JPS6351546B2 - - Google Patents

Info

Publication number
JPS6351546B2
JPS6351546B2 JP57173461A JP17346182A JPS6351546B2 JP S6351546 B2 JPS6351546 B2 JP S6351546B2 JP 57173461 A JP57173461 A JP 57173461A JP 17346182 A JP17346182 A JP 17346182A JP S6351546 B2 JPS6351546 B2 JP S6351546B2
Authority
JP
Japan
Prior art keywords
infrared
semiconductor substrate
main surface
side electrode
imaging device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57173461A
Other languages
Japanese (ja)
Other versions
JPS5961959A (en
Inventor
Naoki Yuya
Masahiko Denda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP57173461A priority Critical patent/JPS5961959A/en
Priority to DE19833335117 priority patent/DE3335117A1/en
Publication of JPS5961959A publication Critical patent/JPS5961959A/en
Publication of JPS6351546B2 publication Critical patent/JPS6351546B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/148Charge coupled imagers
    • H01L27/14875Infrared CCD or CID imagers

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Light Receiving Elements (AREA)

Description

【発明の詳細な説明】 この発明はシヨツトキー接合からなる赤外線光
電変換部(以下「シヨツトキー形赤外線検出部」
と呼ぶ)で構成された赤外線固体撮像素子に係
り、特にシヨツトキー形赤外線検出部の改良に関
するものである。
[Detailed Description of the Invention] This invention relates to an infrared photoelectric conversion section (hereinafter referred to as a "Schottkey type infrared detection section") consisting of a Schottky junction.
The present invention relates to an infrared solid-state image pickup device constructed with an infrared ray sensor (referred to as .

第1図は赤外線固体撮像素子の一例の基本的構
成を模式的に示す図である。
FIG. 1 is a diagram schematically showing the basic configuration of an example of an infrared solid-state imaging device.

図において、100は水平方向の複数行および
垂直方向の複数列に互いの間に間隔をおいて複数
個配置され照射赤外線量に対応した電荷を蓄積す
るシヨツトキー形の赤外線検出部、200は垂直
方向の各列に配置された複数個の赤外線検出部1
00に共通に接して形成されこれらの赤外線検出
部100の蓄積電荷を後述の垂直レジスタへ移送
するトランスフアMOSトランジスタ、300は
トランスフアMOSトランジスタ200に並列に
接して形成されトランスフアMOSトランジスタ
200が移送する各赤外線検出部100の蓄積電
荷を出力端へ順次転送するように電荷結合素子
(Charge Coupled Device:CCD)で構成された
垂直レジスタ、400は各垂直レジスタ300の
出力端に共通に接して形成されこれらの垂直レジ
スタ300が転送する電荷を出力端へ順次転送す
るようにCCDで構成された水平レジスタ、50
0は水平レジスタ400の出力端に接続され水平
レジスタ400が転送する電荷を例えば電圧にし
て外部へ出力する出力部である。トランスフア
MOSトランジスタ200、垂直レジスタ300、
水平レジスタ400および出力部500は二次元
に配置された複数個の赤外線検出部100の蓄積
電荷を順次読み出し電気信号として出力する読み
出し機構を構成する。
In the figure, reference numeral 100 denotes a shot key-type infrared detection unit that is arranged in multiple rows in the horizontal direction and in multiple columns in the vertical direction at intervals between each other and accumulates charges corresponding to the amount of infrared rays irradiated, and 200 in the vertical direction. A plurality of infrared detection units 1 arranged in each row of
A transfer MOS transistor 300 is formed in common contact with the transfer MOS transistor 200 and transfers the accumulated charge of these infrared detection sections 100 to a vertical register to be described later. A vertical register 400 formed of a charge coupled device (CCD) is commonly connected to the output end of each vertical register 300 so as to sequentially transfer the accumulated charge of each infrared detection section 100 to the output end. Horizontal registers 50 configured with CCDs so as to sequentially transfer charges formed and transferred by these vertical registers 300 to output terminals.
0 is an output section connected to the output end of the horizontal register 400, which converts the charge transferred by the horizontal register 400 into, for example, a voltage and outputs it to the outside. transfer
MOS transistor 200, vertical register 300,
The horizontal register 400 and the output section 500 constitute a readout mechanism that sequentially reads out the accumulated charges of the plurality of infrared detection sections 100 arranged two-dimensionally and outputs them as electrical signals.

