JPS6351762B2 - - Google Patents

Info

Publication number
JPS6351762B2
JPS6351762B2 JP17895783A JP17895783A JPS6351762B2 JP S6351762 B2 JPS6351762 B2 JP S6351762B2 JP 17895783 A JP17895783 A JP 17895783A JP 17895783 A JP17895783 A JP 17895783A JP S6351762 B2 JPS6351762 B2 JP S6351762B2
Authority
JP
Japan
Prior art keywords
titanium
roll
outer diameter
sizing
reduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17895783A
Other languages
Japanese (ja)
Other versions
JPS6068112A (en
Inventor
Yasuo Moriguchi
Atsuyuki Myamoto
Kenji Narita
Eiichiro Sawahisa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP17895783A priority Critical patent/JPS6068112A/en
Publication of JPS6068112A publication Critical patent/JPS6068112A/en
Publication of JPS6351762B2 publication Critical patent/JPS6351762B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/06Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
    • B21C37/08Making tubes with welded or soldered seams

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、チタン、ジルコニウム、又はその合
金の溶接管の製造方法に関する。 チタン、ジルコニウム、又はその合金(以下、
チタン等という)素材による管体の製造に当り、
素材の板状フープを各成形ロール間を通過させて
オーブン管に成形した後、接合エツジ部をスクイ
ズロール近傍で溶接し、その後複数個のサイジン
グロールにより外径を調整して管を連続的に製造
する方法は公知である。前記サイジングロールで
の溶接管の外径絞り量は製品の外径公差、真円度
に影響を与えるが、チタン等の溶接管の絞り量に
ついては十分な検討がなされておらず。鋼管や
SUS管の経験がそのまま活用されていた。 ところで、チタン等の溶接管の製造において
は、焼付防止のため比較的軟かい銅合金ロールが
使用されているので、鋼管等の絞り量(2〜5
%)を適用すると、サイジング絞り量が必要以上
に大きく銅合金ロールの摩耗が激しくなるという
問題があつた。 本発明は以上の点に鑑みなされたもので、その
目的とするところは、チタン等の溶接管の製造に
当り、管外径の公差及び真円度を調整するのに必
要かつ十分な外径絞り量を決定し、これをサイジ
ングロール等の絞り用ロールに与え、ロールの不
必要な圧下による摩耗の防止されたチタン等の溶
接管の製造方法を提供せんとするものであり、そ
の要旨とするところは、チタン、ジルコニウム、
又はその合金から成る板状フーブを、各成形ロー
ル間を通過させてオーブン管に成形した後、接合
エツジ部をスクイズロール近傍で溶接し、その後
複数個のサイジングロールにより外径を調整して
管を連続的に製造する方法において、前記スクイ
ズロールからサイジング最終ロールまでの外径絞
り量の総量を1〜2%として上記各ロールに配分
する点にある。 以下、本発明について詳細に説明する。 まず、チタン等の溶接管の製造工程を第1図に
示す実施例に基づきその概略を説明する。 第1図中は成形工程を示し、該成形工程は
チタン等の帯板状フープ1を7段の成形ロールF
1〜F7を通過させて円管状のオーブン管に成形
するものである。 第1図中は溶接工程を示し、該溶接工程
は、成形工程終了後のオーブン管のエツジ接合
部をその長手方向に亘つて溶接するものであり、
オーブン管のアツプセツト量及びエツジの突合せ
形状をコントロールするスクイズロールSQと、
スクイズロールSQの前後いずれかに配置された
TIG溶接トーチ2とから成る。 第1図中はサイジング工程を示し、該サイジ
ング工程は、溶接後の管を真円孔径をもつ4段
のロールからなるサイジングロールF8〜F11
を通過させて、外径公差、真円度を仕上げるもの
である。 尚、図において、3はアンコイラー、Sはサイ
ドロールを示す。 次に、本発明の要旨であるスクイズロールから
サイジング最終ロールまでの外径絞り量の総量を
1〜2%とする理由について詳述する。 これは、スクイズロール通過後のチタン等の溶
接管(以下、チタン管と称す)の適正サイジング
条件を把握するために行なわれた、後述する型を
用いた模擬試験に基づくものであり、総絞り量が
1%未満では、真円度が改善できず、2%を越え
るとロールと管との接触長が長くなりロール摩耗
が激しくなるためである。 前記型を用いた模擬試験について、その方法と
結果及び考案について説明する。 〔試験方法〕 (1) 供試材 22〓×0.7tmmチタン管をサイジングロールを完全
に浮かせた状態で成型し、溶接直後の真円度の悪
い管をサンプリングして供試材とした。 (2) 試験片および型の形状 試験片としては供試材を約50lmmに切断し、端
面をエメリー紙で研摩したものを用いた。本実験
では6種類の真円孔型を有する炭素鋼(S45C―
N)製型を使用したが、その孔型径を第1表に示
す。第1表には各型を用いて圧下した場合の公称
絞り率も同時に示したが、これらの値は試験片の
平均外径と孔型径から算出したものである。供試
材はすべて連続成形してサンプリングしたため、
本試験に使用した試験片はすべてほとんど等しい
平均外径を有した。
The present invention relates to a method for manufacturing a welded pipe made of titanium, zirconium, or an alloy thereof. Titanium, zirconium, or their alloys (hereinafter referred to as
When manufacturing tubes using materials such as titanium,
After forming a plate-shaped hoop of material into an oven tube by passing it between each forming roll, the joining edge is welded near the squeeze roll, and then the outer diameter is adjusted using multiple sizing rolls to continuously form the tube. Methods of manufacturing are known. Although the amount of reduction in the outer diameter of the welded pipe by the sizing roll affects the outer diameter tolerance and roundness of the product, the amount of reduction in the outer diameter of the welded pipe made of titanium or the like has not been sufficiently studied. steel pipes and
The experience with SUS pipes was directly utilized. By the way, in the manufacture of welded titanium pipes, etc., relatively soft copper alloy rolls are used to prevent seizure.
