylene are used in pipelines for transporting gas and oil. Mill scale on the surface of a steel pipe is removed by shot blasting, then heated to over 140°C and coated with polyethylene or polypropylene to a thickness of 2.5 to 3.0 mm using a modified polyolefin adhesive. Due to its excellent properties such as chemical stability and mechanical strength, it can prevent corrosion of steel pipes installed underground or on the seabed.
It is expected to have a useful life of several years.

このようなパイプライン用に開発されたプラス
チツク被覆鋼管を海洋構築物用の鋼管杭として用
いても当然のことながら長期間の防食効果は十分
であるし、また工場において高い生産性で管理さ
れた条件で製造されるので、安価で品質のすぐれ
た製品を供給することができる。
Naturally, even if plastic-coated steel pipes developed for pipelines are used as steel pipe piles for offshore structures, the long-term corrosion protection effect will be sufficient, and the conditions that are managed at factories with high productivity will be sufficient. Because it is manufactured in

ところが、プラスチツク被覆鋼管の被覆厚さ
は、水分透過率や酸素透過率などを考慮して決め
られる防食に必要な膜厚と、鋼管を輪送したり保
管したりするときのハンドリングや埋設時の土砂
埋戻しによつて受ける外部からの打撃で被覆が損
傷するのを保護するために必要な膜厚との合計で
決められ、埋設鋼管については、鋼管の外径区分
に応じて決められており、例えばJIS G3469では
1.2mmから2.5mm、DIN30670では1.8mmから3.5mmま
で規定されている。しかし海洋構築物に用いられ
るプラスチツク被覆鋼管杭の場合は、輸送や保管
のときのハンドリング時に受ける疵は埋設鋼管と
同様であつても、海洋構築物として用いられてい
る間も干満部や飛沫部は流木や船の接触による打
撃でいつも被覆は損傷を受ける危険があり、ま
た、前述のように飛沫部と海中部の違いのように
部位による腐食程度が著しく異なる。すなわち、
プラスチツク被覆鋼管杭は海中部や海底部で用い
られるものと、海面近くや飛沫部で用いられるも
のとでは腐食環境も被覆の損傷に対する危険も著
しく異なるので、埋設鋼管の被覆のように、一律
に膜厚を決めるのは得策ではなく、海中部や海底
部に用いられる鋼管杭のプラスチツク被覆の厚さ
よりも海面近くや飛沫部に用いられる部分の被覆
を厚くすることが望ましい。
However, the coating thickness of plastic-coated steel pipes is determined by taking into consideration moisture permeability, oxygen permeability, etc., and the film thickness required for corrosion protection, as well as handling during transportation and storage of the steel pipes, and when burying. It is determined based on the total thickness of the coating required to protect the coating from being damaged by external blows caused by backfilling with earth and sand, and for buried steel pipes, it is determined according to the outer diameter classification of the steel pipe. , for example, in JIS G3469
1.2mm to 2.5mm, and DIN30670 specifies 1.8mm to 3.5mm. However, in the case of plastic-coated steel pipe piles used for marine structures, even though the damage caused during handling during transportation and storage is the same as that of buried steel pipes, even when they are used as marine structures, the tidal areas and splash areas are covered with driftwood. There is always a risk that the coating will be damaged by damage from contact with boats or boats, and the degree of corrosion varies greatly depending on the area, as mentioned above, between the splashed area and the underwater area. That is,
For plastic-coated steel pipe piles, the corrosive environment and risk of damage to the coating are significantly different between those used in the ocean or under the sea, and those used near the sea surface or in areas exposed to splashes. It is not a good idea to decide on the thickness of the coating, but it is desirable to make the plastic coating thicker on the parts near the sea surface or in splash areas than the plastic coating on steel pipe piles used in underwater areas or on the seabed.

海洋構築物用の鋼管杭は所定の長さの鋼管を接
続して40数mの長さになることがあるが、干満部
や飛沫部の長さは3〜7m位であり、鋼管の定尺
が12mか18mであるから、1本の鋼管杭の中で部
分的に厚い被覆にすることが望ましい。この発明
は部分的に膜厚の大きなプラスチツク被覆鋼管杭
の製造法を提供するものである。
Steel pipe piles for marine structures can be over 40 meters in length by connecting steel pipes of a predetermined length, but the length of the ebb and flow part is about 3 to 7 m, and the standard length of the steel pipe is Since the length of the pile is 12m or 18m, it is desirable to have thick covering in some parts of one steel pipe pile. The present invention provides a method for manufacturing a partially thickened plastic coated steel pipe pile.

