JPS6350952B2 - - Google Patents

Info

Publication number
JPS6350952B2
JPS6350952B2 JP58123174A JP12317483A JPS6350952B2 JP S6350952 B2 JPS6350952 B2 JP S6350952B2 JP 58123174 A JP58123174 A JP 58123174A JP 12317483 A JP12317483 A JP 12317483A JP S6350952 B2 JPS6350952 B2 JP S6350952B2
Authority
JP
Japan
Prior art keywords
current
ergometer
rotor
load
outer rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58123174A
Other languages
Japanese (ja)
Other versions
JPS6016170A (en
Inventor
Shinroku Nakao
Kunimasa Tsucha
Masao Ito
Akira Ito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KONBI KK
Original Assignee
KONBI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KONBI KK filed Critical KONBI KK
Priority to JP58123174A priority Critical patent/JPS6016170A/en
Priority to DE8484103091T priority patent/DE3485165D1/en
Priority to AT84103091T priority patent/ATE68640T1/en
Priority to DE9090103652T priority patent/DE3486014T2/en
Priority to EP84103091A priority patent/EP0131088B1/en
Priority to AT90103652T priority patent/ATE83386T1/en
Priority to EP90103652A priority patent/EP0379227B1/en
Priority to KR1019840003992A priority patent/KR920004800B1/en
Publication of JPS6016170A publication Critical patent/JPS6016170A/en
Publication of JPS6350952B2 publication Critical patent/JPS6350952B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K49/00Dynamo-electric clutches; Dynamo-electric brakes
    • H02K49/02Dynamo-electric clutches; Dynamo-electric brakes of the asynchronous induction type
    • H02K49/04Dynamo-electric clutches; Dynamo-electric brakes of the asynchronous induction type of the eddy-current hysteresis type
    • H02K49/043Dynamo-electric clutches; Dynamo-electric brakes of the asynchronous induction type of the eddy-current hysteresis type with a radial airgap
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B24/00Electric or electronic controls for exercising apparatus of preceding groups; Controlling or monitoring of exercises, sportive games, training or athletic performances
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/0016Control of angular speed of one shaft without controlling the prime mover
    • H02P29/0022Controlling a brake between the prime mover and the load
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B21/00Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices
    • A63B21/005Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices using electromagnetic or electric force-resisters
    • A63B21/0051Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices using electromagnetic or electric force-resisters using eddy currents induced in moved elements, e.g. by permanent magnets
    • A63B21/0052Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices using electromagnetic or electric force-resisters using eddy currents induced in moved elements, e.g. by permanent magnets induced by electromagnets
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B21/00Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices
    • A63B21/005Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices using electromagnetic or electric force-resisters
    • A63B21/0056Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices using electromagnetic or electric force-resisters using electromagnetically-controlled friction, e.g. magnetic particle brakes
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2220/00Measuring of physical parameters relating to sporting activity
    • A63B2220/17Counting, e.g. counting periodical movements, revolutions or cycles, or including further data processing to determine distances or speed
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2230/00Measuring physiological parameters of the user
    • A63B2230/04Measuring physiological parameters of the user heartbeat characteristics, e.g. ECG, blood pressure modulations
    • A63B2230/06Measuring physiological parameters of the user heartbeat characteristics, e.g. ECG, blood pressure modulations heartbeat rate only
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2230/00Measuring physiological parameters of the user
    • A63B2230/04Measuring physiological parameters of the user heartbeat characteristics, e.g. ECG, blood pressure modulations
    • A63B2230/06Measuring physiological parameters of the user heartbeat characteristics, e.g. ECG, blood pressure modulations heartbeat rate only
    • A63B2230/062Measuring physiological parameters of the user heartbeat characteristics, e.g. ECG, blood pressure modulations heartbeat rate only used as a control parameter for the apparatus
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2230/00Measuring physiological parameters of the user
    • A63B2230/04Measuring physiological parameters of the user heartbeat characteristics, e.g. ECG, blood pressure modulations
    • A63B2230/06Measuring physiological parameters of the user heartbeat characteristics, e.g. ECG, blood pressure modulations heartbeat rate only
    • A63B2230/065Measuring physiological parameters of the user heartbeat characteristics, e.g. ECG, blood pressure modulations heartbeat rate only within a certain range
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B23/00Exercising apparatus specially adapted for particular parts of the body
    • A63B23/035Exercising apparatus specially adapted for particular parts of the body for limbs, i.e. upper or lower limbs, e.g. simultaneously
    • A63B23/04Exercising apparatus specially adapted for particular parts of the body for limbs, i.e. upper or lower limbs, e.g. simultaneously for lower limbs
    • A63B23/0476Exercising apparatus specially adapted for particular parts of the body for limbs, i.e. upper or lower limbs, e.g. simultaneously for lower limbs by rotating cycling movement

