JPS6351353B2 - - Google Patents

Info

Publication number
JPS6351353B2
JPS6351353B2 JP56139698A JP13969881A JPS6351353B2 JP S6351353 B2 JPS6351353 B2 JP S6351353B2 JP 56139698 A JP56139698 A JP 56139698A JP 13969881 A JP13969881 A JP 13969881A JP S6351353 B2 JPS6351353 B2 JP S6351353B2
Authority
JP
Japan
Prior art keywords
sodium
container
gas
gas communication
communication chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56139698A
Other languages
Japanese (ja)
Other versions
JPS5842183A (en
Inventor
Hiroshi Kagawa
Shuzo Kimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP56139698A priority Critical patent/JPS5842183A/en
Publication of JPS5842183A publication Critical patent/JPS5842183A/en
Publication of JPS6351353B2 publication Critical patent/JPS6351353B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/39Accumulators not provided for in groups H01M10/05-H01M10/34 working at high temperature
    • H01M10/3909Sodium-sulfur cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Description

【発明の詳細な説明】 本発明は陰極活物質に溶融ナトリウム、陽極活
物質に溶融硫黄−多硫化ナトリウム、電解質にナ
トリウムイオン伝導性の有底固体電解質管を用い
該管内を陰極室とするナトリウム−硫黄電池にか
かわるもので、その目的は該固体電解質管内のナ
トリウム利用率を高めるもので、あわせて該固体
電解質管底部が破損した際ナトリウム供給を停止
させる機構をもたせることにある。
Detailed Description of the Invention The present invention uses molten sodium as the cathode active material, molten sulfur-sodium polysulfide as the anode active material, and a solid electrolyte tube with a bottom that conducts sodium ions as the electrolyte. - It is related to a sulfur battery, and its purpose is to increase the sodium utilization rate in the solid electrolyte tube, and also to provide a mechanism to stop the sodium supply when the solid electrolyte tube bottom is damaged.