すなわち、本発明は第1図及び第2図におい長
手方向に移動する鋼管の外表面に、フラツトダイ
3から帯状に押し出した半溶融プラスチツクを螺
旋状に巻きつけて被覆する熱可塑性プラスチツク
被覆鋼管の製造工程において、前記フラツトダイ
3の上部リツプ8を油圧シリンダー5によつて上
下に移動することによつてフラツトダイ3のスリ
ツト9の間隔を任意に調節し、かつまたシリンダ
ー5による上部リツプ8の上下動と連動して押出
機のスクリユー回転数を増減可能にしてポリエチ
レンの押出量を調整し、1本の鋼管の中で中途か
ら押し出すプラスチツクシートの厚さを増減し
て、連続的に異厚被覆を行うことを特徴とするプ
ラスチツク被覆鋼管の製造法である。
That is, the present invention relates to the production of a thermoplastic-coated steel pipe in which the outer surface of a steel pipe moving in the longitudinal direction as shown in FIGS. In the process, the upper lip 8 of the flat die 3 is moved up and down by the hydraulic cylinder 5 to arbitrarily adjust the interval between the slits 9 of the flat die 3, and the upper lip 8 is moved up and down by the cylinder 5. Interlockingly, the screw rotation speed of the extruder can be increased/decreased to adjust the amount of polyethylene extruded, and the thickness of the plastic sheet extruded from the middle of a single steel pipe can be increased/decreased to continuously provide coating with different thicknesses. This is a method for manufacturing plastic-coated steel pipes.

次に具体例によつてこの発明を詳細に説明す
る。
Next, the present invention will be explained in detail using specific examples.

外径508mm、肉厚9mm、長さ9mのスパイラル
鋼管をシヨツトブラストして外面のミルスケール
や錆を除去してから140℃ないし210℃に加熱す
る。次いで無水マレイン酸やアクリル酸とエチレ
ンとの共重合体を成分とする接着剤とポリエチレ
ンを被覆する。第1図に示すように、鋼管1はス
キユーロール2によつて回転しながら搬送されて
いくが、図にない押出機で加熱されて半溶融状態
になつたポリエチレンはフラツトダイ3のスリツ
トから帯状に押出されて、鋼管の外側に螺旋状に
部分的に重ね合せながら巻付けていく。ポリエチ
レンの重なり合つた部分は互いに融着して連続し
た被覆を形成する。この後、冷却された検査工程
を経て製品になる。
A spiral steel pipe with an outer diameter of 508 mm, a wall thickness of 9 mm, and a length of 9 m is shot blasted to remove mill scale and rust from the outer surface, and then heated to 140°C to 210°C. Next, an adhesive containing maleic anhydride or a copolymer of acrylic acid and ethylene is coated with polyethylene. As shown in Fig. 1, the steel pipe 1 is conveyed while being rotated by the skie rolls 2, and the polyethylene, which has been heated to a semi-molten state by an extruder (not shown), is extruded into a strip from the slit of the flat die 3. The material is then wrapped spirally around the outside of the steel pipe, partially overlapping each other. The overlapping sections of polyethylene are fused together to form a continuous coating. After this, it goes through a cooling inspection process and becomes a product.

ポリエチレン被覆の厚さは、フラツトダイ3の
スリツト間隔およびポリエチレンの押出速度とポ
リエチレンシート4を鋼管に巻付ける速度との比
で表わすことができる引落率の二つの要因によつ
て鋼管に巻きつけるときのシートの膜厚がきま
り、更に、そのシートを鋼管に巻きつけるときの
重ね合せ回数によつて決まる。
The thickness of the polyethylene coating is determined by two factors: the slit spacing of the flat die 3 and the drawdown rate, which can be expressed as the ratio of the polyethylene extrusion speed to the speed at which the polyethylene sheet 4 is wound around the steel pipe. The thickness of the sheet is determined, and it is further determined by the number of times the sheet is wrapped around the steel pipe.