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Dynamo-Electric Clutches, Dynamo-Electric Brakes (AREA)

Abstract

PURPOSE:To obtain a constant torque without any complicated control by using an iron steel material which contains carbon and silicon contents in the prescribed values or lower for a material of an outer rotor. CONSTITUTION:A load device of an ergometer has an outer rotor 5, an inner stator 7, a plurality of exciting coils 8 provided in the inner stator, and a current source for energizing the coils 8. The rotor 5 is formed of an iron steel material which contains 0.12% or lower of carbon content and 0.35% or lower of silicon content. Further, a current command signal is generated in response to the output of instructing means in a circuit 9, and a current supplied to the exciting coils is controlled in response to the output of the current command signal. Thus, excellent constant torque property can be obtained.

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はエルゴメータの負荷装置に関する。 エルゴメータとして市場に提供されているもの
の1つにモナーク社のエルゴメータがある。この
装置は足の屈伸運動により駆動されるフライホイ
ールとこのフライホイールに摩擦力により負荷を
印加するためのベルトから構成されており、ベル
ト先端に装架する重りにより負荷量を調整するも
のである。この装置はフライホイールが一定回転
数であれば、印加する重りにより直接負荷量が測
定できるので体力測定の場合正確なデータを得る
ことができるが時間がかかると共に装置が大型か
つ調整が煩雑である。 又最近電気的負荷手段を備えたエルゴメータが
市場に提供されている。この1つに、ねずみ鋳鉄
から製造されたフライホイールと、フライホイー
ルの回転数を検出するための回転センサーと、ト
ルク検出用のひずみゲージとを備えており、ひず
みゲージの出力とフライホイールの回転数出力と
の相互関係から電磁ブレーキ装置に供給する電流
を制御して一定トルクを得るようにした装置があ
る。 また他の構成として、上記したフライホイール
の回転数、トルク及び制御電流値の関係をあらか
じめコンピータ等により計算して求め、記憶装置
に記憶させておき、プログラムに基づく命令コー
ドに従つて、フライホイールの回転数と目標とす
る制動力より判断して制動用コイルに流す電流を
決定することにより一定トルクを得るようにした
装置がある。 これら2つの装置に於て、前者は機械的なトル
ク検出手段を備えているために、使用開始前又は
経年変化に伴う調整が煩雑である。また後者は事
前に複雑な計算を行なわなければならず、かつこ
の計算結果をデータとして記憶する別個の記憶装
置が必要である。これらの装置は負荷手段を電気
的に複雑に制御することにより一定トルクを得て
いる。 またいずれも、インナーロータ及びアウタース
テータという構成であるので、励磁コイルを配設
するアウターロータが大型となり、ひいては負荷
装置全体が大型になり、インナーロータが高熱に
なるという欠点がある。 従つて本発明は上記欠点に鑑みなされたもので
あり、負荷手段のうず電流ブレーキの機械的構成
に注目したものであつて、負荷装置の実用回転数
範囲に於て、ほぼ一定トルクを得ることができる
と共に、簡単な制御方法により一定負荷値を得る
ことができるエルゴメータの負荷装置を提供する
ことを目的とする。 上記目的は、アウターロータと、インナーステ
ータと、インナーステータ内に設けられた複数個
の励磁コイルと、励磁コイルを付勢するための電
流源とを備えたエルゴメータの負荷装置であつ
て、前記アウターロータは炭素含有量0.12%以下
及びシリコン含有量0.35%以下の鉄鋼材料から構
成されており、更に所望負荷値を指示するための
指示手段と、前記指示手段の出力に応動して所望
負荷値の電流に対応する指令信号を発生する平方
根特性信号発生回路と、前記発生回路の出力に応
答して前記コイルに供給する電流を制御するため
に励磁コイル及び電流源間に設けられた定電流駆
動回路とを備えたエルゴメータの負荷装置を構成
することにより達成することができる。 また前記構成に於て、アウターロータを2種類
の鉄鋼材料の同心円構造とし、その円周部ロータ
材料として構造用炭素鋼管(STK又はSTKM)
から選択された前記含有量を満足する鋼管を用
い、鋳鉄材料からなる外周部ロータに挿入する
と、好適である。 また外周部は内周部に対して単にフライホイー
ル効果を付与するのみの場合には、セメント等の
非鉄金属部材で作成することができる。 上記の構成とすることにより、うず電流ブレー
キを2乗特性を有する信号発生回路の信号に応動
して励磁コイルに電流を供給することにより負荷
値を制御することにより、何ら複雑な制御を行な
わないで一定トルクの得られる負荷装置を提供す
ることができる。 また本発明の負荷装置は同一負荷値に於ける負
荷装置の励磁電流値を従来の負荷装置より大幅に
減少させることができるので、装置の発熱が少な
く小型化するとができる。 以下添付図面を用いて本発明を詳細に説明す
る。 本発明者らは、うず電流ブレーキの特性を鋭意
研究したところ、種々のパラメータのうち固有抵
抗及び透磁率が材料特性上大きく関与しているこ
とを見い出した。 本発明者らは前記した固有抵抗(Ω・cm)及び
透磁率(H/m)に着目し、種々の材料からフラ
イホイールを作成しそのブレーキ力と励磁コイル
の励磁電流との関係を測定した。この結果を第1
図として示した。図中は純鉄、は鋳鋼、は
従来のねずみ鋳鉄により作成したフライホイール
のブレーキ力−励磁電流特性曲線である。この時
の負荷装置のペダル回転数は50rpmである。この
場合、ギヤ比が15に設定されているのでフライホ
イールは750rpmである。図から容易に理解でき
るように、少ない電流値で高負荷が得られるのは
純鉄製のフライホイールであり、次いで鋳鋼製の
フライホイール、そしてこれら2者とは比較にな
らない程性能の悪いものが従来使用されているね
ずみ鋳鉄製のフライホイールである。 従つてフライホイール材料としては純鉄又は鋳
鋼製のものが好ましいということが判断できる。 更に本発明者らは、これら使用した鉄材料の成
分とブレーキ特性との関係を調べたところ、Si
(シリコン)の含有率が固有抵抗に関係しており、
その量が少ない程固有抵抗が小さくなること、及
び炭素の含有率が透磁率に関係しており、その量
が少ない程透磁率が大きくなることがわかつた。
各フライホイールの成分を分析した結果を表1に
示した。
The present invention relates to a loading device for an ergometer. One of the ergometers available on the market is the Monarch ergometer. This device consists of a flywheel that is driven by the bending and stretching movements of the legs, and a belt that applies a load to the flywheel using frictional force.The amount of load is adjusted by a weight attached to the tip of the belt. . This device can directly measure the amount of load by applying weight as long as the flywheel has a constant rotation speed, so it can obtain accurate data when measuring physical strength, but it is time consuming, the device is large, and adjustment is complicated. . Also, ergometers equipped with electrical load means have recently been offered on the market. One of these is equipped with a flywheel manufactured from gray cast iron, a rotation sensor for detecting the number of revolutions of the flywheel, and a strain gauge for detecting torque.The output of the strain gauge and the rotation of the flywheel are There is a device that obtains a constant torque by controlling the current supplied to an electromagnetic brake device based on the correlation with several outputs. In another configuration, the relationship among the flywheel rotational speed, torque, and control current value described above is calculated and determined in advance by a computer, etc., and stored in a storage device, and the flywheel is There is a device that obtains a constant torque by determining the current to be passed through the braking coil based on the rotational speed of the brake and the target braking force. Of these two devices, since the former is equipped with