ナトリウム−硫黄電池はナトリウムイオン伝導
性のβ−アルミナ、β″−アルミナ、ナシコンなど
からなる有底固体電解質管により前記両活物質を
分離して約350℃の高温で作動させる二次電池で
ある。第1図に従来のナトリウム−硫黄電池の縦
断面図を示すと共に、以下にその構造、効果及び
問題点等を説明する。1はβ″−アルミナからなる
有底固体電解質管である。2は陰極活物質として
のナトリウムである。3は陰極活物質2が充填さ
れた内容器で上部蓋に孔が設けられている。4は
内容器3を取り巻く外容器で、内部空間は内容器
3内部と内容器3の上部蓋の孔で連通している。
5は陰極集電端子で内容器3、外容器4に溶接さ
れている。6は陰極集電端子管5に溶接された陰
極蓋である。陰極集電端子5の下端部は内容器3
内部と連通し、ナトリウム充填用及びナトリウム
充填後、真空シールを解き不活性ガスを流入させ
るガス流入路を兼ねており、ナトリウム充填、真
空シール解除後、上部開放端は密閉される。7は
α−アルミナからなる固定部材で、下部の構には
固体電解質管1がガラス半田接合されている。8
は陰極補助蓋で、固定部材7とはガラス半田接合
され、かつ陰極蓋6とは溶接されている。9は固
定部材7にガラス半田接合された耐溶融硫黄・多
硫化ナトリウム性の金属からなる陽極蓋である。
10は陽極集電体を兼ねた耐溶融硫黄・多硫化ナ
トリウム性金属からなる電池容器で、陰極蓋9と
は溶接される。11は陰極活物質としての硫黄・
多硫化ナトリウムである。12はグラフアイト、
カーボン等の繊維より構成される陽極電導材で、
陽極活物質11を含浸しており、かつ固体電解質
管1及び電池容器10の表面に密接している。以
上の構成でなるナトリウム−硫黄電池の陰極室は
以下の如くして製造される。陰極集電端子5に内
容器3及び外容器4及び陰極蓋6が溶接され、
150℃のアルゴンガス雰囲気に配置される。続い
て陰極集電端子5の管口より同温度の溶融ナトリ
ウムが真空充填され、内容器3内を満たす。充填
後、陰極集電端子5管口の真空シールを解除する
ことでアルゴンガスを流入させ、外容器4内にア
ルゴンガスをたくわえる。冷却後、陰極集電端子
5管口を密閉する。内容器3の底蓋にナトリウム
が流通する程度の穴を設ける。次に該ナトリウム
充填容器を固体電解質管1内に挿入配設し、真空
(又は減圧)状態下で陰極蓋6と陰極補助蓋8を
溶接する。このようにして得られた従来のナトリ
ウム−硫黄電池は電池作動温度である350℃に昇
温されるとき、内容器3内のナトリウムが溶融し
た時点で、内容器3の底蓋に設けられた穴を通
り、固体電解質管1と外容器4との間の領域に供
給され、かつ外容器4内のアルゴンガスが熱膨張
し、約2.2気圧となり、さらに内容器3内の溶融
ナトリウムを加圧し供給を促進する。この溶融ナ
トリウム供給は固体電解質管1内空間(固体電解
質管1と外容器4とで形成される空間域)に溶融
ナトリウムが充満した時点で停止する。放電時、
固体電解質管1内空間の溶融ナトリウムが陽極室
に移動するに従い、移動する反応量だけ内容器3
から供給される。しかし、内容器3内の溶融ナト
リウムがなくなると、該空間域の溶融ナトリウム
が消費され、それにつれて固体電解質管内空間を
充満させることができず、作用面積が低下して固
体電解質管1に電流密度のムラが発生し、固体電
解質管を破損する危険性があるため、内容器3内
の溶融ナトリウム量だけ電池反応に寄与させる必
要がある。すなわち350℃に保温され、通電され
る前の状態で、内容器3から固体電解質管1内空
間に溶融ナトリウムが移動供給され、内容器3内
に残つた溶融ナトリウム量だけが電池反応に利用
される。このときの溶融ナトリウムの減少量は固
体電解質管1と外容器4とで形成される空間領域
(不活性領域という)に相当するもので、この減
少量のため、ナトリウム利用率は極度に悪いもの
であつた。そこでこの不活性領域を解消する方法
として、製造時に不活性領域内にもナトリウムを
充填しておいたり、また、陽極活物質中に多硫化
ナトリウムを充填しておき、多硫化ナトリウム中
のナトリウム量で不足量を補充したり、さらには
電池形状を大きくするなどしておこなつたがいず
れの場合も電池の生産性、容積効率、重量効率を
悪くさせるばかりであり、決定的な解決策とはな
らなかつた。
A sodium-sulfur battery is a secondary battery that separates the two active materials using a bottomed solid electrolyte tube made of sodium ion conductive β-alumina, β″-alumina, Nasicon, etc., and operates at a high temperature of approximately 350°C. FIG. 1 shows a vertical cross-sectional view of a conventional sodium-sulfur battery, and its structure, effects, problems, etc. will be explained below. 1 is a bottomed solid electrolyte tube made of β''-alumina. 2 is sodium as a cathode active material. 3 is an inner container filled with the cathode active material 2, and a hole is provided in the upper lid. Reference numeral 4 denotes an outer container surrounding the inner container 3, and the inner space communicates with the inside of the inner container 3 through a hole in the upper lid of the inner container 3.
5 is a cathode current collecting terminal, which is welded to the inner container 3 and outer container 4. 6 is a cathode cover welded to the cathode current collector terminal tube 5. The lower end of the cathode current collector terminal 5 is connected to the inner container 3
It communicates with the inside and also serves as a gas inflow path for sodium filling and after the sodium filling, the vacuum seal is broken and an inert gas is introduced.After the sodium filling and the vacuum seal is released, the upper open end is sealed. Reference numeral 7 denotes a fixing member made of α-alumina, and the solid electrolyte tube 1 is bonded to the lower structure by glass soldering. 8
is a cathode auxiliary lid, which is joined to the fixing member 7 by glass solder and welded to the cathode lid 6. Reference numeral 9 denotes an anode cover made of a metal resistant to molten sulfur and sodium polysulfide, which is bonded to the fixing member 7 by glass soldering.
Reference numeral 10 denotes a battery container made of a molten sulfur/sodium polysulfide metal that also serves as an anode current collector, and is welded to the cathode lid 9. 11 is sulfur as a cathode active material.
It is sodium polysulfide. 12 is graphite,
An anode conductive material made of fibers such as carbon.
It is impregnated with the positive electrode active material 11 and is in close contact with the surfaces of the solid electrolyte tube 1 and the battery container 10. The cathode chamber of the sodium-sulfur battery having the above structure is manufactured as follows. The inner container 3, the outer container 4, and the cathode lid 6 are welded to the cathode current collecting terminal 5,
Placed in an argon gas atmosphere at 150°C. Subsequently, molten sodium at the same temperature is vacuum-filled from the tube port of the cathode current collector terminal 5 to fill the inner container 3. After filling, the vacuum seal at the tube port of the cathode current collector terminal 5 is released to allow argon gas to flow in, thereby storing the argon gas in the outer container 4. After cooling, the tube opening of the cathode current collector terminal 5 is sealed. A hole is provided in the bottom cover of the inner container 3 to allow sodium to flow therethrough. Next, the sodium-filled container is inserted into the solid electrolyte tube 1, and the cathode cover 6 and the cathode auxiliary cover 8 are welded together under a vacuum (or reduced pressure) condition. When the conventional sodium-sulfur battery obtained in this way is heated to 350°C, which is the battery operating temperature, the sodium in the inner container 3 melts, and when the sodium in the inner container 3 is heated, The argon gas that passes through the hole and is supplied to the area between the solid electrolyte tube 1 and the outer container 4, and is inside the outer container 4, thermally expands to about 2.2 atmospheres, and further pressurizes the molten sodium in the inner container 3. Facilitate supply. The supply of molten sodium is stopped when the interior space of the solid electrolyte tube 1 (the space area formed by the solid electrolyte tube 1 and the outer container 4) is filled with molten sodium. During discharge,
As the molten sodium in the solid electrolyte tube 1 moves to the anode chamber, the inner container 3 is moved by the amount of reaction that moves.
Supplied from. However, when the molten sodium in the inner container 3 runs out, the molten sodium in the space is consumed, and as a result, the space inside the solid electrolyte tube cannot be filled, and the action area decreases, causing the current density in the solid electrolyte tube 1. Therefore, it is necessary to make only the amount of molten sodium in the inner container 3 contribute to the battery reaction. That is, while the temperature is maintained at 350°C and before electricity is applied, molten sodium is moved and supplied from the inner container 3 to the space inside the solid electrolyte tube 1, and only the amount of molten sodium remaining in the inner container 3 is used for the battery reaction. Ru. The amount of decrease in molten sodium at this time corresponds to the space area (referred to as an inert area) formed by the solid electrolyte tube 1 and the outer container 4, and due to this decrease, the sodium utilization rate is extremely poor. It was hot. Therefore, as a method to eliminate this inactive area, it is possible to fill the inactive area with sodium during manufacturing, or to fill the anode active material with sodium polysulfide, so that the amount of sodium in the sodium polysulfide is I have tried replenishing the missing amount with a battery, or even making the battery larger, but in both cases, the productivity, volumetric efficiency, and weight efficiency of the battery only worsen, so there is no definitive solution. It didn't happen.