ポリエチレンは大きな圧力で押出されて、大気
中に出て圧力が解放されるとやゝ膨張するので、
フラツトダイ3から押出されたときに張力が加わ
らなければスリツトの間隔よりも厚くなる。それ
をポリエチレンの押出される速度よりも鋼管の周
速を大きくするとポリエチレンシートに張力が加
わり、ポリエチレンシートは引伸ばされて巾も厚
さも小さくなる。また当然のことながらスリツト
の間隔を大きくすればするほど、ポリエチレンシ
ートの厚さは厚くなる。
Polyethylene is extruded under great pressure, and when it goes into the atmosphere and the pressure is released, it expands a little.
If no tension is applied when it is extruded from the flat die 3, it will be thicker than the slit spacing. When the circumferential speed of the steel pipe is made higher than the speed at which the polyethylene is extruded, tension is applied to the polyethylene sheet, which is stretched and becomes smaller in width and thickness. Naturally, the larger the spacing between the slits, the thicker the polyethylene sheet becomes.

従つて、ポリエチレンシートの厚さを厚くして
やるための第1の方法は鋼管の周速を一定にして
おいて押出速度を大きくすることによつて、ポリ
エチレンシートに加わる張力を小さくしてやるこ
とである。このような条件の変更は1本の鋼管に
ポリエチレンを被覆している途中で任意に設定す
ることができるので、ポリエチレン被覆の厚さを
次第に厚くしていき、所定の長さだけ厚膜被覆を
した後でまた次第に薄くして当初の薄膜被覆にも
どすという被覆の仕方が可能である。しかし、こ
の方法はフラツトダイのスリツト間隔を一定にし
ておいたまゝで、押出されたポリエチレンシート
に加わる張力の大きさだけで厚さを変更するの
で、被覆作業性や被覆の品質を考慮すると厚さ変
更の範囲に限界があり、あまり大きな変更は困難
である。せいぜい50%増位が適正な範囲である。
Therefore, the first method for increasing the thickness of the polyethylene sheet is to increase the extrusion speed while keeping the circumferential speed of the steel pipe constant, thereby reducing the tension applied to the polyethylene sheet. These conditions can be changed arbitrarily during the process of coating a steel pipe with polyethylene, so the thickness of the polyethylene coating can be gradually increased, and the thick film coating can be applied for a predetermined length. After that, it is possible to apply the coating by gradually thinning it again and returning it to the original thin film coating. However, in this method, the slit spacing of the flat die is kept constant, and the thickness is changed only by the amount of tension applied to the extruded polyethylene sheet. Therefore, considering the coating workability and coating quality, the thickness There is a limit to the scope of change, and it is difficult to make too large a change. At most, a 50% increase is an appropriate range.

第2の方法はフラツトダイのスリツト間隔を大
きく広げ、かつポリエチレンの押出量を増加する
方法である。これは第2図に示すようなフラツト
ダイ3の上部リツプ8が油圧シリンダー5によつ
て上下へ移動することができるようになつている
構造のダイを使用して被覆する。スリツト間隔の
設定は下限リミツト7および上限リミツト6で任
意に設定でき、またシリンダーによるリツプの上
下と連動して押出機のスクリユー回転数の増減が
できるようにしておくと、ポリエチレンの押出量
が、スリツト間隔に対応して変更される。従つ
て、1本の鋼管にポリエチレンを被覆しながら、
任意のところからスリツト間隔を広げて膜厚を厚
くして所定の長さを厚膜被覆してからまたスリツ
ト間隔を狭くして当初の薄膜被覆にもどすような
ことができる。この方法の場合は膜厚の変更可能
範囲が広く、3倍位までは容易であるから、実用
的な膜厚範囲は十分にカバーすることが可能であ
る。
The second method is to greatly widen the slit spacing of the flat die and increase the amount of polyethylene extruded. This is accomplished by using a die constructed such that the upper lip 8 of the flat die 3 can be moved up and down by a hydraulic cylinder 5, as shown in FIG. The slit spacing can be set arbitrarily using the lower limit 7 and upper limit 6, and if the screw rotation speed of the extruder can be increased or decreased in conjunction with the vertical movement of the lip by the cylinder, the amount of polyethylene extruded can be increased. It is changed according to the slit interval. Therefore, while covering a single steel pipe with polyethylene,
It is possible to widen the slit interval from any point to increase the film thickness, coat a predetermined length with a thick film, and then narrow the slit interval again to return to the original thin film coating. In the case of this method, the range in which the film thickness can be changed is wide, and it is easy to change the film thickness up to about 3 times, so it is possible to sufficiently cover the practical film thickness range.