第2図は従来の赤外線固体撮像素子の一例の第
1図に示した−線に対応する線での断面図で
ある。
FIG. 2 is a cross-sectional view of an example of a conventional infrared solid-state imaging device taken along a line corresponding to the - line shown in FIG.

図において、1は不純物濃度が1014〜1015
子/cm3であるp形シリコン基板、2はp形シリコ
ン基板1の主面のシヨツトキー接合を形成すべき
部分以外の部分に形成された酸化シリコン膜、3
は金(Au)、パラジウム(Pd)などの金属また
は白金シリサイド(Pt・Si)、パラジウムシリサ
イド(Pd・Si)、イリジウムサイド(Ir・Si)な
どの金属シリサイドの蒸着層からなりp型シリコ
ン基板1の主面の酸化シリコン膜2によつて分離
された部分に接着されて形成されたシヨツトキー
接合の金属側電極、4はp型シリコン基板1の主
面部の金属側電極3の周縁部と接する部分に形成
されn形領域であるガードリング、5はアルミニ
ウム層からなり金属側電極3の表面周縁部に接続
された電極リードである。p形シリコン基板1、
金属側電極3、ガードリング4および電極リード
5は第1図に示した赤外線検出部100を構成す
る。6はp形シリコン基板1の主面部のガードリ
ング4の外周に近接する部分に形成され表面の一
部に電極リード5が酸化シリコン膜2を貫通して
接続されたn+形領域、7は酸化シリコン膜2内
のn+形領域6から後述のn形埋め込みチヤネル
領域にわたる部分に対応する部分内にp形シリコ
ン基板1の主面と平行になるように埋設され第1
図に示したトランスフアMOSトランジスタ20
0のゲート電極(以下「トランスフアゲート電
極」と呼ぶ)、8はp形シリコン基板1の主面部
のトランスアゲート電極7のn+形領域6側とは
反対側の端部の下方の部分を含んでその外側の部
分に形成されたn形埋め込みチヤネル領域、9は
酸化シリコン膜2内にトランスフアゲート電極7
の赤外線検出部100側とは反対側の端部の上方
の部分から伸びてn形埋め込みチヤネル領域8の
表面と平行になるように埋設されたゲート電極、
301はn形埋め込みチヤネル領域8とゲート電
極9とからなり第1図に示した垂直レジスタ30
0を構成するCCD、10は赤外線検出部100
および酸化シリコン膜2の全上面上に形成された
素子保護用の窒化シリコン膜である。
In the figure, 1 is a p-type silicon substrate with an impurity concentration of 10 14 to 10 15 atoms/cm 3 , and 2 is an oxidized silicon substrate formed on the main surface of the p-type silicon substrate 1 other than the part where the Schottky junction is to be formed. Silicon film, 3
is a p-type silicon substrate consisting of a vapor-deposited layer of metal such as gold (Au) or palladium (Pd) or metal silicide such as platinum silicide (Pt/Si), palladium silicide (Pd/Si), or iridium silicide (Ir/Si). The metal side electrode of the Schottky junction is formed by adhering to the part separated by the silicon oxide film 2 on the main surface of the p-type silicon substrate 1, and the metal side electrode 4 contacts the peripheral edge of the metal side electrode 3 on the main surface of the p-type silicon substrate 1. A guard ring 5, which is an n-type region formed in a portion, is an electrode lead made of an aluminum layer and connected to the surface peripheral part of the metal side electrode 3. p-type silicon substrate 1,
The metal side electrode 3, guard ring 4, and electrode lead 5 constitute an infrared detection section 100 shown in FIG. Reference numeral 6 indicates an n + type region formed in a portion of the main surface of the p-type silicon substrate 1 near the outer periphery of the guard ring 4, and an electrode lead 5 is connected to a part of the surface by penetrating the silicon oxide film 2; A first layer is buried parallel to the main surface of the p-type silicon substrate 1 in a portion of the silicon oxide film 2 corresponding to a portion extending from the n + type region 6 to the n-type buried channel region described below.
Transfer MOS transistor 20 shown in the figure
0 (hereinafter referred to as "transfer gate electrode"), 8 includes the lower part of the end of the transagate electrode 7 on the main surface of the p-type silicon substrate 1 on the side opposite to the n + type region 6 side. An n-type buried channel region 9 is formed in the outer part of the transfer gate electrode 7 in the silicon oxide film 2.
a gate electrode extending from an upper portion of the end opposite to the infrared detection unit 100 side and buried so as to be parallel to the surface of the n-type buried channel region 8;
301 is a vertical register 30 shown in FIG.
0 constitutes a CCD, 10 constitutes an infrared detection section 100
and a silicon nitride film for device protection formed on the entire upper surface of the silicon oxide film 2.

