JPS6351823B2 - - Google Patents

Info

Publication number
JPS6351823B2
JPS6351823B2 JP55062011A JP6201180A JPS6351823B2 JP S6351823 B2 JPS6351823 B2 JP S6351823B2 JP 55062011 A JP55062011 A JP 55062011A JP 6201180 A JP6201180 A JP 6201180A JP S6351823 B2 JPS6351823 B2 JP S6351823B2
Authority
JP
Japan
Prior art keywords
grinding
support shaft
diameter
rotary
cut
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55062011A
Other languages
Japanese (ja)
Other versions
JPS56157938A (en
Inventor
Tadashi Naito
Takahiro Iwase
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP6201180A priority Critical patent/JPS56157938A/en
Publication of JPS56157938A publication Critical patent/JPS56157938A/en
Publication of JPS6351823B2 publication Critical patent/JPS6351823B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
  • Grinding Of Cylindrical And Plane Surfaces (AREA)

Description

【発明の詳細な説明】 本発明は回転砥石により円筒状内面の研削を行
なう研削加工法に係る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a grinding method for grinding a cylindrical inner surface using a rotating grindstone.

直径が十数ミリ程度の円筒状内面を回転砥石に
よつて研削する小径内研加工に於ては、添付の第
1図に例示する如く、回転砥石1はこれを支持し
且回転駆動する回転支持軸2が弾性的に撓んだ状
態にてそれが研削すべき円筒状内面3に押しあて
られるようになつており、この為回転支持軸2を
担持し且回転駆動するスピンドル4は、その回転
軸線5を、研削されるべき円筒状内面3の中心軸
線6に対し、ある振り角αだけ傾けられた態様に
設定されるようになつている。かかる要領による
小径内研加工によつて同形の物品を連続して多数
生産する量産ラインに於ては、所定の加工精度を
満足すべくいくつかの研削条件及び砥石仕様を考
慮して最初に振り角αが決定されると、その振り
角を一定に保つたまま多数個の物品の加工が続け
られるのが普通である。
In small-diameter internal grinding processing in which a cylindrical inner surface with a diameter of about 10-odd millimeters is ground using a rotary grindstone, a rotary grindstone 1 is used to support and rotate the inner surface of the cylindrical surface, as illustrated in the attached Fig. 1. The support shaft 2 is elastically bent and pressed against the cylindrical inner surface 3 to be ground, and for this reason, the spindle 4, which supports and rotates the rotation support shaft 2, is pressed against the inner surface 3 of the cylinder to be ground. The rotational axis 5 is set to be inclined by a certain swing angle α with respect to the central axis 6 of the cylindrical inner surface 3 to be ground. In a mass production line that continuously produces a large number of articles of the same shape through small-diameter internal grinding using this method, several grinding conditions and grindstone specifications are taken into account in order to satisfy a predetermined processing accuracy. Once the angle α is determined, it is common to continue processing a large number of articles while keeping the swing angle constant.

しかしこのように振り角を一定に保つたまま多
数個の物品の研削加工が続けられると、第2図に
例示する如く加工数の増大につれて研削加工され
た円筒状内面の入口径と奥側径の直径差が次第に
増大し、研削加工された円筒状内面の形状は次第
に増大する入口側より奥側へ向けて開いたテーパ
が付されてくる。これは、研削加工数の増大と共
に回転砥石は遂次ドレツシングを施されながら使
用されるが、かかる研削とドレツシングの繰返し
につれてその直径が次第に減小してくることによ
り、回転砥石が研削される円筒状内面に対し押し
あてられる際の単位面積当りの押圧力が次第に増
加し、研削抵抗が低減して回転支持軸2の弾性的
撓み量が減少することに起因するものである。そ
の為従来かかる小径内研加工に於ては、テーパが
許容限度を越える危険のある加工数に達する毎
に、作業者が加工工程を中断し、振り角αの修正
を行なうことが必要とされている。しかしかかる
修正作業はこの種の加工作業を全自動化する上で
大きな障害となるものである。かかる問題に対し
ては、もちろん所定の加工数に達する毎にスピン
ドルユニツト全体を旋回させ振り角を少しずつ低
減していくよう作動する自動修正機構を研削盤に
組込むことが考えられるが、そのような解決方法
は非常に高価につくものである。
However, if grinding is continued on a large number of objects while keeping the swing angle constant, as the number of grinding increases, the entrance diameter and back diameter of the ground cylindrical inner surface will change as the number of grinding increases, as shown in Fig. 2. The diameter difference between the two diameters gradually increases, and the shape of the ground cylindrical inner surface becomes tapered from the gradually increasing entrance side toward the back side. This is because as the number of grinding processes increases, the rotary whetstone is used with successive dressings, but as the grinding and dressing are repeated, the diameter of the whetstone gradually decreases. This is due to the fact that the pressing force per unit area when pressed against the shaped inner surface gradually increases, the grinding resistance decreases, and the amount of elastic deflection of the rotary support shaft 2 decreases. Therefore, in conventional small-diameter internal grinding, the operator is required to interrupt the machining process and correct the swing angle α every time the taper reaches a number of machining operations that pose a risk of exceeding the allowable limit. ing. However, such correction work is a major obstacle in fully automating this type of processing work. To solve this problem, it is of course possible to incorporate an automatic correction mechanism into the grinding machine that operates to rotate the entire spindle unit and reduce the swing angle little by little every time a predetermined number of machining is reached. solutions are very expensive.