a mechanical torque detection means, it is complicated to make adjustments before starting use or as the device changes over time. Furthermore, the latter requires complicated calculations to be performed in advance, and requires a separate storage device to store the results of these calculations as data. These devices obtain constant torque by complex electrical control of the load means. Furthermore, since both of them are configured with an inner rotor and an outer stator, the outer rotor in which the excitation coil is disposed becomes large, which in turn increases the size of the entire load device, and the inner rotor becomes hot. Therefore, the present invention was made in view of the above-mentioned drawbacks, and focuses on the mechanical structure of the eddy current brake of the load means, and it is an object of the present invention to obtain a nearly constant torque in the practical rotational speed range of the load device. It is an object of the present invention to provide a load device for an ergometer that can obtain a constant load value using a simple control method. The above-mentioned object is a load device for an ergometer that includes an outer rotor, an inner stator, a plurality of excitation coils provided in the inner stator, and a current source for energizing the excitation coil. The rotor is made of steel material with a carbon content of 0.12% or less and a silicon content of 0.35% or less, and further includes an indicating means for indicating a desired load value, and a means for indicating a desired load value in response to the output of the indicating means. a square root characteristic signal generation circuit that generates a command signal corresponding to the current; and a constant current drive circuit provided between the excitation coil and the current source to control the current supplied to the coil in response to the output of the generation circuit. This can be achieved by configuring an ergometer loading device equipped with. In addition, in the above configuration, the outer rotor has a concentric structure made of two types of steel materials, and the rotor material for the circumferential portion is structural carbon steel pipe (STK or STKM).
It is preferable to use a steel pipe that satisfies the above-mentioned content selected from the above and insert it into the outer peripheral rotor made of cast iron material. Further, when the outer circumferential portion is merely intended to provide a flywheel effect to the inner circumferential portion, the outer circumferential portion may be made of a non-ferrous metal member such as cement. With the above configuration, the eddy current brake is controlled by supplying current to the excitation coil in response to the signal from the signal generation circuit having square-law characteristics, thereby eliminating the need for any complicated control. It is possible to provide a load device that can obtain constant torque. Furthermore, since the load device of the present invention can significantly reduce the excitation current value of the load device at the same load value compared to conventional load devices, the device can be miniaturized with less heat generation. The present invention will be explained in detail below using the accompanying drawings. The present inventors conducted intensive research on the characteristics of eddy current brakes and found that among various parameters, specific resistance and magnetic permeability are greatly involved in material characteristics. The present inventors focused on the above-mentioned specific resistance (Ω・cm) and magnetic permeability (H/m), created flywheels from various materials, and measured the relationship between the braking force and the excitation current of the excitation coil. . This result is the first
Shown as a diagram. In the figure, brake force-excitation current characteristic curves of flywheels made of pure iron, cast steel, and conventional gray cast iron are shown. The pedal rotation speed of the load device at this time was 50 rpm. In this case, the gear ratio is set to 15, so the flywheel is at 750 rpm. As can be easily understood from the figure, flywheels made of pure iron can obtain high loads with low current values, followed by flywheels made of cast steel, and flywheels whose performance is incomparably worse than these two. This is a conventionally used flywheel made of gray cast iron. Therefore, it can be concluded that pure iron or cast steel is preferable for the flywheel material. Furthermore, the inventors investigated the relationship between the components of the iron materials used and braking characteristics, and found that Si
(Silicon) content is related to specific resistance,
It was found that the smaller the amount, the smaller the specific resistance, and that the carbon content is related to magnetic permeability, and that the smaller the amount, the higher the magnetic permeability.
Table 1 shows the results of analyzing the components of each flywheel.