次に、この従来例の素子の動作について説明す
る。
Next, the operation of this conventional element will be explained.

通常、この素子は、液体窒素の温度(77〓)に
おいて、赤外線検出部100のシヨツトキー接合
に逆方向のバイアス電圧を印加して使用される。
このような状態で、p形シリコン基板1側または
金属側電極3側のいずれかの側へ赤外領域の光が
照射されると、金属側電極3中に電子と正孔との
対が正成する。この生成した正孔のうちのシヨツ
トキー障壁を越える運動エネルギーをもつものは
p形シリコン基板1に注入され、金属側電極3に
光の照射量に対応する電荷が蓄積される。この金
属側電極3の蓄積電荷は、電極リード5を通り
n+形領域6から、トランスフアゲート電極7に
よつて、p形シリコン基板1の主面部のn+形領
域6およびn形埋め込みチヤネル領域8間の部分
を通つて垂直レジスタ300を構成するCCD3
01のn形埋め込みチヤネル領域8に注入され
る。このn形埋め込みチヤネル領域8に注入され
た電荷は、第1図に示したように、垂直レジスタ
300および水平レジスタ400を通り出力部5
00から電気信号として取り出される。このよう
にして、二次元に配置された複数個の赤外線検出
部100のそれぞれの照射光量に対応する蓄積電
荷を、トランスフアMOSトランジスタ200、
垂直レジスタ300、水平レジスタ400および
出力部500で構成された読み出し機構によつ
て、順次読み出すことができる。
Normally, this element is used by applying a reverse bias voltage to the Schottky junction of the infrared detecting section 100 at the temperature of liquid nitrogen (77°).
In this state, when infrared light is irradiated to either the p-type silicon substrate 1 side or the metal side electrode 3 side, pairs of electrons and holes are positively formed in the metal side electrode 3. do. Of the generated holes, those with kinetic energy exceeding the Schottky barrier are injected into the p-type silicon substrate 1, and charges corresponding to the amount of light irradiated are accumulated in the metal side electrode 3. This accumulated charge on the metal side electrode 3 passes through the electrode lead 5.
The CCD 3 forming the vertical register 300 is passed from the n + type region 6 through the portion between the n + type region 6 and the n type buried channel region 8 on the main surface of the p type silicon substrate 1 by means of the transfer gate electrode 7.
01 into the n-type buried channel region 8. As shown in FIG.
00 as an electrical signal. In this way, the accumulated charge corresponding to the amount of light irradiated by each of the plurality of infrared detecting sections 100 arranged two-dimensionally is transferred to the transfer MOS transistor 200,
A reading mechanism composed of a vertical register 300, a horizontal register 400, and an output section 500 can sequentially read out the data.

ところで、この従来例のシヨツトキー形の赤外
線検出部100では、通常、1014〜1015原子/cm3
程度の低不純物濃度のp形シリコン基板1を用
い、Pt・Siの蒸着層からなる金属側電極3が用い
られている。この場合には、p形シリコン基板1
とPt・Siからなる金属側電極3との間のシヨツト
キー障壁の高さBは0.27eVであるので、この障
壁の高さ0.27eVから量子的に決まる検出可能な
光の最大波長は4.60μmになる。
By the way, in this Schottky-type infrared detection section 100 of this conventional example, normally 10 14 to 10 15 atoms/cm 3
A p-type silicon substrate 1 having a relatively low impurity concentration is used, and a metal side electrode 3 made of a deposited layer of Pt.Si is used. In this case, p-type silicon substrate 1
Since the height B of the Schottky barrier between the metal side electrode 3 made of Pt and Si is 0.27 eV, the maximum wavelength of detectable light that is quantum determined from this barrier height of 0.27 eV is 4.60 μm. Become.