本発明は、小径内研加工に於ける上述の如き問
題に対処し、回転砥石の回転支持軸を切込み方向
へ送る送り工程に修正を加えることにより、回転
砥石の直径の変化に拘らず同一の振り角にて連続
して円筒状内面を常にテーパ0の状態に正しく研
削する方法を提案するものであり、更に詳細に
は、本発明は、前記回転支持軸を切込み方向へ送
りつつ研削を行なう切込み研削工程より前記回転
支持軸の切込み方向への送りを停止し前記回転支
持軸の弾性的撓みの戻り力のみによつて回転砥石
を切込み方向へ駆動しつつ研削を行なうスパーク
アウト工程への遷移時点を可変とし、より詳細に
はこれを回転砥石の直径の減小に応じて研削終了
時点側へ近づけることを提案するものである。
The present invention addresses the above-mentioned problems in small-diameter internal grinding, and by modifying the feeding process in which the rotary support shaft of the rotary grindstone is sent in the cutting direction, the same grinding process can be achieved regardless of changes in the diameter of the rotary grindstone. The present invention proposes a method for properly grinding a cylindrical inner surface continuously at a swing angle so that the taper is always 0.More specifically, the present invention provides a method for carrying out grinding while feeding the rotary support shaft in the cutting direction. Transition from the cut-in grinding step to a spark-out step in which the feeding of the rotary support shaft in the cut direction is stopped and grinding is performed while driving the rotary grindstone in the cut direction only by the return force of the elastic deflection of the rotary support shaft. It is proposed that the time point be made variable and, more specifically, be brought closer to the end point of grinding as the diameter of the rotary grindstone decreases.

上述の如く回転支持軸が弾性的に撓んだ状態に
て回転砥石により円筒状内面の研削を行なう研削
加工方法に於ては、研削は回転支持軸を切込み方
向へ送りつつ研削を行なう切込み研削工程と、回
転支持軸の切込み方向への送りを停止し回転支持
軸の弾性的撓みの戻り力のみによつて回転砥石を
切込み方向へ駆動しつつ研削を行なうスパークア
ウト工程の組合わせによつて行なわれるのが普通
である。これを第3図について示すと次の通りで
ある。
As mentioned above, in the grinding method in which the cylindrical inner surface is ground with a rotary grindstone while the rotary support shaft is elastically bent, the grinding process is called depth-of-cut grinding, in which grinding is performed while the rotary support shaft is being fed in the cutting direction. process, and a spark-out process in which the rotating support shaft stops feeding in the cutting direction and grinding is performed while driving the rotary grindstone in the cutting direction only by the return force of the elastic deflection of the rotating support shaft. It is common practice. This is illustrated with reference to FIG. 3 as follows.