従来のナトリウム硫黄電池のナトリウム利用率
を悪くしている最も大きな原因は外容器4の介在
によるもので、溶融ナトリウムを内容器3内より
固体電解質管内空間に供給させるに足るガス圧を
得る必要から内容器3とはある程度の間隙をもつ
て外容器は形成されており、かつ外容器の肉厚も
あることから、内容器3内に充填しうるナトリウ
ム量も少なくなり、不活性領域へのナトリウム供
給により、さらに内容器3内に残余する電池反応
に寄与するナトリウム量を少なくしていたことに
ある。また、固体電解質管1内の不活性領域は電
池組立て時にナトリウムが介在しないところ全て
が含まれることにもなる。
The biggest reason why the sodium utilization rate of conventional sodium-sulfur batteries is poor is due to the intervention of the outer container 4, which is due to the need to obtain sufficient gas pressure to supply molten sodium from the inner container 3 to the space inside the solid electrolyte tube. Since the outer container is formed with a certain amount of space between it and the inner container 3, and the outer container has a thick wall, the amount of sodium that can be filled into the inner container 3 is also reduced, and sodium is not allowed to enter the inactive area. The supply further reduces the amount of sodium remaining in the inner container 3 that contributes to the battery reaction. Furthermore, the inactive region within the solid electrolyte tube 1 includes all areas where sodium is not present during battery assembly.