【表】 従つて本発明者らは、負荷装置のうず電流ブレ
ーキを構成する場合、そのフライホイールの材料
の組成成分を規定することにより、特性の優れ
た、かつ小電流で大きな負荷を得ることができる
という結論に達した。 この結論に従がえば、フライホイールを鉄材料
の中で炭素及びシリコンの含有量が最も少ない純
鉄を用いて構成すれば一番良い特性かつ小電流で
最大の負荷値を得ることができる。 しかし、純鉄は市場では入手が困難であり、高
価格であるので、本発明者らは、純鉄と近似した
特性の得られる鋳鋼を用いてフライホイールを製
造したところ、ほぼ満足のゆく特性を得ることが
できた。この場合、フライホイールの回転トルク
と市場での入手の容易さを考慮し、市場で容易に
入手できる構造用炭素鋼管(JISに於てSTK又は
STKMとして定められているもの)を励磁コイ
ルに面する内周側部材とし、外周側をフライホイ
ール効果を生じさせるために、ねずみ鋳鉄により
外周側部材を製造しても、全体を鋳鋼により製造
した場合とほぼ同じ結果が得られることがわかつ
た。但しこの場合、STK又はSTKMと呼ばれる
構造用炭素鋼管の組成成分がJISに於てはその上
限が定められているのみであるので、前記構造用
炭素鋼管を使用する場合には規格品として製造さ
れた鋼管の中から所望の炭素及びシリコンの含有
率条件を満たすもの又は合致するものを選択しな
ければならない。 実施例として従来のねずみ鋳鉄により製造した
フライホイールをA型とし、励磁コイルに対向す
る円周側をSTK−50から選択し、その含有率が
(C=0.12%以下、Si=0.35%以下)であり、外周
部を前記ねずみ鋳鉄で作成した同心円2重構造を
Bとし、それぞれの特性を第3図から第9図に示
した。 第3図及び第4図は従来及び本発明に係るうず
電流ブレーキのW−Is特性である。第1図にて示
した様に、同じ印加電流値に於て、本発明に係る
フライホイールを用いた場合の方が大きな負荷力
を得られると共に、各回転数に於ける負荷値間で
差が少なく、その曲線が2乗曲線で近似できる。
特に第3図に於ては40rpm時の曲線が他の曲線か
らかなりはずれている。 第5図及び第6図は従来及び本発明に係るうず
電流ブレーキのトルク−回転数特性である。うず
電流ブレーキを用いた負荷装置のペダルの実用回
転数範囲を40〜60rpmとしてその電流値及びトル
クの変動範囲を比較したものを表2として示し
た。
[Table] Therefore, the present inventors have found that when configuring an eddy current brake for a load device, by specifying the composition of the flywheel material, it is possible to obtain a large load with excellent characteristics and a small current. I came to the conclusion that it is possible. According to this conclusion, if the flywheel is constructed using pure iron, which has the lowest carbon and silicon content among iron materials, it is possible to obtain the best characteristics and the maximum load value with a small current. However, since pure iron is difficult to obtain on the market and is expensive, the inventors manufactured a flywheel using cast steel, which has properties similar to those of pure iron, and found that the properties were almost satisfactory. I was able to get In this case, considering the rotational torque of the flywheel and the ease of availability in the market, we will use structural carbon steel pipes that are easily available in the market (STK or STK in JIS).
STKM (specified as STKM) is the inner part facing the excitation coil, and in order to create a flywheel effect on the outer part, even if the outer part is made of gray cast iron, the whole part is made of cast steel. It was found that almost the same results were obtained. However, in this case, JIS only sets an upper limit for the composition of structural carbon steel pipes called STK or STKM, so if the above structural carbon steel pipes are used, they must be manufactured as standard products. A steel pipe that satisfies or matches the desired carbon and silicon content conditions must be selected from among the steel pipes. As an example, a flywheel made of conventional gray cast iron is assumed to be type A, and the circumferential side facing the excitation coil is selected from STK-50, and its content is (C = 0.12% or less, Si = 0.35% or less). A concentric double structure whose outer periphery was made of the above-mentioned gray cast iron was designated as B, and the characteristics of each are shown in FIGS. 3 to 9. FIGS. 3 and 4 show the W-I s characteristics of the eddy current brakes according to the prior art and the present invention. As shown in Fig. 1, when using the flywheel according to the present invention, a larger load force can be obtained at the same applied current value, and there is a difference between the load values at each rotation speed. is small, and the curve can be approximated by a squared curve.
In particular, in Figure 3, the curve at 40 rpm deviates considerably from the other curves. FIGS. 5 and 6 show the torque-rotational speed characteristics of the eddy current brakes according to the prior art and the present invention. Table 2 shows a comparison of the current value and torque variation ranges, assuming that the practical rotation speed range of the pedal of a load device using an eddy current brake is 40 to 60 rpm.