第3図は研削加工にあたつて回転砥石の回転支
持軸が切込み方向へ送られる切込み量と、それに
伴なつて回転砥石が実際に切込み方向へ移動する
切込み量とを時間に対して示すグラフである。図
に於て、実線aにて示す部分は研削の初期に於て
回転砥石が加工物の加工面に急速に送られる早送
りであり、回転砥石と研削される円筒状内面との
接触は未だ生じていない。図中実線bは粗研段階
を示し、この段階はQ0までの第一段階と、Q0
らQ1までの第二段階とに区分される。第一段階
に於ては、回転砥石を研削される円筒状内面に対
し押付ける力は末だ比較的小さい状態にあるの
で、回転支持軸の弾性的撓みはほとんどなく、回
転支持軸の切込み量と回転砥石の切込み量はほぼ
同一である。Q0からQ1までは粗研の第二段階に
於て回転支持軸の切込み量が時間と共に増大する
態様を示し、一方破線b′は粗研の第二段階に於て
回転砥石の切込み量が時間と共に増大する態様を
示す。この段階に至ると、回転支持軸の弾性的撓
みが増大することにより、回転砥石の切込み量は
回転支持軸が実際に切込み方向へ送られた量より
も減少してくる。この段階に至ると、研削された
円筒状内面の直径は通常インプロセスゲージによ
つて常に監視されており、回転砥石の切込み量が
所定のP1になつた所で、研削工程は粗研より精
研へ切換えられる。この切換点に於ける回転支持
軸の切込み量はQ1になつている。
Figure 3 is a graph showing the depth of cut in which the rotary support shaft of the rotary grindstone is sent in the cutting direction during grinding, and the corresponding depth of cut in which the rotary grindstone actually moves in the cutting direction, versus time. It is. In the figure, the part indicated by solid line a is rapid traverse in which the rotating grindstone is rapidly sent to the machined surface of the workpiece in the early stage of grinding, and contact between the rotating grindstone and the cylindrical inner surface to be ground has not yet occurred. Not yet. The solid line b in the figure indicates the rough polishing stage, which is divided into a first stage up to Q 0 and a second stage from Q 0 to Q 1 . In the first stage, the force pressing the rotary grindstone against the cylindrical inner surface to be ground is still relatively small, so there is almost no elastic deflection of the rotary support shaft, and the depth of cut of the rotary support shaft is reduced. and the depth of cut of the rotary grindstone are almost the same. Q 0 to Q 1 show how the depth of cut of the rotary support shaft increases with time in the second stage of rough grinding, while the broken line b' shows the depth of cut of the rotary grindstone in the second stage of rough grinding. shows an aspect in which the amount increases over time. At this stage, the elastic deflection of the rotary support shaft increases, so that the cutting amount of the rotary grindstone becomes smaller than the amount by which the rotary support shaft is actually sent in the cutting direction. At this stage, the diameter of the ground cylindrical inner surface is usually constantly monitored by an in-process gauge, and when the depth of cut of the rotary wheel reaches a predetermined P 1 , the grinding process begins with rough grinding. Switched to Seiken. The depth of cut of the rotary support shaft at this switching point is Q1 .

実線cは精研に於て回転支持軸の切込み量が時
間と共に増大する態様を示し又破線c′は回転支持
軸が実線cの如く切込み方向へ送られる時回転砥
石が実際に切込み方向へ送られる態様を示す。か
くして精研が進行し、実際の切込み量がP2に達
したことがインプロセスゲージによつて感知され
ると、研削盤はここで回転支持軸の切込み方向へ
の送りを停止し、これ以後は回転支持軸の弾性的
撓みの戻り力のみによつて回転砥石が切込み方向
へ駆動されつつ研削が行なわれるスパークアウト
工程が実施される。図に於て実線dがスパークア
ウト工程に於て回転支持軸の送り込み量が時間と
共に変化する態様を示し、もちろんこれは精研終
了時の切込み量Q2なる一定量に止る。かかるス
パークアウト間に回転砥石の切込み量はP2より
破線d′にて示す如く更に増大し、インプロセスゲ
ージによりその切込み量が目標値の値P3に達し
たことが確認されると、ここで研削工程は終了さ
れる。
The solid line c shows how the depth of cut of the rotary support shaft increases with time during fine-honing, and the broken line c' shows how the rotary grindstone actually moves in the direction of the cut when the rotary support shaft is sent in the direction of the cut as shown in the solid line c. This shows how it is done. As fine grinding progresses in this way, when the in-process gauge detects that the actual depth of cut has reached P2 , the grinding machine stops feeding the rotary support shaft in the direction of the cut, and from now on A spark-out process is carried out in which grinding is performed while the rotary grindstone is driven in the cutting direction only by the return force of the elastic deflection of the rotary support shaft. In the figure, the solid line d shows how the feed amount of the rotary support shaft changes over time during the spark-out process, and of course this remains at a constant amount, which is the depth of cut Q2 at the end of fine polishing. During this spark-out period, the depth of cut of the rotary grindstone further increases from P2 as shown by the broken line d', and when it is confirmed by the in-process gauge that the depth of cut has reached the target value P3 , The grinding process is finished.