%), there was a problem that the sizing reduction amount was larger than necessary and the copper alloy rolls were severely worn. The present invention has been made in view of the above points, and its purpose is to provide a necessary and sufficient outer diameter for adjusting the tolerance and roundness of the outer diameter of the pipe when manufacturing welded titanium pipes, etc. The purpose of the present invention is to provide a method for manufacturing welded pipes made of titanium, etc., in which the amount of reduction is determined and applied to drawing rolls such as sizing rolls, thereby preventing wear caused by unnecessary reduction of the rolls. Titanium, zirconium,
Or, after forming a plate-shaped houb made of the alloy into an oven tube by passing it between forming rolls, welding the joining edge near the squeeze roll, then adjusting the outer diameter with multiple sizing rolls and forming the tube into an oven tube. In the method for continuously manufacturing , the total amount of outer diameter reduction from the squeeze roll to the final sizing roll is set at 1 to 2% and distributed to each of the rolls. The present invention will be explained in detail below. First, the outline of the manufacturing process of a welded pipe made of titanium or the like will be explained based on the embodiment shown in FIG. FIG. 1 shows a forming process, in which a strip hoop 1 made of titanium or the like is rolled onto seven forming rolls F.
1 to F7 to form a circular oven tube. FIG. 1 shows a welding process, in which the edge joints of the oven tube are welded in the longitudinal direction after the forming process is completed,
A squeeze roll SQ that controls the oven tube offset amount and edge butt shape,
Placed either before or after squeeze roll SQ
It consists of a TIG welding torch 2. Figure 1 shows the sizing process, in which the pipe after welding is rolled by sizing rolls F8 to F11 consisting of four rolls each having a perfect circular hole diameter.
It passes through to finish the outer diameter tolerance and roundness. In the figure, 3 indicates an uncoiler and S indicates a side roll. Next, the reason why the total amount of outer diameter reduction from the squeeze roll to the final sizing roll is set to 1 to 2%, which is the gist of the present invention, will be explained in detail. This is based on a mock test using the mold described below, which was conducted to understand the appropriate sizing conditions for welded titanium pipes (hereinafter referred to as titanium pipes) after passing through a squeeze roll. This is because if the amount is less than 1%, the roundness cannot be improved, and if it exceeds 2%, the contact length between the roll and the tube becomes longer and roll wear becomes severe. The method, results, and ideas for the mock test using the above-mentioned model will be explained. [Test method] (1) Test material A 22〓×0.7 t mm titanium tube was molded with a sizing roll completely floating, and a tube with poor roundness immediately after welding was sampled and used as the test material. (2) Shape of test piece and mold The test piece used was a sample material cut into approximately 50 l mm and the end surface polished with emery paper. In this experiment, six types of carbon steel (S45C-
N) A mold was used, and its hole diameter is shown in Table 1. Table 1 also shows the nominal reduction ratio when rolling down using each mold, but these values were calculated from the average outer diameter of the test piece and the hole diameter. All sample materials were sampled by continuous molding, so
All specimens used in this test had approximately equal average outer diameters.