これら2つの方法で被覆作業の容易さ、設備費
用などを考慮すると第2のスリツト間隔を変更す
る方法が最良である。
Considering the ease of coating work, equipment cost, etc. between these two methods, the best method is to change the second slit interval.

実施例 1 外径508mm、肉厚9mm、長さ9mのスパイラル
鋼管をシヨツトブラストして外面のミルスケール
を除去後140℃に加熱し、次いで変性ポリエチレ
ン系接着剤と低密度ポリエチレンを合わせて2.5
mmの膜厚で被覆し、先端から1.5mのところから
スリツト間隔を広げて5.5mmの膜厚で7mの長さ
だけ被覆し、そこから再びスリツト間隔を狭くし
て2.5mmの膜厚で被覆した。その後、冷却および
検査工程を得て製品になる。
Example 1 A spiral steel pipe with an outer diameter of 508 mm, a wall thickness of 9 mm, and a length of 9 m was shot blasted to remove mill scale on the outer surface, heated to 140°C, and then mixed with a modified polyethylene adhesive and low-density polyethylene to a combined temperature of 2.5 m.
The slits are coated with a film thickness of mm, and the slit spacing is increased from 1.5m from the tip to cover a length of 7m with a film thickness of 5.5mm.From there, the slit spacing is narrowed again and the slits are coated with a film thickness of 2.5mm. did. After that, it undergoes a cooling and inspection process to become a product.

膜厚2.5mmの部分と5.5mmの部分について直径
200mmのポンチで衝撃試験を行なつたところ、膜
厚2.5mmで63Kg−m、膜厚5.5mmで173Kg−mの結
果になり、耐衝撃力は大巾に向上している。しか
も全長を5.5mmの膜厚にする場合にくらべてポリ
エチレンの使用量は少く経済的である。
Diameter for 2.5mm and 5.5mm thick parts
When an impact test was performed using a 200 mm punch, the results were 63 Kg-m with a film thickness of 2.5 mm, and 173 Kg-m with a film thickness of 5.5 mm, indicating a significant improvement in impact resistance. Moreover, the amount of polyethylene used is smaller than when the film thickness is 5.5 mm over the entire length, making it more economical.

以上述べたように本発明方法には3つの方法が
あるが、いずれも1本の鋼管の中途からプラスチ
ツクシートの厚さを増す方法を示しており、この
種のプラスチツク被覆鋼管の製造方法としては特
に実用的な方法である。
As mentioned above, there are three methods in the present invention, but all of them indicate a method of increasing the thickness of the plastic sheet from the middle of one steel pipe, and these are the methods for manufacturing this type of plastic-coated steel pipe. This is a particularly practical method.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図はいずれも本発明方法に係
る説明図であり、第1図はポリエチレンシートを
フラツトダイを用いて鋼管に被覆している図、及
び第2図はスリツト間隔の調整可能なフラツトダ
イの内部構造を示す図である。 1……鋼管、2……スキユーロール、3……フ
ラツトダイ、4……ポリエチレンシート、5……
油圧シリンダー、6……上限リミツト、7……下
限リミツト、8……上部リツプ、9……スリツ
ト、10……下部リツプ。
Fig. 1 and Fig. 2 are both explanatory diagrams related to the method of the present invention. FIG. 3 is a diagram showing the internal structure of a flat die. 1... steel pipe, 2... ski roll, 3... flat die, 4... polyethylene sheet, 5...
Hydraulic cylinder, 6...Upper limit, 7...Lower limit, 8...Upper lip, 9...Slit, 10...Lower lip.

Claims (1)