一般に、シヨツトキー形の光検出器の量子効率
Yは、 Y=C1・(hν−B2/hν(電子/フオトン) で表わされる。ここで、hはプランク常数、νは
照射光の振動数、C1は量子効率係数である。
In general, the quantum efficiency Y of a Schottky photodetector is expressed as Y=C 1 ·(hν− B ) 2 /hν (electrons/photon). Here, h is Planck's constant, ν is the frequency of the irradiated light, and C 1 is the quantum efficiency coefficient.

上記式から判るように、シヨツトキー形の光の
検出器では、大気の窓と呼ばれる3〜5μmの光
の波長域で高検出感度を得るには、シヨツトキー
障壁の高さBを低くすればよい。この障壁の高
Bを低くするためには、p形シリコン基板1
の不純物濃度を高くすれば、シヨツトキー効果に
よつてシヨツトキー障壁の高さBは実効的に低
くなる。しかし、CCD301のn形埋め込みチ
ヤネル領域8では、液体窒素の温度(77〓)にお
いて電荷の転送効率を高くするには、この転送効
率を下げるトラツプとして働くドナーの密度をな
るべく低くしなければならない。このドナーの密
度を低くするためには、p形シリコン基板1の不
純物濃度は1014〜1015原子/cm3程度の低いものに
しなければならない。
As can be seen from the above equation, in the Schottky type light detector, in order to obtain high detection sensitivity in the 3 to 5 μm light wavelength region called the atmospheric window, the height B of the Schottky barrier can be reduced. In order to lower the height B of this barrier, the p-type silicon substrate 1
If the impurity concentration of is increased, the height B of the Schottky barrier will effectively decrease due to the Schottky effect. However, in the n-type buried channel region 8 of the CCD 301, in order to increase the charge transfer efficiency at the temperature of liquid nitrogen (77〓), the density of donors, which act as a trap that lowers the transfer efficiency, must be made as low as possible. In order to lower the donor density, the impurity concentration of the p-type silicon substrate 1 must be as low as about 10 14 to 10 15 atoms/cm 3 .

このように従来例の素子では、赤外線検出部1
00の3〜5μmの光の波長域における検出感度
の向上を図ることと、CCD301の転送効率の
向上を図ることとが、互いに矛盾するという問題
があつた。
In this way, in the conventional element, the infrared detecting section 1
There was a problem in that aiming to improve the detection sensitivity in the 3-5 μm wavelength range of light of 0.00 and improving the transfer efficiency of the CCD 301 contradicted each other.

この発明は、上述の問題点に鑑みてなされたも
ので、半導体基板の主面部のシヨツトキー接合を
形成すべき領域に半導体基板と同一伝導形の不純
物を導入して半導体基板の主面部のシヨツトキー
接合形成領域の不純物濃度をその他の領域の不純
物濃度より高くすることによつて、低不純物濃度
の半導体基板を用いながら、赤外線検出部のシヨ
ツトキー障壁の高さBを実効的に下げて検出可
能な照射光の最大波長を長波長側に伸ばし、3〜
5μmの光の波長域での検出感度を向上させた赤
外線固体撮像素子を提供することを目的とする。
This invention has been made in view of the above-mentioned problems, and it is possible to form a Schottky junction on the main surface of a semiconductor substrate by introducing impurities of the same conductivity type as the semiconductor substrate into a region where a Schottky junction is to be formed on the main surface of the semiconductor substrate. By making the impurity concentration in the formation region higher than the impurity concentration in other regions, the height B of the Schottky barrier of the infrared detection section can be effectively lowered and detectable irradiation can be achieved while using a semiconductor substrate with a low impurity concentration. Extend the maximum wavelength of light to the long wavelength side, and
The purpose of the present invention is to provide an infrared solid-state image sensor with improved detection sensitivity in the 5 μm wavelength range of light.

第3図はこの発明の一実施例の赤外線固体撮像
素子の赤外線検出部を示す断面図である。
FIG. 3 is a sectional view showing an infrared detection section of an infrared solid-state image sensor according to an embodiment of the present invention.

