JPS6351282B2 - - Google Patents

Info

Publication number
JPS6351282B2
JPS6351282B2 JP56174151A JP17415181A JPS6351282B2 JP S6351282 B2 JPS6351282 B2 JP S6351282B2 JP 56174151 A JP56174151 A JP 56174151A JP 17415181 A JP17415181 A JP 17415181A JP S6351282 B2 JPS6351282 B2 JP S6351282B2
Authority
JP
Japan
Prior art keywords
teaching
points
playback
speed
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56174151A
Other languages
Japanese (ja)
Other versions
JPS5875215A (en
Inventor
Makoto Oosawa
Kazuaki Tatsumi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP17415181A priority Critical patent/JPS5875215A/en
Publication of JPS5875215A publication Critical patent/JPS5875215A/en
Publication of JPS6351282B2 publication Critical patent/JPS6351282B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/42Recording and playback systems, i.e. in which the programme is recorded from a cycle of operations, e.g. the cycle of operations being manually controlled, after which this record is played back on the same machine

Description

【発明の詳細な説明】 この発明は工業用ロボツトの制御方法に関し、
詳しくはマニユアル操作のCPテイーチング、CP
プレイバツク制御を行うテイーチング・プレイバ
ツクロボツトの運動制御方法に関する。
[Detailed Description of the Invention] The present invention relates to a method for controlling an industrial robot,
For details, see manual operation CP teaching, CP
The present invention relates to a motion control method for a teaching playback robot that performs playback control.

従来例として、特公昭55−37768号公報を挙げ
る。この先行技術の要旨は、「実作業に先立つて
ロボツトに作動手順を予め記憶せしめるテイーチ
ング動作において、アーム先部に着脱自在に取付
けた変位パルス発生器の附設ローラが軌跡に沿つ
て一定距離を回転移動する度にパルスを発生させ
て、一定距離毎の位置情報を記憶せしめると共
に、実作業を行なうプレイバツク動作に於て、前
記変位パルス発生器と実作業機とを取替えたう
え、ロボツトに一定距離毎の記憶位置情報をテイ
ーチング時と無関係に可変自在に設定する一定時
間間隔で目標値として指令することにより位置制
御と共に速度制御を行なわしめるようにしたこと
を特徴とする工業用ロボツトの速度制御方法。」
である。
As a conventional example, Japanese Patent Publication No. 55-37768 is mentioned. The gist of this prior art is that ``During a teaching operation in which the robot memorizes operating procedures in advance prior to actual work, a roller attached to a displacement pulse generator detachably attached to the tip of the arm rotates a fixed distance along a trajectory. A pulse is generated each time the robot moves, and the position information is memorized at each fixed distance.In the playback operation for performing actual work, the displacement pulse generator and the actual work machine are replaced, and the robot is A speed control method for an industrial robot, characterized in that speed control is performed in addition to position control by commanding the stored position information for each time as a target value at fixed time intervals, which is variably set regardless of teaching time. .”
It is.

しかしながら、この先行技術における必須の構
成要件たる変位パルス発生器(以下、「テイーチ
ングローラ」という)は高価であり、コストアツ
プの要因となつていた。
However, the displacement pulse generator (hereinafter referred to as "teaching roller"), which is an essential component in this prior art, is expensive and has been a factor in increasing costs.

それゆえに、この発明の主たる目的は、テイー
チングローラを必要としない運動制御方法を提供
すること、特にテイーチング時のサンプリング方
法を改良することにある。
Therefore, the main object of the present invention is to provide a motion control method that does not require teaching rollers, and particularly to improve a sampling method during teaching.