本発明は従来の問題を解決するもので、従来の
外容器をなくし、内容器の内容積を高め、ナトリ
ウム充填量を多くし、固体電解質管内の不活性領
域をできる限り少なくすることでナトリウム利用
率を高めたもので、あわせて固体電解質管底部が
破損した際、固体電解質管の内底部に設けたガス
連通室Bによる加圧効果を失わせてナトリウムの
供給を停止させる機能をもたせたものである。本
発明のナトリウム−硫黄電池の縦断面図を第2図
に示し、特に陰極室内、すなわち固体電解質管1
内構造について本発明を説明する。5′は陰極蓋
6に容接された陰極集電端子で、耐溶融ナトリウ
ム性金属棒又は管である。13は耐溶融ナトリウ
ム性金属からなるナトリウムリザーバーの役目を
なす金属容器(以下容器Aという)で、内部にナ
トリウムが充填されている。14は容器Aの上部
蓋に設けられ、底付近まで延在するナトリウム通
路である。15は容器Aの下部蓋から上部まで延
在するガス連通路である。16は耐溶融ナトリウ
ム性金属からなる底蓋で容器Aの下部蓋とで室を
形成している(以下ガス連通室Bという)さらに
ガス連通室B内には電池作動温度以上でガス発生
する物質、例えば一窒化二鉄、窒化ゲルマニウム
(、)、アジ化タリウム、二窒化タングステ
ン、窒化カドミウム等から選ばれた物質が充填さ
れている。またガス連通路15内部の一部又は全
体は熱軟化性又は熱融解性物質で封口されてい
る。かような構成体は次の如くして製造される。
ナトリウム通路14が溶接された容器Aの上部
蓋、金属容器13、及び、上部開放端を熱融解性
物質としてポリアミド系樹脂、例えばバーサロン
で封口されたガス連通路15が溶接された容器A
の下部蓋をそれぞれ溶接して容器Aを形成する。
次にガス連通室B内にアジ化タリウムを数十〜数
百mg充填した後、底蓋16を溶接してガス連通室
B内を密閉する(なおガス連通室B内はこの時、
真空状態又は不活性ガス雰囲気のどちらであつて
もよい)。このアジ化タリウムの量は放電末でも
ナトリウムを押し出すことができ、充電末でも固
体電解質管を耐えうる内圧と電気化学的にナトリ
ウムが管内に戻りうる内圧であるように考慮する
必要がある。次に上記構成体を150℃迄昇温して、
同温度の溶融ナトリウムをナトリウム通路14の
上部開放端より真空充填した後冷却する。冷却後
の状態は容器A内に固化ナトリウムが充填され、
ガス連通室B内にはアジ化タリウムが充填されて
いる。次に、該構成体のガス連通室Bの底蓋16
を350℃に加熱する。加熱によりアジ化タリウム
は窒素ガスとタリウムに分解し、窒素ガスはガス
連通室B内に充満し加圧状態となる。なお窒素ガ
スはガス連通路15上部開放端が熱融解性物質及
び固化ナトリウムで封口されているため外部にも
れ出ることはない。次に、該構成体を固体電解質
管1内に挿入配設し、陰極蓋を溶接して、固体電
解質管内は真空(又は減圧)密閉される。なお、
常圧下で溶接された後、陰極集電端子より排気し
て真空密閉してもよい。このようにして得られた
ナトリウム−硫黄電池は350℃の作動温度まで昇
温されるとき、容器A内のナトリウムは約100℃
で溶融ナトリウムとなる。このとき、ナトリウム
通路より出ることはない。続いて、ガス連通路1
5を封口していたバーサロンが約140℃〜150℃で
熱軟化し始め、ガス圧に耐え切れない状態になつ
たとき封口が解除され、溶融ナトリウムはナトリ
ウム通路14の下端より上部開放端を通つて固体
電解質管1内空間に供給される。
The present invention solves the conventional problems by eliminating the conventional outer container, increasing the internal volume of the inner container, increasing the sodium filling amount, and minimizing the inert area within the solid electrolyte tube to utilize sodium. It also has a function to stop the supply of sodium by losing the pressurizing effect of the gas communication chamber B provided at the inner bottom of the solid electrolyte tube when the bottom of the solid electrolyte tube is damaged. It is. A longitudinal cross-sectional view of the sodium-sulfur battery of the present invention is shown in FIG.
The present invention will be explained regarding the internal structure. 5' is a cathode current collector terminal which is in contact with the cathode cover 6, and is a metal rod or tube resistant to melting sodium. Reference numeral 13 denotes a metal container (hereinafter referred to as container A) made of a molten sodium-resistant metal and serving as a sodium reservoir, and the inside thereof is filled with sodium. 14 is a sodium passage provided in the upper lid of container A and extending to near the bottom. 15 is a gas communication passage extending from the lower lid of the container A to the upper part. Reference numeral 16 denotes a bottom lid made of molten sodium resistant metal, which forms a chamber with the lower lid of container A (hereinafter referred to as gas communication chamber B). Furthermore, gas communication chamber B contains a substance that generates gas at a temperature higher than the battery operating temperature. , for example, is filled with a material selected from diiron mononitride, germanium nitride (, ), thallium azide, tungsten dinitride, cadmium nitride, etc. Further, a part or the entire inside of the gas communication passage 15 is sealed with a heat softening or heat melting substance. Such a structure is manufactured as follows.
Container A to which the upper lid of the container A is welded with the sodium passage 14, the metal container 13, and the gas communication passage 15 whose upper open end is sealed with a polyamide-based resin, such as Barsalon, using a heat-fusible material.
Container A is formed by welding the lower lids of each.
Next, after filling several tens to hundreds of mg of thallium azide into the gas communication chamber B, the bottom cover 16 is welded to seal the inside of the gas communication chamber B (at this time, the inside of the gas communication chamber B is
(Can be in either vacuum or inert gas atmosphere). It is necessary to consider the amount of thallium azide so that sodium can be pushed out even at the end of discharge, the internal pressure can withstand the solid electrolyte tube even at the end of charge, and the internal pressure can electrochemically return sodium to the inside of the tube. Next, the temperature of the above structure was raised to 150℃,
Molten sodium at the same temperature is vacuum filled from the upper open end of the sodium passageway 14 and then cooled. After cooling, container A is filled with solidified sodium,
The gas communication chamber B is filled with thallium azide. Next, the bottom cover 16 of the gas communication chamber B of the structure
Heat to 350℃. By heating, thallium azide is decomposed into nitrogen gas and thallium, and the nitrogen gas fills the gas communication chamber B, creating a pressurized state. Note that the nitrogen gas does not leak outside because the upper open end of the gas communication path 15 is sealed with a heat-fusible substance and solidified sodium. Next, the structure is inserted into the solid electrolyte tube 1, the cathode cover is welded, and the inside of the solid electrolyte tube is sealed under vacuum (or reduced pressure). In addition,
After welding under normal pressure, it may be evacuated from the cathode current collector terminal and sealed in vacuum. When the sodium-sulfur battery thus obtained is heated to an operating temperature of 350°C, the sodium in container A is approximately 100°C.
becomes molten sodium. At this time, the sodium does not come out from the sodium passage. Next, gas communication path 1
When the bar salon that had sealed the sodium passageway 14 began to heat soften at approximately 140°C to 150°C and could no longer withstand the gas pressure, the sealing was released and the molten sodium flowed from the lower end of the sodium passageway 14 to the upper open end. The solid electrolyte is supplied to the interior space of the solid electrolyte tube 1 through the solid electrolyte tube.