図において、第2図に示した従来例の符号と同
一符号は同等部分を示す。11はp形シリコン基
板1の主面部のガードリング5によつて囲まれた
部分にホウ素、ガリウムなどのp形不純物をイオ
ン注入または拡散して形成されp形シリコン基板
1の不純物濃度より高不純物濃度のp+形領域で
ある。このp+形領域11と金属側電極3との間
にシヨツトキー接合が形成される。100aは
p+形領域11、金属側電極3、ガードリング4
および電極リード5で構成されたこの実施例の赤
外線検出部である。
In the figure, the same reference numerals as those in the conventional example shown in FIG. 2 indicate equivalent parts. 11 is formed by ion implantation or diffusion of p-type impurities such as boron or gallium into the main surface of the p-type silicon substrate 1 surrounded by the guard ring 5, and has an impurity concentration higher than that of the p-type silicon substrate 1. This is the p + type region of concentration. A Schottky junction is formed between this p + type region 11 and the metal side electrode 3. 100a is
p + type region 11, metal side electrode 3, guard ring 4
The infrared detecting section of this embodiment is composed of an electrode lead 5 and an electrode lead 5.

この実施例の赤外線固体撮像素子の構成は、赤
外線検出部100a以外は第2図に示した従来例
の構成と同様である。
The structure of the infrared solid-state imaging device of this embodiment is the same as that of the conventional example shown in FIG. 2, except for the infrared detecting section 100a.

一般に、シヨツトキー障壁の高さBは、シヨ
ツトキー効果によつて△φだけ実効的に低下する
ことが知られている。ここで、△φはシヨツトキ
ー接合の界面電界による障壁低下エネルギーであ
る。この△φの大きさは、シヨツトキー接合の界
面電界の強さEが強いほど大きい。従つて、この
実施例の赤外線検出部100aでは、高不純物濃
度のp+形領域11をシヨツトキー接合の界面部
に形成することによつて、この接合の界面電界の
強さEを強くして実効的にシヨツトキー障壁の高
Bを低下させる上記△φを大きくすることが
可能となつて、p+形領域11の不純物濃度によ
つてシヨツトキー障壁の高さBを制御すること
ができる。例えば、この実施例の赤外線検出部1
00aにおいて、金属側電極3にPt・Si蒸着層を
用い、1014〜1015原子/cm3程度の低不純物濃度の
p形シリコン基板1の主面部に形成されるp+
領域11の不純物濃度を1016原子/cm3程度にし、
5V程度の逆方向バイアス電圧をシヨツトキー接
合に印加して液体窒素の温度(77〓)で使用した
場合には、シヨツトキー障壁の高さBは0.23eV
に低下し、検出可能な光の最大波長は5.4μmにな
る。また、p+形領域11の不純物濃度を1017
子/cm3程度にした場合には、シヨツトキー障壁の
高さBは更に0.20eVに低下し、検出可能な光の
最大波長は6.2μmになる。これによつて、この実
施例の赤外線検出部100aの検出可能な光の最
大波長が、第2図に示した従来例の赤外線検出部
100の検出可能な光の最大波長が4.6μmである
のに比べて、長波長側に伸びることが判る。
Generally, it is known that the height B of the Schottky barrier is effectively reduced by Δφ due to the Schottky effect. Here, Δφ is the barrier lowering energy due to the interfacial electric field of the Schottky junction. The magnitude of this Δφ increases as the strength E of the interfacial electric field of the Schottky junction increases. Therefore, in the infrared detecting section 100a of this embodiment, by forming the p + type region 11 with a high impurity concentration at the interface of the Schottky junction, the strength E of the interfacial electric field of this junction is increased and the effective It becomes possible to increase the above-mentioned Δφ, which reduces the height B of the Schottky barrier, and the height B of the Schottky barrier can be controlled by the impurity concentration of the p + type region 11. For example, the infrared detection section 1 of this embodiment
In 00a, a Pt/Si vapor deposited layer is used for the metal side electrode 3, and the impurity of the p + type region 11 formed on the main surface of the p type silicon substrate 1 with a low impurity concentration of about 10 14 to 10 15 atoms/cm 3 is used. The concentration is set to about 1016 atoms/ cm3 ,
When a reverse bias voltage of about 5 V is applied to the Schottky junction and the Schottky junction is used at the temperature of liquid nitrogen (77〓), the Schottky barrier height B is 0.23 eV.
The maximum wavelength of detectable light is 5.4 μm. Furthermore, when the impurity concentration of the p + type region 11 is set to about 10 17 atoms/cm 3 , the height B of the Schottky barrier further decreases to 0.20 eV, and the maximum wavelength of detectable light becomes 6.2 μm. . As a result, the maximum wavelength of light that can be detected by the infrared detecting section 100a of this embodiment is 4.6 μm, which is the maximum wavelength of light that can be detected by the infrared detecting section 100 of the conventional example shown in FIG. It can be seen that it extends toward longer wavelengths compared to .