〔試験結果及び考案〕[Test results and ideas]

第2図に、孔型径とサイジング後のチタン管外
径の関係を示す。図において、横軸は第1表に示
す孔型径(mm)と公称絞り率(%)を同時に示
し、縦軸はチタン管外径(mm)を示す。尚、チタ
ン管外径は6点法によつて測定し、図には平均値
と最大及び最小値を示した。図で、外径公差(最
大径−最小径)に注目すると、素材の外径公差が
約0.5mmであつたのが、公称絞り率が0.7%以上の
圧下を与えるとそれが0.1mm以下となる。一方、
平均外径は孔型径よりわずかに大きく、絞り率が
1%以上では両者の差は一律に約0.07mmである。
この値は、孔型の弾性変形が無視できると考えら
れるので、大部分チタン管の弾性回復によるもの
と考えられる。この弾性回復量は円周歪に換算す
ると約0.31%となり、この値はチタン管の降伏歪
にほぼ等しい。 第3図A,Bは、圧下前の素材管および圧下
後の真円度測定図を各々示す。尤も、他の型の圧
下後のプロフアイルも測定されたが、ここでは第
3図をその代表例として示した。図において、a
は溶接部、bはプロフアイル、cは基準円を示
す。第4図は、公称絞り率と真円度の関係を示
す。図に示す真円度の定義は第3図A中の素材の
真円度測定図上中に示すように、プロフアイルの
基準円から内外への最大ずれの和(単位:μm)
によつて与えた。第4図では上記真円度の他に、
チタン管の小曲がり(円周の凹凸)の程度もプロ
ツトのマークを区別して示した。すなわちここで
は小曲がりの程度を、真円度測定図上のプロフア
イル曲線と基準円との交点数で判定し、●は交点
数が8箇以上、△は交点数が6〜7箇、○は交点
数が4〜5箇の場合を示す。第3図A,Bと第4
図によれば素材の真円度は約350μmであり、公
称絞り率が1%未満では真円度が大きく矯正が不
足し1%以上では真円度がほぼ一定の約60μmと
なり、小曲がりも矯正される。そして、2%を越
えると圧下量の割には有効に矯正されない。 以上はすべて型圧下を→と順次移行して行
つた場合(順次圧下)の試験結果であるが、本試
験と圧下順序以外同様の試験で、素材から直接所
望の型により一気に圧下する(単独圧下)試験も
行われた。この場合の詳細な結果説明は省略する
が、結論として、外径測定の結果及び真円度測定
の結果には順次圧下の場合と単独圧下の場合でほ
とんど差はなかつた。しかし、圧下荷重と上下型
間クリアランスの関係では、第5図中の曲線の形
状は圧下方法によつて異なつた。第5図は、型
圧下時の圧下荷重と上下型間クリアランスの関係
を示す図であり、図において実線、破線はそれぞ
れ順次圧下および単独圧下の場合を示している。
また、図中のaは最大荷重点であり、上下型間ク
リアランスが0の点を示し、bは圧下開始時にお
けるクリアランスを示している。図より、順次圧
下より単独圧下の方が、換言すれば、一つの型で
絞り率を大きくするほど、クリアランスの大きい
時点から圧下荷重が上昇し始めることが判る。こ
のことをサイジングロールに当てはめると、1ス
タンドの圧下量を大きくした場合、チタン管とロ
ール孔型表面との接触長さが長くなり、その結
果、銅合金ロールの摩耗が激しくなることが予想
される。したがつて、適正絞り率を各スタンドで
等分に配当することは、ロール摩耗防止の見地か
ら、より好ましいことが判る。 型による模擬試験については、以上の通りであ
るが、上記結果に基づく外径絞り量を実機のサイ
ジングロールに与えてその結果を確認した。 〔実施方法〕 対象チタン管として、31.75〓×0.5tmmを用い、
実機としては、第1図に示す、サイジングロール
が4段のものを用いた。成形途中にロールを停止
させてスクイズロールSQ以後の各サイジングロ
ールF8〜F11通過後のチタン管をサンプリン
グした。これらチタン管サンプルにより外径及び
真円度を実測し、各種サイジング条件との関係を
求めた。尚、上下ロールクリアランスは0として
設定され、造管にはすべて新品の(摩耗のない)
ロールが使用された。 〔実施結果及び考察〕 前記のようにサンプリングしたチタン管の外径
公差および真円度の測定結果を第6図A,Bに示
す。これらの図では横軸に塑性絞り率をとつてい
るが、この値は下記式により求めたものである。 δP=|dF/dSQ−1|×100(%) ただし、δP:塑性絞り率、dF:各サイジングロ
ール通過後チタン管の平均外径、dSQ:スクイズ
ロール通過後チタン管の平均外径 縦軸は各々外径公差(mm)、真円度(μm)を
示している。 第6図A,Bから明らかなように、外径公差、
真円度は絞り率が大きくなるに従つて小さくな
り、塑性絞り率が0.5〜0.6%以上でASTM規格と
比較しても十分な真円度(外径公差)が達成され
る。したがつて本実施の結果からは適正サイジン
グ絞り率として、塑性絞り率0.5〜0.6%という値
が得られる。チタン管の弾性回復歪をすでに述べ
たように約0.31%と見積れば、適正サイジング絞
り率(全歪)は0.81〜0.91%となり、この値は型
による模擬試験で得られた結果と近似する。以上
の結果より、適正サイジング絞り率としては前節
に述べたような1〜2%が妥当であることが確認
された。 本実施に関し、他のチタン管についても前記項
目について調べられたが、ほぼ同様の結果が得ら
れ、適正サイジング絞り率として、前記1〜2%
が、チタン管の寸法によらず適用可能なことが判
明した。 以上述べたように、本発明のチタン等の溶接管
製造方法によれば、スクイズロールからサイジン
グ最終ロールまでの外径絞り量の総量を1〜2%
として上記各ロールに配分したので、管外径の公
差及び真円度を高精度に調整しかつ不必要な圧下
によるロール摩耗も防止でき、ロールの長寿命化
が可能となつた。加えて、外径絞り量が明確に設
定できたので、該外径絞り量を考慮して、スクイ
ズロール以後のロール孔型の最適設計を行うこと
ができ、かつ適正なフープ幅を決定でき、今まで
試行錯誤的に行つていたこれらの付帯事項も効率
よく処理でき生産性向上に貢献できる。
FIG. 2 shows the relationship between the hole diameter and the outer diameter of the titanium tube after sizing. In the figure, the horizontal axis shows the hole diameter (mm) and the nominal drawing ratio (%) shown in Table 1, and the vertical axis shows the titanium tube outer diameter (mm). The outer diameter of the titanium tube was measured by a six-point method, and the average value, maximum, and minimum values are shown in the figure. In the figure, if you look at the outer diameter tolerance (maximum diameter - minimum diameter), the outer diameter tolerance of the material was about 0.5 mm, but when the nominal reduction rate is applied to a reduction of 0.7% or more, it becomes less than 0.1 mm. Become. on the other hand,
The average outer diameter is slightly larger than the hole diameter, and when the reduction rate is 1% or more, the difference between the two is uniformly about 0.07 mm.
This value is considered to be largely due to the elastic recovery of the titanium tube, since the elastic deformation of the hole shape is considered to be negligible. This elastic recovery amount is approximately 0.31% when converted to circumferential strain, and this value is approximately equal to the yield strain of the titanium tube. FIGS. 3A and 3B show a roundness measurement diagram of the material pipe before rolling and after rolling, respectively. Of course, the profiles of other molds after rolling were also measured, but FIG. 3 is shown here as a representative example. In the figure, a