【表】 以上の比較から容易に理解できるように、本発
明に係る負荷装置のフライホイール構成は、励磁
コイルの電流値を一定にした場合、フライホイー
ルのペダルの実用回転数範囲に於て従来例より格
段に変動が少なく、かつ高出力負荷を得ることが
できるものである。 第7図及び第8図にトルク−励磁電流特性を各
回転数を基に示した。図中斜線で示した部分は回
転数及びトルクの実用回転数内での変動幅を示す
図であり、正確に一定負荷とする場合電流値を更
に制御する等して補償しなければならない部分で
ある。実用範囲としてトルクを50rpm時300Wの
点である38.8Kg−cm以下と想定すると、第8図に
示した斜線部分は第7図に示した斜線部分と比較
すると殆んど無視できる程度である。このことは
本発明のフライホイールを用いたうず電流ブレー
キは、外部からの特別な補償回路により補正する
ことなくほぼ励磁電流の2乗特性で実用範囲に於
ける定トルク特性を得ることができる。 第9図は本発明の負荷装置を使用したエルゴメ
ータ10を示す図であり、使用者がサドル1の上
に乗り、足をペダル2上に載置すると共にハンド
ル3を握りながら屈伸運動を行なうことにより、
ペダルの駆動力はペダル軸上の歯車からチエイン
等を介して変速機4に伝達され、ここで好適に変
速された後ベルト等を介してアウターロータ5.6
に伝達されている。 負荷装置のうず電流ブレーキのフライホイール
は同心円2重構造であり、外周側ロータ5が従来
のねずみ鋳鉄により、内周側ロータ6が構造用炭
素鋼管(STK−50)の内からその組成成分の炭
素の含有量0.12%以下、シリコンの含有量0.35%
以下の選択された鋼管が内ばめされており、この
内周側ロータ6内部同心円上にステータ7が配設
されている。ステータ7内には、図示した場合、
放射状に6個の励磁コイル8が設けられている。
これら複数個の励磁コイルは互いに直列接続され
ており、その電流供給のための給電線両端は定電
流駆動回路9に接続されている。回路9は入・出
力ボツクス11のテンキーによる使用者の負荷値
指示のデジタル値をアナログ値に変換するD−A
コンバータと、D−Aコンバータの出力を基にそ
の平方根を供給電流指令値として発生する平方根
関数発生器と、その発生器の出力に応答して電源
から励磁コイルへの供給電流を制御する定電流駆
動回路とから構成されている。更に電流駆動回路
には励磁コイルを付勢するための電流源が接続さ
れている。 以上述べた様に、本発明に係るエルゴメータの
負荷装置はうず電流ブレーキのフライホイールの
材料の組成成分のうち炭素及びシリコンの含有量
を一定値以下とすることにより、従来のものより
格段に優れた定トルク特性を得られると共に、そ
の制御電流特性がほぼ2乗で近似することができ
るので、従来の様に複雑な制御方法を使用するこ
となく、単に入力手段での指令値の平方根に基づ
く信号のみで、ペダルの実用回転数範囲に於て、
負荷装置を制御することができる。また本発明の
負荷装置のうず電流ブレーキは従来と比較して、
同一制御電流で高負荷を得ることができるので、
発熱が少なく、放熱を殆ど考慮する必要がなく、
装置を小型化できるものである。またフライホイ
ール材料としてねずみ鋳鉄の外周側ロータ及び構
造用炭素鋼管の内周側ロータを使用しているので
市場で容易に入手可能でありかつ低価格である。 特に、本発明はインナーステータ、アウターロ
ータとすることにより、発熱体が回転する構造と
なるのでロータの回転による対流により放熱され
る。 上記構成に於て、外周部ロータを内周部ロータ
に対して単にフライホイール効果を付与するのみ
の目的で非鉄金属部材、例えばコンクリート等に
より作成することもできる。 更に、本発明に於ては詳述しなかつたが、更
に、ひずみ計等のトルク検出手段を備えこの出力
をマイクロコンピユータに入力し演算補正するこ
とにより、上記本発明の特徴を備えた、正確なエ
ルゴメータを提供することができる。 又、実用回転数範囲を拡大する場合には、回転
数補正を行なうとよい。
[Table] As can be easily understood from the above comparison, the flywheel configuration of the load device according to the present invention is different from the conventional one in the practical rotational speed range of the flywheel pedal when the current value of the excitation coil is constant. The fluctuation is much smaller than in the example, and a high output load can be obtained. FIGS. 7 and 8 show torque-excitation current characteristics based on each rotation speed. The shaded area in the figure shows the fluctuation range of the rotational speed and torque within the practical rotational speed, and is a portion that must be compensated for by further controlling the current value to maintain an accurate constant load. be. Assuming that the torque is within the practical range of 38.8 Kg-cm, which is the point of 300 W at 50 rpm, the shaded area shown in FIG. 8 is almost negligible compared to the shaded area shown in FIG. 7. This means that the eddy current brake using the flywheel of the present invention can obtain constant torque characteristics in a practical range with approximately square characteristics of the excitation current without correction by a special compensation circuit from the outside. FIG. 9 is a diagram showing an ergometer 10 using the loading device of the present invention, in which a user rides on the saddle 1, places his feet on the pedals 2, and performs bending and stretching exercises while gripping the handlebars 3. According to
The driving force of the pedal is transmitted from the gear on the pedal shaft to the transmission 4 via a chain, etc., and after being suitably shifted here, it is transferred to the outer rotor 5.6 via a belt etc.
has been communicated to. The flywheel of the eddy current brake of the load device has a concentric double structure, with the outer rotor 5 made of conventional gray cast iron and the inner rotor 6 made of structural carbon steel pipe (STK-50). Carbon content 0.12% or less, silicon content 0.35%
The following selected steel pipes are internally fitted, and a stator 7 is disposed on a concentric circle inside the inner rotor 6. Inside the stator 7, as shown,
Six excitation coils 8 are provided radially.