上記目的を達成するため、この発明の要旨とす
るところは、マニユアル操作でCPテイーチング
を行いCPプレイバツク制御を行なうテイーチン
グプレイバツクロボツトを制御する方法であつ
て、テイーチング時は一定時間Ts毎にサンプリ
ングすることによつて位置データを取り込み、演
算処理を施した後で主記憶手段に格納する一方、
プレイバツクに際しては上記CPテイーチングで
得られた2点Pi、Pi+1の位置データから2点間の
距離を演算するとともに演算で求められた2点間
の距離を予め定めた一定速度で移動するに要する
時間Tiを求めておき、上記2点間を一定周期Tc
で直線補間するに際して必要な位置決め点の数n
をTi/Tcの値により決定し、決定された点数n
で決まる一定距離ごとに補間データを求めるよう
にし、この補間データを目標値として位置決め制
御を行うことにより、プレイバツク時の速度を上
記一定速度に制御するようにしたことを特徴とす
る工業用ロボツトの制御方法である。
In order to achieve the above object, the gist of the present invention is to provide a method for controlling a teaching playback robot that performs CP teaching and CP playback control by manual operation, in which sampling is performed at fixed time intervals Ts during teaching. In some cases, the position data is captured, subjected to arithmetic processing, and then stored in the main storage means.
During playback, the distance between the two points is calculated from the position data of the two points Pi and Pi +1 obtained in the CP teaching above, and the distance between the two points determined by the calculation is moved at a predetermined constant speed. Calculate the required time Ti, and set the period between the above two points Tc
The number of positioning points required for linear interpolation n
is determined by the value of Ti/Tc, and the determined score n
The industrial robot is characterized in that interpolated data is obtained every fixed distance determined by the above-mentioned fixed distance, and positioning control is performed using the interpolated data as a target value, thereby controlling the speed during playback to the above-mentioned fixed speed. This is a control method.

以下、この発明を実施例に基づいて説明する。 Hereinafter, the present invention will be explained based on examples.

一実施例を適用するロボツトは、多関節構造の
溶接用ロボツト(自由度5)で、制御手段に演算
機能部を含み、制御手段の主たる機能はコンピユ
ータ好ましくはマイクロコンピユータが実行する
ように構成されている。また、テイーチング操作
は直接人が行うので、人力で各軸を軽く動かせる
ように重力バランス装置を具備していることを前
提とする。
The robot to which this embodiment is applied is a welding robot with a multi-joint structure (5 degrees of freedom), and the control means includes an arithmetic function section, and the main functions of the control means are configured to be executed by a computer, preferably a microcomputer. ing. Furthermore, since the teaching operation is performed directly by a person, it is assumed that a gravity balance device is provided so that each axis can be easily moved by human power.

テイーチング時には、制御装置を能動化し、ロ
ボツトを作動状態にして、操作者は溶接トーチの
近傍に設けた把持部を持ち、予め設定した溶接軌
跡に沿つてアームを動かす。制御装置は一定時間
Ts毎にサンプリング指令を発し、各軸の位置検
出器からロボツトアームの各関節角データ(θ1
θ5)を取り込む。この関節角データはいつたんバ
ツフアメモリに格納され、適時読み出され、
XYZ座標系の値に変換する演算処理を施した後、
主記憶装置に格納される。なお、座標変換はマイ
クロコンピユータのCPUが予めプログラムした
式に基づいて行なう。これらの式はすでによく知
られたものである。また、前記サンプリング周期
Tsは、例えば40msである。この場合、始点P1
から終点PnまでTs毎にサンプリングされるだけ
であるから点Piと次の点Pi+1(i=1、2、…、
n−1)間の距離liは一定の距離ではない。即
ち、テイーチング時の速度は一定速度ではない。
しかし乍ら、プレイバツク時には良好な溶接部を
得るために溶接速度は一定に制御されねばならな
い。
During teaching, the control device is activated, the robot is put into operation, and the operator holds a grip provided near the welding torch and moves the arm along a preset welding trajectory. The control device is for a certain period of time
A sampling command is issued every Ts, and each joint angle data of the robot arm (θ 1 ~
θ 5 ). This joint angle data is stored in the buffer memory and read out at the appropriate time.
After performing calculation processing to convert to values in the XYZ coordinate system,
Stored in main memory. Note that the coordinate transformation is performed based on a formula programmed in advance by the CPU of the microcomputer. These formulas are already well known. In addition, the sampling period
T s is, for example, 40 ms. In this case, starting point P 1
Since it is only sampled every Ts from to the end point Pn, the point Pi and the next point Pi +1 (i = 1, 2, ...,
The distance li between n-1) is not a constant distance. That is, the speed during teaching is not constant.
However, during playback, the welding speed must be controlled constant in order to obtain a good weld.