以上が本発明のナトリウム−硫黄電池の構造で
あるが、以下にその効果を記す。外容器4をなく
し、容器Aとすることで不活性領域を少なくしか
つガス連通室Bを容器Aの下部蓋の下方に設け、
かつ内部に電池作動温度以上でガス発生する物質
を充填しておくことにより、所要のガス圧を容易
に得ることができ、また、ガス連通室Bの容積も
できる限り小さく、例えば容器Aの下部蓋とガス
連通室Bの底蓋16を密接した状態でもよいなど
不活性領域を極度に小さくできることから、容器
A内に残余するナトリウム量は多くなり、ナトリ
ウム利用率は向上する。また固体電解質管底が破
損し、NaとSの直接反応熱で底蓋16が破壊さ
れると、ガス連通室Bの加圧効果がなくなり、ナ
トリウム通路14からのNa供給は停止され、直
接反応するNa量は固体電解質管1と容器Aとで
形成される間隙に限られ、該間隙容積を小さく
(又は充填物を充填)すると直接反応量は制限さ
れる。
The structure of the sodium-sulfur battery of the present invention has been described above, and its effects will be described below. By eliminating the outer container 4 and using the container A, the inert area is reduced, and the gas communication chamber B is provided below the lower lid of the container A.
In addition, by filling the interior with a substance that generates gas at a temperature higher than the battery operating temperature, the required gas pressure can be easily obtained, and the volume of the gas communication chamber B can be kept as small as possible, for example, in the lower part of the container A. Since the inert area can be made extremely small, such as by allowing the lid and the bottom lid 16 of the gas communication chamber B to be in close contact with each other, the amount of sodium remaining in the container A increases and the sodium utilization rate improves. Furthermore, if the solid electrolyte tube bottom is damaged and the bottom cover 16 is destroyed by the heat of the direct reaction between Na and S, the pressurizing effect of the gas communication chamber B disappears, Na supply from the sodium passage 14 is stopped, and the direct reaction The amount of Na to be reacted is limited to the gap formed between the solid electrolyte tube 1 and the container A, and if the gap volume is made small (or filled with a filler), the amount of direct reaction is limited.

以下さらに本発明の効果を詳細に説明するため
実施例を記す。
Examples will be described below to further explain the effects of the present invention in detail.

実施例 容器Aとして肉厚0.2mmのステンレスを第2図
の形状に成型し、外径3mm、内径1mmのステンレ
ス管からなるナトリウム通路14及びガス連通路
15を溶接し、ガス連通路15の下方開放端を合
成樹脂で封口後、ガス連通室B内に一窒化二鉄を
約100mg充填し0.2mm厚の鉄板製底蓋16を真空状
態下で溶接した。このときの構成体の高さは215
mm(容器Aの高さ210mm、ガス連通室Bの高さ5
mmmm)であつた。容器A内の内容積は約128cm3
固体電解質管1内を含む陰極室内全容積は162cm3
不活性領域容積は10cm3である。150℃でナトリウ
ムを充填した際の充填量は約117gであつた。冷
却後、ガス連通室B、特に底蓋16を450℃に急
加熱したときガス連通室B内に約4.6cm3の窒素ガ
スが発生し、室内のガス圧は約1.3気圧となつた。
この構成体を固体電解質管内に配設し陰極室内を
真空密閉し350℃まで昇温したところ、合成樹脂
が軟化した時点で容器A内より、ナトリウムがガ
ス連通室内のガス圧により固体電解質管1内に供
給され、電池開路電圧約2.1Vを示した。このと
き、容器A内の溶融ナトリウムは、不活性領域に
約8.7g;(10cm3×0.87g/cm3)供給されるため電
池反応に寄与する溶融ナトリウム量は約108・3
g;(117g−8.7g)となり、ナトリウムの利用
率は108.3/117より約92.6%となつた。一方、従来電 池の場合は外容器4のため内容器3の内容積が減
少し、ナトリウムを充填しうる容積は約102cm3で、
外容器4の外面と固体電解質とで形成されるいわ
ゆる不活性領域の容積は約11cm3となり、150℃に
て充填されるナトリウム量は約93.3gで350℃で
不活性領域に供給される溶融ナトリウム量は約
9.6gとなり電池反応に寄与する溶融ナトリウム
量は約83.7g;(93.3g−9.6g)となつた。その
ときのナトリウム利用率は83.7/93.3より約89.7%で あつた。以上のことからナトリウム利用率は本発
明では従来に比べ約2.9%向上させることができ
た。さらに本発明においては同一形状の固体電解
質管内に電池反応に寄与できる溶融ナトリウム量
を約108.3gとできたのに対し、従来では約83.7
gであることから電池容量を29%高めることがで
きた。
Example A container A made of stainless steel with a wall thickness of 0.2 mm is molded into the shape shown in Fig. 2, and a sodium passage 14 and a gas communication passage 15 made of stainless steel pipes with an outer diameter of 3 mm and an inner diameter of 1 mm are welded, and the lower part of the gas communication passage 15 is After the open end was sealed with a synthetic resin, about 100 mg of diiron mononitride was filled into the gas communication chamber B, and a 0.2 mm thick iron plate bottom cover 16 was welded under vacuum conditions. The height of the construct at this time is 215
mm (height of container A 210 mm, height of gas communication chamber B 5
mmmm). The internal volume of container A is approximately 128cm 3 ,
The total volume of the cathode chamber including the inside of solid electrolyte tube 1 is 162 cm 3 ,
The inactive area volume is 10 cm3 . The amount of sodium charged at 150°C was approximately 117 g. After cooling, when the gas communication chamber B, especially the bottom cover 16, was rapidly heated to 450° C., about 4.6 cm 3 of nitrogen gas was generated in the gas communication chamber B, and the gas pressure in the chamber became about 1.3 atmospheres.
This structure was placed in a solid electrolyte tube, the cathode chamber was vacuum-sealed, and the temperature was raised to 350°C. When the synthetic resin softened, sodium was released from the container A into the solid electrolyte tube by the gas pressure in the gas communication chamber. The battery showed an open circuit voltage of approximately 2.1V. At this time, approximately 8.7 g of molten sodium in container A is supplied to the inactive area (10 cm 3 × 0.87 g/cm 3 ), so the amount of molten sodium that contributes to the battery reaction is approximately 108.3
g; (117 g - 8.7 g), and the sodium utilization rate was approximately 92.6% from 108.3/117. On the other hand, in the case of conventional batteries, the inner volume of the inner container 3 is reduced due to the outer container 4, and the volume that can be filled with sodium is approximately 102 cm3 .
The volume of the so-called inert region formed by the outer surface of the outer container 4 and the solid electrolyte is approximately 11 cm 3 , and the amount of sodium filled at 150°C is approximately 93.3 g, which is molten sodium supplied to the inert region at 350°C. The amount of sodium is approx.
The amount of molten sodium contributing to the battery reaction was approximately 83.7 g (93.3 g - 9.6 g). At that time, the sodium utilization rate was about 89.7%, which was 83.7/93.3. From the above, the present invention was able to improve the sodium utilization rate by about 2.9% compared to the conventional method. Furthermore, in the present invention, the amount of molten sodium that can contribute to the battery reaction within the solid electrolyte tube of the same shape is approximately 108.3g, whereas in the conventional method, the amount of molten sodium that can contribute to the battery reaction is approximately 83.7g.
g, it was possible to increase battery capacity by 29%.