indicates a welded part, b indicates a profile, and c indicates a reference circle. FIG. 4 shows the relationship between nominal drawing ratio and roundness. The definition of roundness shown in the figure is the sum of the maximum deviations from the reference circle of the profile inward and outward (unit: μm), as shown in the upper part of the roundness measurement diagram of the material in Figure 3A.
given by. In Figure 4, in addition to the roundness mentioned above,
The degree of small bends (irregularities on the circumference) of the titanium tube is also shown by distinguishing the plot marks. In other words, here, the degree of small bending is judged by the number of intersections between the profile curve and the reference circle on the roundness measurement diagram, ● indicates the number of intersections is 8 or more, △ indicates the number of intersections 6 to 7, ○ indicates a case where the number of intersections is 4 to 5. Figure 3 A, B and 4
According to the figure, the roundness of the material is approximately 350μm, and when the nominal drawing ratio is less than 1%, the roundness is large and the correction is insufficient, and when it is over 1%, the roundness is almost constant at approximately 60μm, and there is no small bend. be corrected. If it exceeds 2%, correction will not be effective considering the amount of reduction. All of the above are the test results when the die reduction is carried out sequentially from → (sequential reduction), but in a test similar to this test except for the order of reduction, the material is directly reduced to the desired mold at once (single reduction). ) tests were also conducted. A detailed explanation of the results in this case will be omitted, but the conclusion is that there is almost no difference in the results of outer diameter measurement and roundness measurement between sequential rolling and single rolling. However, regarding the relationship between the rolling load and the clearance between the upper and lower dies, the shape of the curve in FIG. 5 differed depending on the rolling method. FIG. 5 is a diagram showing the relationship between the rolling load and the clearance between the upper and lower molds when the mold is rolled down, and in the figure, the solid line and the broken line indicate the cases of sequential rolling and single rolling, respectively.
In addition, a in the figure is the maximum load point and indicates the point where the clearance between the upper and lower dies is 0, and b indicates the clearance at the start of rolling. From the figure, it can be seen that the rolling load starts to increase when the clearance is larger in single rolling than in sequential rolling, in other words, as the drawing ratio increases in one mold. Applying this to the sizing roll, if the reduction amount per stand is increased, the contact length between the titanium tube and the roll hole surface will become longer, and as a result, it is expected that the wear of the copper alloy roll will increase. Ru. Therefore, it can be seen that it is more preferable from the viewpoint of preventing roll wear to equally distribute the appropriate drawing rate to each stand. The mock test using the mold is as described above, and the results were confirmed by applying the amount of outside diameter reduction based on the above results to the sizing roll of the actual machine. [Implementation method] Using 31.75〓×0.5 t mm as the target titanium tube,
The actual machine used was one with four sizing rolls, as shown in Fig. 1. The rolls were stopped during molding, and the titanium tubes after passing through each sizing roll F8 to F11 after the squeeze roll SQ were sampled. The outer diameter and roundness of these titanium tube samples were actually measured, and the relationship with various sizing conditions was determined. The upper and lower roll clearances are set to 0, and all pipes are new (no wear).