かかる従来の研削方法に於ては、スパークアウ
トの開始点はスパークアウトによる切込み代εを
所定の値にするように、即ち切込み量がその最終
目標値P3より所定量εだけ小さい切込み量P2
達する時点に定められている。
In such conventional grinding methods, the spark-out starting point is set at a point where the spark-out depth of cut ε is set to a predetermined value, that is, the depth of cut is smaller than the final target value P3 by a predetermined amount ε. 2 .

本発明者等はかかるスパークアウトによる切込
み代或いは取り代と研削加工によつて最終的に得
られた円筒状内面の円筒度の間の関係について調
査した結果、第4図に例示する如く、スパークア
ウト取り代が増大するにつれて円筒度は次第に減
小することを見出した。ここで円筒度とは研削加
工される円筒状内面の入口径と奥側径の差であ
り、円筒度の値が正であることは入口径が奥側径
より大きく、円筒状内面が入口へ向けて開いたテ
ーパ状であることを意味し、逆に円筒度が負であ
ることは研削された円筒状内面が入口より奥側へ
向けて開いたテーパ状であることを意味する。
The present inventors investigated the relationship between the depth of cut or machining allowance caused by such spark-out and the cylindricity of the cylindrical inner surface finally obtained by grinding, and as a result, as illustrated in FIG. It was found that as the out-cutting allowance increases, the cylindricity gradually decreases. Here, cylindricity is the difference between the entrance diameter and the back diameter of the cylindrical inner surface to be ground, and a positive value of cylindricity means that the entrance diameter is larger than the back diameter, and the cylindrical inner surface is closer to the entrance. On the other hand, if the cylindricity is negative, it means that the ground inner surface of the cylindrical shape is tapered and opens toward the back of the inlet.

本発明者等は、スパークアウト取り代と円筒度
の間にあるかかる関係を有効に利用し、回転砥石
の直径の減小によつて生ずる円筒度の減小をスパ
ークアウト開始点をずらせることにより補償せん
とするものである。
The present inventors effectively utilize this relationship between spark-out machining allowance and cylindricity, and shift the spark-out starting point to compensate for the decrease in cylindricity caused by the decrease in the diameter of the rotary grinding wheel. The Company intends to compensate for such damages.

第5図は本発明に従つて回転砥石の直径が減小
するにつれてスパークアウト開始点をずらせる要
領を示す。第3図に於ける部分Sの拡大図に対応
する図である。第3図に示す研削状態から更にい
くつかの物品の研削が行なわれ、それに伴なつて
回転砥石の直径が所定量減小した時には、精研よ
りスパークアウトへ移る遷移時点はP2、Q2の時
点よりP2′、Q2′に対応する時点まで遅らされる。
この場合、スパークアウトはP2′に相当する切込
み量より破線d″に示す経過をたどつてP3′なる時
点で所定の最終切込み量に達するが、そのスパー
クアウトによる取り代ε′は先の値εより小さい値
である。このようにスパークアウト取り代がεよ
りε′に減少されると、それに対応して円筒度は増
大し、その増大量が回転砥石の直径の減少による
円筒度の減小量に丁度等しく設定されていると、
研削された円筒状内面の円筒度は一定に保持さ
れ、その値を最初から0にするような設定が行な
われていれば、回転砥石の直径の減小に拘らず常
に0なる円筒度を有する真の円筒状内面への研削
を行なうことができる。
FIG. 5 illustrates how to shift the sparkout initiation point as the diameter of the wheel decreases in accordance with the present invention. 4 is a diagram corresponding to an enlarged view of a portion S in FIG. 3. FIG. When several objects are further ground from the grinding state shown in Fig. 3 and the diameter of the rotary grindstone is reduced by a predetermined amount, the transition point from fine grinding to spark out is P 2 , Q 2 is delayed from the point in time to the point corresponding to P 2 ′ and Q 2 ′.
In this case, the sparkout follows the course shown by the broken line d'' from the depth of cut corresponding to P 2 ′ and reaches the predetermined final depth of cut at the time P 3 ′, but the machining distance ε′ due to the sparkout is is smaller than the value ε.If the spark-out machining allowance is reduced from ε to ε' in this way, the cylindricity increases correspondingly, and the amount of increase increases the cylindricity due to the decrease in the diameter of the rotary grinding wheel. is set exactly equal to the amount of decrease in
The cylindricity of the ground cylindrical inner surface is kept constant, and if the setting is made to set the value to 0 from the beginning, the cylindricity will always be 0 regardless of the decrease in the diameter of the rotating grindstone. Grinding to a true cylindrical inner surface can be performed.