プレイバツク時、制御装置は位置検出器からの
現在位置データと、予め記憶してある位置データ
との差に基づいてフイートバツク制御する。今、
2点間Pi、Pi+1における制御を例として述べる。
During playback, the control device performs feedback control based on the difference between the current position data from the position detector and previously stored position data. now,
The control between two points Pi and Pi +1 will be described as an example.

Pi(xi、yi、zi)が現在位置であり、Pi+1(xi+1
yi+1、zi+1)は次の目標位置である。PiからPi+1
溶接作業を進める前に、まずPiとPi+1の位置デー
タが主記憶装置から読み出され、その間の距離li
が次式のとおりに計算される。
P i (x i , y i , z i ) is the current position, P i+1 (x i+1 ,
y i+1 , z i+1 ) is the next target position. Before proceeding with the welding operation from Pi to P i+1 , the position data of Pi and P i+1 are first read from the main memory, and the distance li between them is
is calculated as follows:

li=√(i+1i2+(i+1i2+(i+1
i2 PiとPi+1間におけるトーチ移動速度Vi(一定)
は溶接速度又はエアーカツト速度として予め設定
される。この2つのパラメータより、現在位置Pi
より次の目標位置Pi+1まで達するのに必要な時間
Tiは、Ti=li/Viとして求められる。この時間Ti
は各テイーチングポイント毎に計算される。
l i =√( i+1i ) 2 + ( i+1i ) 2 + ( i+1
i ) 2 Torch movement speed Vi (constant) between Pi and P i+1
is preset as the welding speed or air cut speed. From these two parameters, the current position Pi
Time required to reach the next target position P i+1
T i is determined as Ti=li/Vi. This time T i
is calculated for each teaching point.

一方、プレイバツク時にはプレイバツク制御周
期Tc(例えば20ms)毎に位置決め制御を行う。
このため、移動前に2点Pi、Pi+1間の補間演算を
行なう。直線補間である。これは、正確な位置決
め精度(たとえば±0.2mm)と定速度の精度を確
保するためである。理由は次のとおりである。す
なわち、実際上はテイーチング速度が溶接速度よ
りも大きくなるので、前記した時間Tiが大きくな
り、位置決め精度に悪い影響を及ぼす。例えば、
テイーチング速度が30m/min=0.5m/s、サ
ンプリング周期が40msでテイーチングをする
と、li=500mm×40/1000=20mmとなつて、これ
を速度60cm/min=10mm/sで溶接するとすれ
ば、Ti=20/10=2sであり、Ti毎にプレイバツク
制御すれば正確な位置精度(±0.2mm)を再現す
るのに困難となるからである。
On the other hand, during playback, positioning control is performed every playback control period Tc (for example, 20 ms).
Therefore, interpolation calculation between the two points P i and P i+1 is performed before movement. This is linear interpolation. This is to ensure accurate positioning accuracy (for example, ±0.2 mm) and constant speed accuracy. The reason is as follows. That is, since the teaching speed is actually higher than the welding speed, the above-mentioned time T i increases, which adversely affects the positioning accuracy. for example,
When teaching at a teaching speed of 30 m/min = 0.5 m/s and a sampling period of 40 ms, li = 500 mm x 40/1000 = 20 mm, and if this is welded at a speed of 60 cm/min = 10 mm/s, This is because T i =20/10=2s, and if playback control is performed every T i , it will be difficult to reproduce accurate positional accuracy (±0.2 mm).