roll was used. [Results and Discussion] The measurement results of the outer diameter tolerance and roundness of the titanium tubes sampled as described above are shown in FIGS. 6A and 6B. In these figures, the plastic reduction rate is plotted on the horizontal axis, and this value was determined using the following formula. δ P = | d F / d SQ −1 | × 100 (%) Where, δ P : Plastic reduction rate, d F : Average outer diameter of titanium tube after passing through each sizing roll, d SQ : Titanium tube after passing through squeeze roll The vertical axis shows the outer diameter tolerance (mm) and roundness (μm), respectively. As is clear from Fig. 6A and B, the outer diameter tolerance,
The roundness decreases as the drawing ratio increases, and when the plastic drawing ratio is 0.5 to 0.6% or more, sufficient roundness (outer diameter tolerance) is achieved even when compared to ASTM standards. Therefore, from the results of this implementation, a value of 0.5 to 0.6% is obtained as the appropriate sizing reduction rate. As mentioned above, if the elastic recovery strain of the titanium tube is estimated to be approximately 0.31%, the appropriate sizing reduction ratio (total strain) will be 0.81 to 0.91%, and this value is close to the results obtained in mock tests using molds. . From the above results, it was confirmed that the appropriate sizing reduction rate is 1 to 2% as described in the previous section. Regarding this implementation, other titanium tubes were investigated regarding the above items, and almost the same results were obtained, and the appropriate sizing reduction ratio was 1 to 2%.
However, it was found that this method can be applied regardless of the size of the titanium tube. As described above, according to the method for manufacturing a welded pipe made of titanium or the like of the present invention, the total amount of outer diameter reduction from the squeeze roll to the final sizing roll can be reduced by 1 to 2%.
As a result, the tolerance and roundness of the outside diameter of the tube can be adjusted with high precision, and wear of the rolls due to unnecessary rolling can be prevented, making it possible to extend the life of the rolls. In addition, since the amount of outside diameter reduction can be clearly set, it is possible to optimally design the roll hole shape after the squeeze roll, taking the outside diameter reduction amount into consideration, and determine the appropriate hoop width. These incidental matters, which had previously been done through trial and error, can now be handled efficiently and contribute to improved productivity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はチタン等の溶接管の製造工程を示す概
略工程図、第2図は孔型径及び公称絞り率とチタ
ン管外径との関係を示す図、第3図A,Bは素材
管の圧下前後の真円度測定図、第4図は公称絞り
率と真円度との関係を示す図、第5図は上下型間
クリアランスと圧下荷重との関係を示す図、第6
図A,Bは塑性絞り率と外径公差、真円度との関
係を示す図である。 1…フープ、2…溶接トーチ、F1〜F7…成
形ロール、SQ…スクイズロール、F8〜F11
…サイジングロール。
Figure 1 is a schematic process diagram showing the manufacturing process of welded titanium pipes, etc. Figure 2 is a diagram showing the relationship between the hole diameter, nominal drawing ratio, and titanium pipe outer diameter, and Figures A and B are raw material pipes. Figure 4 is a diagram showing the relationship between the nominal drawing ratio and roundness, Figure 5 is a diagram showing the relationship between the clearance between the upper and lower dies and the rolling load, and Figure 6 is a diagram showing the relationship between the clearance between the upper and lower dies and the rolling load.
Figures A and B are diagrams showing the relationship between plastic reduction ratio, outer diameter tolerance, and roundness. 1... Hoop, 2... Welding torch, F1-F7... Forming roll, SQ... Squeeze roll, F8-F11
...Sizing roll.