These plural excitation coils are connected in series with each other, and both ends of the feeder line for supplying current are connected to a constant current drive circuit 9. The circuit 9 is a D-A circuit that converts the digital value indicated by the user's load value using the numeric keypad of the input/output box 11 into an analog value.
a converter, a square root function generator that generates the square root as a supply current command value based on the output of the D-A converter, and a constant current that controls the supply current from the power supply to the exciting coil in response to the output of the generator. It consists of a drive circuit. Furthermore, a current source for energizing the excitation coil is connected to the current drive circuit. As described above, the ergometer load device according to the present invention is significantly superior to conventional ones by keeping the carbon and silicon content of the material of the flywheel of the eddy current brake below a certain value. It is possible to obtain a constant torque characteristic, and the control current characteristic can be approximated by approximately the square, so there is no need to use a complicated control method as in the past, and it is possible to simply use the control method based on the square root of the command value from the input means. With only a signal, within the practical rotation speed range of the pedal,
Load devices can be controlled. In addition, the eddy current brake of the load device of the present invention has the following features compared to the conventional one:
Since high loads can be obtained with the same control current,
Generates little heat, so there is no need to consider heat radiation.
This allows the device to be made smaller. In addition, since the outer rotor of gray cast iron and the inner rotor of structural carbon steel pipe are used as flywheel materials, they are easily available on the market and are inexpensive. In particular, in the present invention, by using an inner stator and an outer rotor, the heating element rotates, so that heat is radiated by convection due to the rotation of the rotor. In the above configuration, the outer rotor may be made of a non-ferrous metal material, such as concrete, for the purpose of simply imparting a flywheel effect to the inner rotor. Furthermore, although not described in detail in the present invention, the present invention is further provided with a torque detecting means such as a strain gauge, and the output thereof is input to a microcomputer for calculation correction. We can provide a suitable ergometer. Furthermore, when expanding the practical rotational speed range, it is advisable to perform rotational speed correction.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はフライホイール材質によるブレーキ力
−励磁電流特性を示す図であり、第2図は純鉄の
ブレーキ力−励磁電流特性を示す図であり、第3
図及び第4図は従来及び本発明のW−Is特性を示
す図であり、第5図及び第6図は従来及び本発明
のトルク−回転数特性を示す図であり、第7図及
び第8図は従来及び本発明のトルク−励磁電流特
性を示す図であり、第9図は本発明に係る負荷装
置を備えたエルゴメータの一実施例である。 (図中符号)、1:サドル、2:ペダル、3:
ハンドル、4:変速機、5:外周側ロータ、6:
内周側ロータ、7:ステータ、8:励磁コイル、
9:定電流駆動回路、10:自転車エルゴメー
タ、11:入出力ボツクス。
Fig. 1 is a diagram showing the braking force-exciting current characteristics depending on the material of the flywheel, Fig. 2 is a diagram showing the braking force-exciting current characteristic of pure iron, and Fig. 3 is a diagram showing the braking force-exciting current characteristics of pure iron.
4 and 4 are diagrams showing the W-Is characteristics of the conventional and the present invention, FIGS. 5 and 6 are diagrams showing the torque-rotational speed characteristics of the conventional and the present invention, and FIG. 7 and FIG. FIG. 8 is a diagram showing the torque-excitation current characteristics of the conventional and the present invention, and FIG. 9 is an example of an ergometer equipped with a load device according to the present invention. (Symbols in the figure), 1: Saddle, 2: Pedal, 3:
Handle, 4: Transmission, 5: Outer rotor, 6:
Inner circumferential rotor, 7: Stator, 8: Excitation coil,
9: constant current drive circuit, 10: bicycle ergometer, 11: input/output box.