【特許請求の範囲】[Claims] 1 長手方向に移動する鋼管の外表面に、フラツ
トダイ3から帯状に押し出した半溶融プラスチツ
クを螺旋状に巻きつけて被覆する熱可塑性プラス
チツク被覆鋼管の製造工程において、前記フラツ
トダイ3の上部リツプ8を油圧シリンダー5によ
つて上下に移動することによつてフラツトダイ3
のスリツト9の間隔を任意に調節し、かつまたシ
リンダー5による上部リツプ8の上下動と連動し
て押出機のスクリユー回転数を増減可能にしてポ
リエチレンの押出量を調整し、1本の鋼管の中で
中途から押し出すプラスチツクシートの厚さを増
減して、連続的に異厚被覆を行うことを特徴とす
るプラスチツク被覆鋼管の製造法。
1. In the process of manufacturing a thermoplastic plastic-coated steel pipe, in which the outer surface of a steel pipe moving in the longitudinal direction is coated by spirally wrapping a semi-molten plastic extruded in a band shape from a flat die 3, the upper lip 8 of the flat die 3 is hydraulically wrapped. The flat die 3 is moved up and down by the cylinder 5.
The amount of polyethylene extruded can be adjusted by arbitrarily adjusting the interval between the slits 9, and by increasing or decreasing the screw rotation speed of the extruder in conjunction with the vertical movement of the upper lip 8 by the cylinder 5. A method for manufacturing a plastic-coated steel pipe, which is characterized by increasing or decreasing the thickness of a plastic sheet extruded from the middle of the pipe to continuously coat the pipe with different thicknesses.
JP58044353A 1983-03-18 1983-03-18 Preparation of plastic coated steel pipe Granted JPS59171634A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58044353A JPS59171634A (en) 1983-03-18 1983-03-18 Preparation of plastic coated steel pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58044353A JPS59171634A (en) 1983-03-18 1983-03-18 Preparation of plastic coated steel pipe

Publications (2)

Publication Number Publication Date
JPS59171634A JPS59171634A (en) 1984-09-28
JPS6351853B2 true JPS6351853B2 (en) 1988-10-17

Family

ID=12689145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58044353A Granted JPS59171634A (en) 1983-03-18 1983-03-18 Preparation of plastic coated steel pipe

Country Status (1)

Country Link
JP (1) JPS59171634A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113290813B (en) * 2021-05-19 2022-10-14 安徽戴家工艺有限公司 Plastic rattan production equipment of rattan woven ware hanging seat

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5236782A (en) * 1975-09-18 1977-03-22 Matsushita Electric Ind Co Ltd Manufacturing method of komu type terminal
JPS53136074A (en) * 1977-05-04 1978-11-28 Kobe Steel Ltd Device for pipe coating

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5236782A (en) * 1975-09-18 1977-03-22 Matsushita Electric Ind Co Ltd Manufacturing method of komu type terminal
JPS53136074A (en) * 1977-05-04 1978-11-28 Kobe Steel Ltd Device for pipe coating

Also Published As

Publication number Publication date
JPS59171634A (en) 1984-09-28

Similar Documents

Publication Publication Date Title
US4261671A (en) Corrugated pipe for deepwater applications
JP6501443B2 (en) Offshore corrosion protection system wear indicator system
US4743142A (en) Precoated corrosion-resistant steel pipe piles for marine use, and structure thereof
KR100313990B1 (en) Pipe members for underground buried pipes, underground buried pipes and methods of protecting such pipe members
CA1260375A (en) Composite pipes and process for manufacturing the same
US4659255A (en) Marine structure of precoated corrosion resistant steel pipe piles
JPS6351853B2 (en)
Harris et al. New coatings for the corrosion protection of steel pipelines and pilings in severely aggressive environments
JP4614511B2 (en) Manufacturing method of high corrosion resistance metal-coated steel pipe
CN210600684U (en) Steel pipe with good corrosion prevention effect
GB2176585A (en) Ice making apparatus particularly for an ice rink
Papavinasam et al. Evolution of external pipeline coatings for corrosion protection–a review
CN206572141U (en) One kind is used for individual layer seabed thermal-insulated counterweight pipe joint repaired mouth structure
NO843864L (en) COATING PLASTIC FOR PLASTIC ARTICLES
JP3629118B2 (en) Steel pipe with heavy anticorrosion coating, manufacturing method and manufacturing apparatus
Omori et al. Plastic-Coated Pipes With High-Density Polyethylene
JPH10272729A (en) Steel pipe with heavy-duty anticorrosive coating, steel pipe pile, and its manufacture
Sparrow PIPELINE PROTECTION IN THE MIDDLE EAST—PART 1: Protective Coating and Cathodic Protection Practice
JPH06146271A (en) High strength multiple anticorrosive coated steel pipe pile
SU1707423A1 (en) Method of protection of pipelines against external corrosion
Swan The corrosion resistance of wire products in marine applications
JPS5848334B2 (en) Manufacturing method of long large diameter plastic pipe
JPH0463767B2 (en)
RU32234U1 (en) ANTI-CORROSION INSULATION TAPE
JP4068756B2 (en) Heavy duty anti-corrosion coated steel sheet pile for offshore structures