Claims (1)

【特許請求の範囲】 1 チタン、ジルコニウム、又はその合金から成
る板状フーブを、各成形ロール間を通過させてオ
ーブン管に成形した後、接合エツジ部をスクイズ
ロール近傍で溶接し、その後複数個のサイジング
ロールにより外径を調整して管を連続的に製造す
る方法において、前記スクイズロールからサイジ
ング最終ロールまでの外径絞り量の総量を1〜2
%として上記各ロールに配分することを特徴とす
るチタン、ジルコニウム、又はその合金の溶接管
製造方法。 2 配分が略等配分である特許請求の範囲第1項
記載のチタン、ジルコニウム、又はその合金の溶
接管製造方法。
[Claims] 1. After forming a plate-shaped houb made of titanium, zirconium, or an alloy thereof into an oven tube by passing it between forming rolls, the joining edge is welded near the squeeze roll, and then a plurality of... In the method of continuously manufacturing pipes by adjusting the outer diameter with a sizing roll, the total amount of outer diameter reduction from the squeeze roll to the final sizing roll is 1 to 2.
A method for manufacturing a welded pipe of titanium, zirconium, or an alloy thereof, characterized in that the welded pipe is distributed as a percentage to each of the rolls. 2. The method for manufacturing a welded pipe of titanium, zirconium, or an alloy thereof according to claim 1, wherein the distribution is approximately equal.
JP17895783A 1983-09-24 1983-09-24 Manufacture of welded pipe of titanium, zirconium, or its alloy Granted JPS6068112A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17895783A JPS6068112A (en) 1983-09-24 1983-09-24 Manufacture of welded pipe of titanium, zirconium, or its alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17895783A JPS6068112A (en) 1983-09-24 1983-09-24 Manufacture of welded pipe of titanium, zirconium, or its alloy