Claims (1)

【特許請求の範囲】 1 アウターロータと、インナーステータと、イ
ンナーステータ内に設けられた複数個の励磁コイ
ルと、励磁コイルを付勢するための電流源とを備
えたエルゴメータの負荷装置であつて、 前記アウターロータは炭素含有量0.12%以下及
びシリコン含有量0.35以下の鉄鋼材料から構成さ
れており、更に、所望負荷値を指示するための指
示手段と、前記指示手段の出力に応答して所望負
荷値に対応する電流指令信号を発生する平方根特
性信号発生回路と、 前記発生回路の出力に応答して前記コイルに供
給する電流を制御するために励磁コイル及び電流
源間に設けられた定電流駆動回路とを備えている
ことを特徴とするエルゴメータの負荷装置。 2 前記アウターロータは2種類の鉄鋼材料から
なる同心円構造であり、その内周部ロータ材料は
構造用炭素鋼管(STK又はSTKM)から選択さ
れた前記含有量を満足する鋼管であり、鋳鉄材料
からなる外周部ロータに挿入されていることを特
徴とする特許請求の範囲第1項に記載のエルゴメ
ータの負荷装置。 3 前記同心円構造のアウターロータの外周部は
任意の非鉄部材(コンクリート)からなり、内周
部に対してフライホイール効果を付与しているこ
とを特徴とする特許請求の範囲第2項に記載のエ
ルゴメータの負荷装置。 4 更に、ひずみ計等のトルク検出手段を備えて
おり、特性信号発生回路の出力を補正して電流制
御回路に入力していることを特徴とする前記特許
請求の範囲のいずれか1項に記載のエルゴメータ
の負荷装置。
[Claims] 1. A load device for an ergometer comprising an outer rotor, an inner stator, a plurality of excitation coils provided in the inner stator, and a current source for energizing the excitation coils. , the outer rotor is made of a steel material with a carbon content of 0.12% or less and a silicon content of 0.35% or less, and further includes an indicating means for indicating a desired load value, and a desired load value in response to the output of the indicating means. a square root characteristic signal generation circuit that generates a current command signal corresponding to a load value; and a constant current provided between an excitation coil and a current source to control the current supplied to the coil in response to the output of the generation circuit. An ergometer load device comprising a drive circuit. 2 The outer rotor has a concentric structure made of two types of steel materials, and the inner rotor material is a steel pipe that satisfies the above content selected from structural carbon steel pipes (STK or STKM), and is made from cast iron material. The load device for an ergometer according to claim 1, wherein the load device is inserted into an outer peripheral rotor. 3. The outer rotor having the concentric structure has an outer circumferential portion made of any non-ferrous material (concrete), and a flywheel effect is imparted to the inner circumferential portion. Ergometer loading device. 4. According to any one of the above claims, further comprising a torque detection means such as a strain meter, and the output of the characteristic signal generation circuit is corrected and inputted to the current control circuit. ergometer loading device.
JP58123174A 1983-07-08 1983-07-08 Load device of ergometer Granted JPS6016170A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP58123174A JPS6016170A (en) 1983-07-08 1983-07-08 Load device of ergometer
DE8484103091T DE3485165D1 (en) 1983-07-08 1984-03-21 Eddy current brakes, load devices and ergometers.
AT84103091T ATE68640T1 (en) 1983-07-08 1984-03-21 EDDY CURRENT BRAKES, LOAD DEVICES AND ERGOMETERS.
DE9090103652T DE3486014T2 (en) 1983-07-08 1984-03-21 METHOD FOR RECEIVING AN OPTIMUM LOAD FOR A EXERCISE USER.
EP84103091A EP0131088B1 (en) 1983-07-08 1984-03-21 Eddy current brakes, loading devices and ergometers
AT90103652T ATE83386T1 (en) 1983-07-08 1984-03-21 METHOD OF OBTAINING AN OPTIMAL LOAD LEVEL FOR AN EXERCISE EQUIPMENT USER.
EP90103652A EP0379227B1 (en) 1983-07-08 1984-03-21 Method of obtaining optimum load value for a user of an exercise device
KR1019840003992A KR920004800B1 (en) 1983-07-08 1984-07-07 Eddy current brakes loading devices and ergometers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58123174A JPS6016170A (en) 1983-07-08 1983-07-08 Load device of ergometer