このように、この実施例の素子では、低不純物
濃度のp形シリコン基板1を用いて第2図に示し
CCD301の転送効率の向上を図りながら、赤
外線検出部100aのシヨツトキー障壁の高さ
Bを低下させて検出可能な照射光の最大波長を
長波側に伸ばし、3〜5μmの光の波長域での検
出感度の向上を図ることができる。
In this way, in the device of this example, the p-type silicon substrate 1 with a low impurity concentration is used as shown in FIG.
While improving the transfer efficiency of the CCD 301, the height of the shot key barrier of the infrared detection unit 100a is
By lowering B and extending the maximum wavelength of detectable irradiation light to the longer wavelength side, it is possible to improve detection sensitivity in the wavelength range of light from 3 to 5 μm.

この実施例では、金属側電極3にPt・Siを用い
る場合について述べたが、これに限らず、Au、
pd、Irなどの金属またはPd・Si、Ir・Si、Pt・Si
などの金属シリサイドを用いても、この実施例と
同様の効果がある。また、p形シリコン基板1を
用いる場合について述べたが、n形シリコン基板
を用いてもよい。この場合には、p+形領域11
をn+形領域にすれば、この実施例と同様の効果
がある。
In this embodiment, a case is described in which Pt/Si is used for the metal side electrode 3, but the invention is not limited to this.
Metals such as PD, Ir, or Pd/Si, Ir/Si, Pt/Si
Even if metal silicides such as silicides are used, the same effect as in this example can be obtained. Further, although the case where the p-type silicon substrate 1 is used has been described, an n-type silicon substrate may also be used. In this case, p + type region 11
If it is made into an n + type region, the same effect as this embodiment can be obtained.

なお、これまで、CCDを構成要素とする読み
出し機構の場合を例にとり述べたが、この発明は
これに限らず、接合容量の増大を抑制するために
低不純物濃度の半導体基板を必要とするMOSト
ランジスタなどのその他の半導体素子を構成要素
とする読み出し機構の場合にも適用することがで
きる。また、これまで、赤外線検出部が二次元に
配置された場合を例にとり述べたが、この発明は
赤外線検出部が一次元に配置された場合にも適用
することができる。
Although the case of a readout mechanism using a CCD as a component has been described as an example, the present invention is not limited to this, and is applicable to MOS devices that require a semiconductor substrate with a low impurity concentration to suppress an increase in junction capacitance. The present invention can also be applied to readout mechanisms that include other semiconductor elements such as transistors. Further, although the case where the infrared detection sections are arranged two-dimensionally has been described as an example, the present invention can also be applied to the case where the infrared detection sections are arranged one-dimensionally.