Publications (2)

Publication Number Publication Date
JPS6068112A JPS6068112A (en) 1985-04-18
JPS6351762B2 true JPS6351762B2 (en) 1988-10-17

Family

ID=16057613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17895783A Granted JPS6068112A (en) 1983-09-24 1983-09-24 Manufacture of welded pipe of titanium, zirconium, or its alloy

Country Status (1)

Country Link
JP (1) JPS6068112A (en)

Also Published As

Publication number Publication date
JPS6068112A (en) 1985-04-18

Similar Documents

Publication Publication Date Title
US4460118A (en) Method for forming electric welded pipe
CA2288421C (en) Bending rolls, and pipe formed thereby
US4260096A (en) Method for reduction and sizing of welded pipes and mill for effecting same
JPS6351762B2 (en)
US4590781A (en) Method for forming an electric resistance welded steel pipe
JPH091234A (en) Production of uo steel pipe
JPH06198337A (en) Method for correction welded steel tube
US4515000A (en) Method for manufacturing consumable welding spacer
JPS61115685A (en) Manufacture of seam welded steel tube
JPH0440090B2 (en)
EP0133245B1 (en) A method for forming an electric resistance welded steel pipe
CA1239778A (en) Method for forming an electric resistance welded steel pipe
JP4236918B2 (en) Manufacturing method of plated steel pipe
SU1274790A1 (en) Method of producing polyhedral welded tubes
JP5176495B2 (en) ERW pipe manufacturing method with excellent weld properties
JP3946534B2 (en) Manufacturing method of ERW steel pipe with excellent outer diameter shape
JPH0422646B2 (en)
SU1273203A1 (en) Method of producing welded tubes
JPS5832005B2 (en) Manufacturing method of spiral steel pipe for piping
JPH04162919A (en) Method for forming tube stock on manufacture of resistance welded steel tube
RU2062152C1 (en) Strip metal straightening method
JPH06122019A (en) Manufacture of large diameter square steel pipe including hot forming and device therefor
JPH0551373B2 (en)
JPH10286620A (en) Manufacture of welded steel pipe
JPS601088B2 (en) Large diameter square steel pipe manufacturing equipment