プレイバツク制御周期Tc毎に位置決め制御を
行なうようにすると、時間Tiを求めた後、Ti
Tc=nの演算を行なつてn(正の整数)を求め
る。例えば前述の例ではn=2/0.02=100とな
る。次に、座標Pi(xi、yi、zi)、Pi+1(xi+1、yi+1
zi+1)を均等にn分割する直線補間の演算を実行
する。この演算結果は、逆座標変換(XYZ系→
関節角θ系に変換)した後、すべての補間データ
をバツフアメモリに記憶させる。次に、プレイバ
ツク制御周期Tc毎にバツフアメモリから1つづ
つ目標データを取り出し、位置決め制御をしなが
ら一定速度Viで溶接作業を進めてゆく。
If positioning control is performed every playback control period T c , after determining the time T i , T i /
Perform the operation T c =n to find n (positive integer). For example, in the above example, n=2/0.02=100. Next, the coordinates P i (x i , y i , z i ), P i+1 (x i+1 , y i+1 ,
A linear interpolation operation is performed to equally divide z i+1 ) into n parts. The result of this calculation is the inverse coordinate transformation (XYZ system →
After converting to the joint angle θ system), all interpolated data is stored in buffer memory. Next, target data is retrieved one by one from the buffer memory every playback control period Tc , and the welding work is proceeded at a constant speed Vi while controlling the positioning.

以上の実施例をまとめると、テイーチング時は
定時間サンプリングし、プレイバツク時は一定の
制御周期をもつて再生するが、位置決め精度及び
定速度の精度を確保するために、2点間のプレイ
バツクに入る前に2点間距離liと、予め与える溶
接速度Viとにより2点間の移動時間Tiを求め、こ
のTiとプレイバツク制御周期Tcとから2点間の
補間数nを決め、補間演算を行なつた後、補間デ
ータを目標データとして現実に再生動作を行なう
ようにするものである。
To summarize the above embodiments, sampling is performed for a fixed time during teaching, and reproduction is performed at a fixed control cycle during playback, but in order to ensure positioning accuracy and constant speed accuracy, playback is performed between two points. The moving time T i between the two points is determined from the distance li between the two points and the welding speed V i given in advance, and the number n of interpolations between the two points is determined from this T i and the playback control period T c , and the interpolation is performed. After performing the calculation, the interpolated data is used as target data to actually perform the reproduction operation.

以上のように、この発明によれば、テイーチン
グ時に制御装置からの指令に基づき定時間サンプ
リングを行なうようにしたので、従来のように定
距離サンプリングに必須であつたテイーチングロ
ーラは不要となる効果があり、コストダウンを達
成できる。
As described above, according to the present invention, fixed-time sampling is performed based on commands from the control device during teaching, which has the effect of eliminating the need for teaching rollers, which were indispensable for fixed-distance sampling as in the past. Yes, it is possible to achieve cost reduction.

また、テイーチング時において前記テイーチン
グローラでは物理的な制約から充分に教示できな
いコーナ部等のテイーチングが可能となる利点も
ある。
Another advantage is that during teaching, it is possible to teach corners, etc., which cannot be taught sufficiently with the teaching roller due to physical limitations.

さらに、CP方式はテイーチング時、溶接部を
目で確認しながら教示をおこなうため、テイーチ
ングに失敗するケースは少なく再教示のために費
やすロスを少なくできる等、CPテイーチングの
有利さをそのまま生かせる利点もある。
Furthermore, since the CP method performs teaching while visually checking the welded part, there are fewer cases of teaching failures, and the loss of time spent on re-teaching can be reduced, which has the advantage of allowing the advantages of CP teaching to be utilized as is. be.

Claims (1)