以上、説明したように、この発明の赤外線固体
撮像素子では、半導体基板の主面部のシヨツトキ
ー接合を形成すべき部分に半導体基板と同一伝導
形の不純物を導入して半導体基板の主面部のシヨ
ツトキー接合形成領域の不純物濃度を半導体基板
のその他の領域の不純物濃度より高くしたので、
低不純物濃度の半導体基板を用いながら、赤外線
検出部のシヨツトキー障壁の高さBを実効的に
下げて検出可能な照射光の最大波長を長波側に伸
ばし、3〜5μmの光の波長域での検出感度を向
上させることができる。
As described above, in the infrared solid-state imaging device of the present invention, an impurity having the same conductivity type as the semiconductor substrate is introduced into the portion of the main surface of the semiconductor substrate where the Schottky junction is to be formed. Since the impurity concentration in the formation region is higher than the impurity concentration in other regions of the semiconductor substrate,
While using a semiconductor substrate with a low impurity concentration, the height B of the Schottky barrier in the infrared detection section is effectively lowered to extend the maximum wavelength of detectable irradiation light to the long wavelength side, and it is possible to increase the wavelength range of light in the range of 3 to 5 μm. Detection sensitivity can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は赤外線固体撮像素子の一例の基本的構
成を模式的に示す図、第2図は従来の赤外線固体
撮像素子の一例の第1図に示した−線に対応
する線での断面図、第3図はこの発明の一実施例
の赤外線固体撮像素子の赤外線検出部を示す断面
図である。 図において、1はp形シリコン基板(半導体基
板)、3は金属側電極、11はp+形領域(不純物
濃度が高い領域)、100aは赤外線検出部(赤
外線光電変換部)、200,300,400およ
び500はそれぞれ読み出し機構を構成するトラ
ンスフアMOSトランジスタ、垂直レジスタ、水
平レジスタおよび出力部である。なお、図中同一
符号はそれぞれ同一または相当部分を示す。
Fig. 1 is a diagram schematically showing the basic configuration of an example of an infrared solid-state image sensor, and Fig. 2 is a cross-sectional view of an example of a conventional infrared solid-state image sensor taken along a line corresponding to the - line shown in Fig. 1. , FIG. 3 is a sectional view showing an infrared detection section of an infrared solid-state imaging device according to an embodiment of the present invention. In the figure, 1 is a p-type silicon substrate (semiconductor substrate), 3 is a metal side electrode, 11 is a p + type region (region with high impurity concentration), 100a is an infrared detection section (infrared photoelectric conversion section), 200, 300, Reference numerals 400 and 500 represent a transfer MOS transistor, a vertical register, a horizontal register, and an output section, respectively, which constitute a readout mechanism. Note that the same reference numerals in the figures indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】 1 半導体基板と、金属または金属シリサイドか
らなり上記半導体基板の主面の所要部分に接着さ
れてシヨツトキー接合を形成する金属側電極を有
し上記半導体基板の主面部に互いの間に間隔をお
いて一次元または二次元に配置され照射赤外線量
に対応した電荷を上記金属側電極に蓄積する複数
個の赤外線光電変換部と、上記半導体基板の主面
部の上記赤外線光電変換部形成領域以外の部分に
形成され上記各赤外線光電変換部の上記蓄積電荷
を順次読み出す読み出し機構とを備えたものにお
いて、上記半導体基板の主面部の上記シヨツトキ
ー接合形成領域に上記半導体基板と同一伝導形の
不純物を導入して上記半導体基板のその他の領域
の不純物濃度より不純物濃度が高い領域を設けた
ことを特徴とする赤外線固体撮像素子。 2 読み出し機構のレジスタに電荷結合素子を用
いたことを特徴とする特許請求の範囲第1項記載
の赤外線固体撮像素子。 3 読み出し機構にスイツチングMOSトランジ
スタを用いたことを特徴とする特許請求の範囲第
1項記載の赤外線固体撮像素子。
[Scope of Claims] 1. A semiconductor substrate, and a metal side electrode made of metal or metal silicide and bonded to a required portion of the main surface of the semiconductor substrate to form a Schottky junction, and having a metal side electrode that is attached to the main surface of the semiconductor substrate to form a Schottky junction. a plurality of infrared photoelectric conversion units arranged one-dimensionally or two-dimensionally with intervals between them and accumulating charges corresponding to the amount of irradiated infrared rays on the metal side electrode; and the infrared photoelectric conversion unit on the main surface of the semiconductor substrate. and a readout mechanism that is formed in a portion other than the formation region and sequentially reads out the accumulated charge of each of the infrared photoelectric conversion sections, wherein the Schottky junction formation region of the main surface of the semiconductor substrate has the same conductivity type as the semiconductor substrate. An infrared solid-state imaging device characterized in that an infrared solid-state imaging device is provided with a region having a higher impurity concentration than other regions of the semiconductor substrate by introducing an impurity. 2. The infrared solid-state imaging device according to claim 1, characterized in that a charge-coupled device is used for the register of the readout mechanism. 3. The infrared solid-state imaging device according to claim 1, characterized in that a switching MOS transistor is used in the readout mechanism.
JP57173461A 1982-09-30 1982-09-30 Infrared ray solid-state image pickup element Granted JPS5961959A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP57173461A JPS5961959A (en) 1982-09-30 1982-09-30 Infrared ray solid-state image pickup element
DE19833335117 DE3335117A1 (en) 1982-09-30 1983-09-28 Infrared solid-state image sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57173461A JPS5961959A (en) 1982-09-30 1982-09-30 Infrared ray solid-state image pickup element