さらに、本電池を350℃で30Vの過電圧を充電
方向に印加したところ、数分後電池電圧は数mV
に低下し、電池下部温度が650℃〜700℃まで上昇
したが約60分後350℃まで低下した。本電池を室
温にて解体した結果、固体電解質管1底部に無数
のクラツクが発生していた。該クラツク箇所の外
側、すなわち陽極電導材には黒紫色の活物質が含
浸固化されており、容易に除去することはできな
かつた。また該クラツク箇所の内側、すなわち陰
極室内は、間隙、特に固体電解質管底部付近には
Naはほとんどなく、かつ底蓋16には穴があい
ていた。なお、容器A内にはNaが充満された状
態であつた。
Furthermore, when an overvoltage of 30V was applied to this battery at 350℃ in the charging direction, the battery voltage decreased to several mV after a few minutes.
The temperature at the bottom of the battery rose to 650°C to 700°C, but after about 60 minutes it dropped to 350°C. When this battery was disassembled at room temperature, numerous cracks were found at the bottom of the solid electrolyte tube 1. The outside of the cracked area, that is, the anode conductive material, was impregnated with a black-purple active material and could not be easily removed. Also, inside the cracked area, that is, inside the cathode chamber, there is a gap, especially near the bottom of the solid electrolyte tube.
There was almost no Na content, and there was a hole in the bottom cover 16. Note that container A was filled with Na.

参考例 第3図に示す容器Aとガス連通室を作成した。
ナトリウム通路14は断面逆U字状で容器Aの下
部蓋に溶接され開口しており、かつ端部は下部蓋
内面付近で開口している。ガス連通室はガス連通
路15の下端部を密閉して形成したものである。
これは、容器Aの下部蓋にナトリウム通路14、
及びガス連通路15を共に溶接した後、容器Aを
形成し、150℃のアルゴン雰囲気下で同温度のの
溶融ナトリウムを、容器Aを倒立させてナトリウ
ム通路14又はガス連通路15より充填する。こ
の際常圧下で充填することができる。冷却後、ガ
ス連通路15内にアジ化タリウムを約0.13g充填し
て、ガス連通路15を溶接密閉してガス連通室と
する。次に容器Aを倒立させた状態でガス連通室
を370℃まで急速加熱させ、室内に窒素ガスを充
満させる。得られた構成体を固体電解質管内に配
設し、陰極室を真空密閉する。このようにして得
られた構成体の場合、容器A内ナトリウム充填量
は120g、不活性領域容積は9.6cm3となり、電池に
寄与するナトリウム量は111.2gとなりナトリウ
ム利用率は約93%となつた。
Reference Example A container A and a gas communication chamber shown in FIG. 3 were created.
The sodium passage 14 has an inverted U-shaped cross section, is welded to the lower lid of the container A, and has an open end near the inner surface of the lower lid. The gas communication chamber is formed by sealing the lower end of the gas communication passage 15.
This includes a sodium passage 14 in the lower lid of container A;
After welding and the gas communication passage 15 together, a container A is formed, and molten sodium at the same temperature is filled in the sodium passage 14 or the gas communication passage 15 with the container A turned upside down under an argon atmosphere of 150°C. At this time, the filling can be carried out under normal pressure. After cooling, about 0.13 g of thallium azide is filled into the gas communication passage 15, and the gas communication passage 15 is sealed by welding to form a gas communication chamber. Next, with container A inverted, the gas communication chamber is rapidly heated to 370° C., and the chamber is filled with nitrogen gas. The obtained structure is placed in a solid electrolyte tube, and the cathode chamber is vacuum-sealed. In the case of the structure obtained in this way, the amount of sodium filled in container A is 120 g, the volume of the inactive area is 9.6 cm3 , the amount of sodium contributing to the battery is 111.2 g, and the sodium utilization rate is approximately 93%. Ta.