第6図は本発明による研削方法を実施する為の
装置の一つの実施例を示す概略図である。回転砥
石の直径の減小量は、該回転砥石によつて研削を
受ける円筒状内面を有する物品の加工数と回転砥
石がドレツシングを施されたドレス回数によつて
定まる。尚この場合、ドレス回数が物品の加工数
に対し一定の関係にある時には、加工数のみによ
つても回転砥石の直径の減小量を判断することが
できる。そこで第6図に示す装置に於ては、回転
砥石の直径或いはその減小量を与える情報源とし
て加工数カウンタ10及びドレス回数カウンタ1
1が用いられており、これらのカウンタからの加
工数及びドレス回数に関する情報と、研削される
円筒状内面3の例えば入口径を測定するインプロ
セスゲージ12が提供する円筒状内面の直径或い
は研削加工に於ける切込み量に関する情報が、制
御装置13へ供給されるようになつている。制御
装置13はこれらの情報に基づいて研削工程を精
研工程よりスパークアウト工程へ移す遷移時点を
決定し、その出力信号を切込み送り装置14へ供
給し、その作動を制御する。
FIG. 6 is a schematic diagram showing one embodiment of an apparatus for carrying out the grinding method according to the present invention. The amount by which the diameter of the rotary grindstone is reduced is determined by the number of times the article having a cylindrical inner surface is processed by the rotary grindstone and the number of times the rotary grindstone is dressed. In this case, when the number of dressings has a certain relationship with the number of processes on the article, the amount of reduction in the diameter of the rotary grindstone can be determined based only on the number of processes. Therefore, in the apparatus shown in FIG. 6, a machining number counter 10 and a dressing number counter 1 are used as information sources for providing the diameter of the rotary grindstone or its reduction amount.
1 is used, and the information on the number of processing and the number of dressings from these counters and the diameter of the cylindrical inner surface 3 or the grinding process provided by the in-process gauge 12 that measures, for example, the inlet diameter of the cylindrical inner surface 3 to be ground. Information regarding the depth of cut in the cut is supplied to the control device 13. Based on this information, the control device 13 determines the transition point at which the grinding process is shifted from the polishing process to the spark-out process, and supplies the output signal to the cutting feed device 14 to control its operation.

かくして、本発明によれば、回転砥石の直径の
減小に応じて、或いはそれに相当する回転砥石に
よる研削加工が行なわれた物品の加工数、或いは
それに加えて回転砥石のドレス回数の増大に応じ
て、回転砥石の回転支持軸を積極的に切込み方向
へ送る切込み研削工程より回転支持軸の切込み方
向への送りを停止して行なわれるスパークアウト
工程への遷移時点を研削終了時点側へ近づけるよ
うにずらせるという簡単な方法により、回転砥石
の直径の減小に係りなく研削される円筒状内面を
円筒度0の即ち正しい円筒形状を有する面に研削
することができるものである。
Thus, according to the present invention, as the diameter of the rotary grindstone decreases, or as the number of times the article is processed by the grinding wheel increases, or in addition to that, as the number of dressings of the rotary grindstone increases. In this way, the transition point from the depth-of-cut grinding process in which the rotational support shaft of the rotary grindstone is actively moved in the cutting direction to the spark-out process, which is performed by stopping the rotational support shaft in the cutting direction, is brought closer to the end of grinding. By the simple method of shifting the rotary grindstone, the cylindrical inner surface to be ground can be ground to a surface with zero cylindricity, that is, a surface having a correct cylindrical shape, regardless of the reduction or decrease in the diameter of the rotary grindstone.