Publications (2)

Publication Number Publication Date
JPS5961959A JPS5961959A (en) 1984-04-09
JPS6351546B2 true JPS6351546B2 (en) 1988-10-14

Family

ID=15960899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57173461A Granted JPS5961959A (en) 1982-09-30 1982-09-30 Infrared ray solid-state image pickup element

Country Status (2)

Country Link
JP (1) JPS5961959A (en)
DE (1) DE3335117A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0167756A1 (en) * 1984-06-08 1986-01-15 Texas Instruments Incorporated Virtual phase buried channel CCD
DE10147102C2 (en) * 2001-09-25 2003-09-18 Siemens Ag Device and method for vibration measurements

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5117035A (en) * 1974-08-02 1976-02-10 Juichi Shimizu Sekyusutoobuno jidoshokasochi
JPS55157374U (en) * 1980-05-08 1980-11-12

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4028719A (en) * 1976-03-11 1977-06-07 Northrop Corporation Array type charge extraction device for infra-red detection
DE3145840A1 (en) * 1980-11-25 1982-06-24 Mitsubishi Denki K.K., Tokyo Optical Schottky-type detector device
JPS5789249A (en) * 1980-11-25 1982-06-03 Mitsubishi Electric Corp Infrared ray image sensor
GB2100511B (en) * 1981-05-15 1985-02-27 Rockwell International Corp Detector for responding to light at a predetermined wavelength and method of making the detector

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5117035A (en) * 1974-08-02 1976-02-10 Juichi Shimizu Sekyusutoobuno jidoshokasochi
JPS55157374U (en) * 1980-05-08 1980-11-12

Also Published As

Publication number Publication date
JPS5961959A (en) 1984-04-09
DE3335117A1 (en) 1984-04-26
DE3335117C2 (en) 1991-12-19

Similar Documents

Publication Publication Date Title
US4956686A (en) Two color infrared focal plane array
US4198646A (en) Monolithic imager for near-IR
JP3645585B2 (en) Charge coupled device type solid-state imaging device having overflow drain structure
JP3702854B2 (en) Solid-state image sensor
US4774557A (en) Back-illuminated semiconductor imager with charge transfer devices in front surface well structure
US5070380A (en) Transfer gate for photodiode to CCD image sensor
US5306931A (en) CCD image sensor with improved antiblooming characteristics
US4724470A (en) Image sensor device having separate photosensor and charge storage
US7265397B1 (en) CCD imager constructed with CMOS fabrication techniques and back illuminated imager with improved light capture
JPH0766981B2 (en) Infrared sensor
JP3125303B2 (en) Solid-state imaging device
JP2797984B2 (en) Solid-state imaging device and method of manufacturing the same
US4258376A (en) Charge coupled circuit arrangement using a punch-through charge introduction effect
US4589003A (en) Solid state image sensor comprising photoelectric converting film and reading-out transistor
US5828091A (en) Interline charge coupled device solid state image sensor
JPH0818025A (en) Solid image pickup element
JPH08250697A (en) Amplifying type photoelectric converter and amplifying type solid-state image sensor using the same
US5233429A (en) CCD image sensor having improved structure of VCCD region thereof
JPH1131839A (en) Electromagnetic radiation detector, high sensitivity pixel structure using the detector and manufacture of the detector
US4197553A (en) Monolithic extrinsic silicon infrared detector structure employing multi-epitaxial layers
US6114685A (en) Solid-state radiation detector having a charge transfer device
Kosonocky et al. Advances in platinum silicide Schottky-barrier IR-CCD image sensors
JPS6351546B2 (en)
US4337395A (en) Monolithic imager
JP4824241B2 (en) Semiconductor energy detector