【特許請求の範囲】[Claims] 1 マニユアル操作でCPテイーチングを行いCP
プレイバツク制御を行なうテイーチングプレイバ
ツクロボツトを制御する方法であつて、テイーチ
ング時は一定時間Ts毎にサンプリングすること
によつて位置データを取り込み、演算処理を施し
た後で主記憶手段に格納する一方、プレイバツク
に際しては上記CPテイーチングで得られた2点
Pi,Pi+1の位置データから2点間の距離を演算す
るとともに演算で求められた2点間の距離を予め
定めた一定速度で移動するに要する時間Tiを求
めておき、上記2点間を一定周期Tcで直線補間
するに際して必要な位置決め点の数nをTi/Tc
の値により決定し、決定された点数nで決まる一
定距離ごとに補間データを求めるようにし、この
補間データを目標値として位置決め制御を行うこ
とにより、プレイバツク時の速度を上記一定速度
に制御するようにしたことを特徴とする工業用ロ
ボツトの制御方法。
1 Perform CP teaching using manual operation
A method of controlling a teaching playback robot that performs playback control, in which position data is captured by sampling at fixed time intervals Ts during teaching, and is stored in a main memory after being subjected to arithmetic processing. When playing back, use the two points obtained from the CP teaching above.
Calculate the distance between two points from the position data of Pi, Pi +1 , and calculate the time Ti required to move the calculated distance between the two points at a predetermined constant speed. The number n of positioning points required for linear interpolation with a constant period Tc is Ti/Tc
By determining the interpolated data at every fixed distance determined by the determined number of points n, and performing positioning control using this interpolated data as a target value, the speed during playback is controlled to the above-mentioned constant speed. A method for controlling an industrial robot, characterized in that:
JP17415181A 1981-10-29 1981-10-29 Controlling method of industrial robot Granted JPS5875215A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17415181A JPS5875215A (en) 1981-10-29 1981-10-29 Controlling method of industrial robot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17415181A JPS5875215A (en) 1981-10-29 1981-10-29 Controlling method of industrial robot

Publications (2)

Publication Number Publication Date
JPS5875215A JPS5875215A (en) 1983-05-06
JPS6351282B2 true JPS6351282B2 (en) 1988-10-13

Family

ID=15973564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17415181A Granted JPS5875215A (en) 1981-10-29 1981-10-29 Controlling method of industrial robot

Country Status (1)

Country Link
JP (1) JPS5875215A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0545570U (en) * 1991-11-19 1993-06-18 四国電力株式会社 measuring device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6020209A (en) * 1983-07-14 1985-02-01 Matsushita Electric Ind Co Ltd Method for interpolating control of robot
JPS6252610A (en) * 1985-09-02 1987-03-07 Mitsubishi Electric Corp Method for controlling speed of joint type robot
JPS62152008A (en) * 1985-12-25 1987-07-07 Fanuc Ltd Feed speed control method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5452285A (en) * 1977-10-03 1979-04-24 Kobe Steel Ltd Program controlling apparatus
JPS5574605A (en) * 1978-11-29 1980-06-05 Hitachi Ltd Operation control system for industrial robbot or the like

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5452285A (en) * 1977-10-03 1979-04-24 Kobe Steel Ltd Program controlling apparatus
JPS5574605A (en) * 1978-11-29 1980-06-05 Hitachi Ltd Operation control system for industrial robbot or the like

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0545570U (en) * 1991-11-19 1993-06-18 四国電力株式会社 measuring device

Also Published As

Publication number Publication date
JPS5875215A (en) 1983-05-06

Similar Documents

Publication Publication Date Title
JPS60193016A (en) Robot device
JPH0282302A (en) Robot controller
EP0601206B1 (en) Method for controlling operation of a robot arm
WO1989008878A1 (en) Method of controlling tool attitude of a robot
JPS63106011A (en) Robot controller
JPS6346844B2 (en)
JPS6351282B2 (en)
JPH06278007A (en) Grinding robot
JP2020171989A (en) Robot teaching system
JPH0260475B2 (en)
JPS5829577A (en) Controller for welding robot
JPH0924476A (en) Method for teaching spotting position of robot welding gun
JPS5857762B2 (en) Method and device for correcting movement speed in robots
JPS61159390A (en) Method of controlling industrial robot
JPH04148307A (en) Detecting method for working force for force control robot
JPH0825260A (en) Deflection correcting method for industrial robot
JPS61164788A (en) Industrial robot
JP2922617B2 (en) Designation method of pressing force direction in force control robot
JPH0929453A (en) Spotting position teaching method for robot welding gun
JPH07205068A (en) Coordinate system setting method of robot
JPH05265537A (en) Automatic teaching method for robot
JPS6125210A (en) Industrial joint robot
JPS58120483A (en) Cooperational control of robot and positioner
JP3930956B2 (en) Trajectory control apparatus and trajectory control method for a multi-degree-of-freedom SCARA robot in one plane, and a computer-readable recording medium recording a trajectory control program for a single-degree multi-DOF SCARA robot
JPH0784632A (en) Method for teaching position and attitude of robot