以上に説明した実施例に於ては、遷移時点P2
は回転砥石の直径の減小に応じて、或はそれに相
当する回転砥石による研削加工が行われた物品の
加工数、或はそれに加えて回転砥石のドレス回数
の増大に応じて、連続的に移動される如くに説明
されたが、勿論かかる遷移時点の移動はいくつか
の段階に不連続的に(或は間歇的に)行われても
よいものである。
In the embodiment described above, the transition point P 2
continuously as the diameter of the whetstone decreases, or as the number of items processed by the whetstone increases, or as the number of dressings of the whetstone increases. Although it has been explained that the transition point is moved, of course, such movement of the transition point may be performed discontinuously (or intermittently) in several stages.

更に又、第4図に示すスパークアウト取代と円
筒度との間の相関関係を利用すれば、熱的変化等
により連続加工中に生じる振り角αの変化を補正
することができる。又砥石の種類、砥石の剛性が
変つて円筒度が変化した場合にも、スパークアウ
ト取代を変化させることにより、円筒度を高精度
に保証することが可能である。
Furthermore, by utilizing the correlation between the spark-out machining allowance and the cylindricity shown in FIG. 4, it is possible to correct changes in the swing angle α that occur during continuous machining due to thermal changes or the like. Furthermore, even if the cylindricity changes due to changes in the type of grindstone or the rigidity of the grindstone, it is possible to guarantee high accuracy in cylindricity by changing the spark-out machining allowance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は小径内研加工が行なわれる態様を示す
概略図、第2図は小径内研加工に於て加工数の増
大につれて研削される円筒状内面にテーパ状の誤
差が生ずる態様を例示するグラフ、第3図は切込
み研削工程とスパークアウト工程を含む研削工程
に於ける切込み量と時間の関係を例示するグラ
フ、第4図はスパークアウト取り代と円筒度の関
係を例示するグラフ、第5図は本発明に従つて切
込み研削工程よりスパークアウト工程への遷移時
点がずらされる態様を例示する線図であり、第3
図のSの部分に相当する線図、第6図は本発明に
よる研削方法を実施する為の装置の構成を例示す
る概略図である。 1〜回転砥石、2〜回転支持軸、3〜円筒状内
面、4〜スピンドル、10〜加工数カウンタ、1
1〜ドレス回数カウンタ、12〜インプロセスゲ
ージ、13〜制御装置、14〜切込み送り装置。
Figure 1 is a schematic diagram showing how small-diameter internal grinding is performed, and Figure 2 is an example of how taper-like errors occur on the cylindrical inner surface to be ground as the number of machining increases in small-diameter internal grinding. Graph, Figure 3 is a graph illustrating the relationship between the depth of cut and time in the grinding process including the depth of cut grinding process and the spark-out process, Figure 4 is a graph illustrating the relationship between spark-out machining allowance and cylindricity. FIG. 5 is a diagram illustrating a mode in which the transition point from the notch grinding process to the spark-out process is shifted according to the present invention;
FIG. 6, which is a diagram corresponding to part S in the figure, is a schematic diagram illustrating the configuration of an apparatus for carrying out the grinding method according to the present invention. 1 - Rotating grindstone, 2 - Rotating support shaft, 3 - Cylindrical inner surface, 4 - Spindle, 10 - Machining number counter, 1
1 - Dress number counter, 12 - In-process gauge, 13 - Control device, 14 - Cut feeding device.