以上本発明はナトリウム利用率を大巾に改善す
ることができたことから電池性能は向上した。さ
らにガス発生物質を用いたことによりガス連通室
Bの容積を極めて小さくすることができた。なお
本発明においては固体電解質管形状、容器A及び
ガス連通室形状、及びガス発生物質充填量、封口
物質量等は実施例に示したものに何ら限定するも
のではない。
As described above, the present invention has been able to greatly improve the sodium utilization rate, resulting in improved battery performance. Furthermore, by using a gas generating substance, the volume of the gas communication chamber B could be made extremely small. In the present invention, the shape of the solid electrolyte tube, the shape of the container A and the gas communication chamber, the amount of gas generating material filled, the amount of sealing material, etc. are not limited to those shown in the examples.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のナトリウム−硫黄電池の縦断面
図、第2図は本発明のナトリウム−硫黄電池の縦
断面図、第3図は参考例としての容器A及びガス
連通室構造である。 1……固体電解質管、3……内容器、4……外
容器、13……容器A、14……ナトリウム通
路、15……ガス連通路、B……ガス連通室。
FIG. 1 is a vertical sectional view of a conventional sodium-sulfur battery, FIG. 2 is a vertical sectional view of a sodium-sulfur battery of the present invention, and FIG. 3 is a container A and a gas communication chamber structure as a reference example. DESCRIPTION OF SYMBOLS 1... Solid electrolyte tube, 3... Inner container, 4... Outer container, 13... Container A, 14... Sodium passage, 15... Gas communication path, B... Gas communication chamber.

Claims (1)

【特許請求の範囲】 1 上部蓋と下部蓋とを有する円筒形のステンレ
ス製金属容器(以下容器Aという。)の上部蓋に、
該容器Aの内部と外部とを連通させるナトリウム
通路が溶接され、かつ、前記下部蓋の下方と鉄製
底蓋の上方との間でガス連通室Bを形成し、この
ガス連通室Bの内部と前記容器Aの内部とを連通
させるガス連通管が前記下部蓋に溶接されてなる
構成体を、固体電解質管内に内挿するとともに、
この固体電解質管を真空又は減圧密閉し、陽極活
物質が含浸された陽極電導材を円筒状に収納した
電池容器の中央部に挿入して密閉し、前記ガス連
通室B内に充填され、電池作動温度以上の温度で
ガス発生する物質をガス化せしめ、このガス圧に
より前記容器A内に充填された陽極活物質として
のナトリウムを容器Aと固体電解質管との間隙に
供給してなるナトリウム−硫黄電池。 2 前記ガス発生物質が一窒化二鉄、窒化ゲルマ
ニウム(、)、アジ化タリウム、二窒化タン
グステン、窒化カドミウムから選択された物質で
ある特許請求の範囲第1項記載のナトリウム−硫
黄電池。 3 上部蓋と下部蓋とを有する円筒形のステンレ
ス製金属容器(以下容器Aという。)の上部蓋に、
該容器Aの内部と外部とを連通させるナトリウム
通路が溶接され、かつ、前記下部蓋の下方と鉄製
底蓋の上方との間で形成したガス連通室B内に、
電池作動温度以上の温度でガス発生する物質を充
填し、不活性ガス雰囲気又は真空若しくは減圧下
において前記ガス連通室Bを密閉するとともに、
前記下部蓋に溶接され前記ガス連通室Bの内部と
前記容器Aの内部とを連通するガス連通管により
形成したガス連通路を熱軟化又は熱融解性物質で
封口した後、前記ガス発生物質のガス化温度より
低い温度下においてナトリウムを前記容器A内に
充填して固化させた後、ガス連通室Bをガス化温
度に加熱してガス発生物質をガス化させてなる構
成体を、固体電解質管内に内挿するとともに、こ
の固体電解質管を真空又は減圧密閉した後、陽極
活物質が含浸された陽極電導材を円筒状に収納し
た電池容器の中央部に挿入して密閉するナトリウ
ム−硫黄電池の製造法。 4 前記ガス発生物質が一窒化二鉄、窒化ゲルマ
ニウム(、)、アジ化タリウム、二窒化タン
グステン、窒化カドミウムから選択された物質で
ある特許請求の範囲第3項記載のナトリウム−硫
黄電池の製造法。
[Claims] 1. An upper lid of a cylindrical stainless steel metal container (hereinafter referred to as container A) having an upper lid and a lower lid,
A sodium passage that communicates the inside and outside of the container A is welded, and a gas communication chamber B is formed between the lower part of the lower lid and the upper part of the iron bottom lid, and the inside of this gas communication chamber B and Inserting a structure in which a gas communication pipe communicating with the inside of the container A is welded to the lower lid into the solid electrolyte pipe,
This solid electrolyte tube is sealed in a vacuum or under reduced pressure, and the anode conductive material impregnated with the anode active material is inserted into the center of a battery container housing a cylindrical shape and sealed, and the gas communication chamber B is filled. Sodium produced by gasifying a substance that generates gas at a temperature higher than the operating temperature, and using the gas pressure to supply the sodium filled in the container A as an anode active material to the gap between the container A and the solid electrolyte tube. sulfur battery. 2. The sodium-sulfur battery according to claim 1, wherein the gas generating material is a material selected from diiron mononitride, germanium nitride, thallium azide, tungsten dinitride, and cadmium nitride. 3. The upper lid of a cylindrical stainless steel metal container (hereinafter referred to as container A) having an upper lid and a lower lid,
A sodium passage connecting the inside and outside of the container A is welded into a gas communication chamber B formed between the lower part of the lower lid and the upper part of the iron bottom lid,
Filling the gas communication chamber B with a substance that generates gas at a temperature higher than the battery operating temperature and sealing the gas communication chamber B in an inert gas atmosphere or under vacuum or reduced pressure;
After sealing the gas communication passage formed by the gas communication pipe welded to the lower lid and communicating the inside of the gas communication chamber B and the inside of the container A with a heat softening or heat melting substance, the gas generating substance is sealed. After filling the container A with sodium and solidifying it at a temperature lower than the gasification temperature, the gas communication chamber B is heated to the gasification temperature to gasify the gas generating substance. A sodium-sulfur battery that is inserted into a tube and sealed under vacuum or reduced pressure, and then inserted into the center of a battery container containing a cylindrical anode conductive material impregnated with an anode active material and sealed. manufacturing method. 4. The method for manufacturing a sodium-sulfur battery according to claim 3, wherein the gas generating substance is a substance selected from diiron mononitride, germanium nitride, thallium azide, tungsten dinitride, and cadmium nitride. .
JP56139698A 1981-09-07 1981-09-07 Sodium-sulfur battery Granted JPS5842183A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56139698A JPS5842183A (en) 1981-09-07 1981-09-07 Sodium-sulfur battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56139698A JPS5842183A (en) 1981-09-07 1981-09-07 Sodium-sulfur battery