Claims (1)

【特許請求の範囲】[Claims] 1 小径内研加工の如く回転砥石の回転支持軸が
弾性的に撓んだ状態にて該回転砥石により円筒状
内面の研削を行う研削加工方法にして、前記回転
支持軸を担持し且これを回転駆動するスピンドル
の回転軸線を前記円筒状内面の中心軸線に対して
所定の捩れ角をもつて傾斜すべく設定し、前記回
転支持軸を切込み方向へ送りつつ研削を行う切込
み研削工程より前記回転支持軸の切込み方向への
送りを停止し前記回転支持軸の弾性的撓みの戻り
力のみによつて前記回転砥石を切込み方向へ駆動
しつつ研削を行うスパークアウト工程への遷移時
点を可変とし、該遷移時点を回転砥石の直径の減
少に応じて研削終了時点に近づけ、回転砥石の直
径の減少に応じてスパークアウト工程時間を減少
せしめることを特徴とする方法。
1. A grinding method in which a cylindrical inner surface is ground with a rotary grindstone in a state where the rotation support shaft of the rotary grindstone is elastically bent, such as in small-diameter internal grinding, and the rotation support shaft is supported and The rotation axis is set to be inclined at a predetermined torsion angle with respect to the center axis of the cylindrical inner surface, and the rotation is performed through a cut grinding process in which grinding is carried out while feeding the rotation support shaft in the cutting direction. Variable is the transition point to a spark-out step in which feeding of the support shaft in the cutting direction is stopped and grinding is performed while driving the rotary grindstone in the cutting direction only by the return force of the elastic deflection of the rotary support shaft; A method characterized in that the transition point is brought closer to the end point of grinding as the diameter of the rotary grindstone decreases, and the spark-out process time is reduced as the diameter of the rotary grindstone decreases.
JP6201180A 1980-05-09 1980-05-09 Grinding process for interior of small diameter Granted JPS56157938A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6201180A JPS56157938A (en) 1980-05-09 1980-05-09 Grinding process for interior of small diameter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6201180A JPS56157938A (en) 1980-05-09 1980-05-09 Grinding process for interior of small diameter

Publications (2)

Publication Number Publication Date
JPS56157938A JPS56157938A (en) 1981-12-05
JPS6351823B2 true JPS6351823B2 (en) 1988-10-17

Family

ID=13187778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6201180A Granted JPS56157938A (en) 1980-05-09 1980-05-09 Grinding process for interior of small diameter

Country Status (1)

Country Link
JP (1) JPS56157938A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50127291A (en) * 1974-03-25 1975-10-07
JPS5255093A (en) * 1975-10-31 1977-05-06 Seiko Seiki Kk Method of controlling cuts in inner surface grinding machine
JPS5337975A (en) * 1976-09-20 1978-04-07 Toshiba Corp Adaptive control system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50127291A (en) * 1974-03-25 1975-10-07
JPS5255093A (en) * 1975-10-31 1977-05-06 Seiko Seiki Kk Method of controlling cuts in inner surface grinding machine
JPS5337975A (en) * 1976-09-20 1978-04-07 Toshiba Corp Adaptive control system

Also Published As

Publication number Publication date
JPS56157938A (en) 1981-12-05

Similar Documents

Publication Publication Date Title
US4053289A (en) Grinding method and apparatus with metal removal rate control
US5251405A (en) Method for circumferential grinding of radially non-circular workpieces
JPS6258870B2 (en)
JPH07121502B2 (en) How to cylindrically grind a workpiece
US3344560A (en) Control device
JPS6351823B2 (en)
EP0477732B1 (en) Method and machine for grinding
JPH0367832B2 (en)
JPH01246072A (en) Grinding surface dressing method for grinding stone
JP2513342B2 (en) Retraction grinding method and grinding device in grinding force control grinding
JP2940073B2 (en) Grinding machine control method
JPH10156720A (en) Method and device for correcting grinding wheel
JP2003291064A (en) Grinding method and process
JPS6238110B2 (en)
JP2542084B2 (en) Method for correcting the grinding surface of the grinding wheel
JP3413938B2 (en) Grinding equipment
JPS6071164A (en) Apparatus for correcting grinding wheel of internal grinder
JPH02131870A (en) Control method for grindstone dressing of inner face grinder
JP2000153430A (en) Lathe using conical cutter
JP2919698B2 (en) Centerless grinding method for stepped shafts
JPH0369662B2 (en)
JPS6231244Y2 (en)
JPS6362338B2 (en)
JPH06278021A (en) Grinding device
JPS61252065A (en) Device for controlling grinding