Publications (2)

Publication Number Publication Date
JPS5842183A JPS5842183A (en) 1983-03-11
JPS6351353B2 true JPS6351353B2 (en) 1988-10-13

Family

ID=15251331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56139698A Granted JPS5842183A (en) 1981-09-07 1981-09-07 Sodium-sulfur battery

Country Status (1)

Country Link
JP (1) JPS5842183A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6012680A (en) * 1983-07-01 1985-01-23 Yuasa Battery Co Ltd Sodium-sulfur battery

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5248020A (en) * 1975-10-10 1977-04-16 British Railways Board Alkali metallsulfur battery and method of making same
JPS5412417A (en) * 1977-05-18 1979-01-30 Chloride Silent Power Ltd Method of manufacturing battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5248020A (en) * 1975-10-10 1977-04-16 British Railways Board Alkali metallsulfur battery and method of making same
JPS5412417A (en) * 1977-05-18 1979-01-30 Chloride Silent Power Ltd Method of manufacturing battery

Also Published As

Publication number Publication date
JPS5842183A (en) 1983-03-11

Similar Documents

Publication Publication Date Title
JPS61161676A (en) Metal-gas battery for lightweight dipole
US4310607A (en) Battery cell construction
US4510217A (en) Sodium-sulfur storage battery
CN209843832U (en) Liquid metal battery
US3960596A (en) Battery casing and hermetically sealed sodium-sulfur battery
US4084040A (en) Cell casing and a hermetically sealed sodium-sulfur cell
US4104448A (en) Alkali metal-sulphur cells
JP2017073250A (en) Sodium-sulfur battery
JPS5825086A (en) Electrochemical storage battery
JPS6351353B2 (en)
EP0389557B1 (en) Improved alkali metal cell
JPH0831390A (en) Sealed storage battery and its manufacture
JPS6012680A (en) Sodium-sulfur battery
AU2020415178B2 (en) Electrochemical sodium metal halide battery, and method for producing same
US4387505A (en) Method of forming a battery cell
US5197995A (en) Method of making an alkali metal cell
JPS5973863A (en) Sodium-sulfur battery
KR100294469B1 (en) Turned-over type sodium/sulfur battery or sodium/nickel chloride battery
JPH1064581A (en) Sodium-sulfur battery
JP2644256B2 (en) Sodium-sulfur battery
RU2106726C1 (en) Metal-gas storage cell and its assembly process
JPS59230264A (en) Sodium-sulphur battery
JP2708998B2 (en) Sodium-sulfur battery
JPS6039774A (en) Sodium-sulfur battery
JP2815312B2 (en) Gas filling method in sodium-sulfur battery