Publications (2)

Publication Number Publication Date
JPS6016170A JPS6016170A (en) 1985-01-26
JPS6350952B2 true JPS6350952B2 (en) 1988-10-12

Family

ID=14854013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58123174A Granted JPS6016170A (en) 1983-07-08 1983-07-08 Load device of ergometer

Country Status (1)

Country Link
JP (1) JPS6016170A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5857932A (en) * 1997-05-14 1999-01-12 Shimano, Inc. Cable operated control apparatus

Also Published As

Publication number Publication date
JPS6016170A (en) 1985-01-26

Similar Documents

Publication Publication Date Title
US4817938A (en) Bicycle ergometer and eddy current brake therefor
US4084810A (en) Energy absorbing unit for physical exercising devices
US5256115A (en) Electronic flywheel and clutch for exercise apparatus
US4141248A (en) Ergometers
US5643157A (en) Fluid coupling driven exercise device
US4800310A (en) Bicycle ergometer and eddy current brake therefor
US20040063551A1 (en) Exercise machine
JPS63194678A (en) Bicycle type training apparatus
WO2008002644A2 (en) Closed-loop power dissipation control for cardio-fitness equipment
JPS6285668A (en) Electromagnetic brake for spots training apparatus
KR850001429A (en) Bicycle Ergometer & Eddy Current Brake
CN109421883B (en) Control method of moped
US20220023710A1 (en) Exercise bike
JPH0439608B2 (en)
JPS6350952B2 (en)
JPH0125310B2 (en)
Lanooy et al. A hyperbolic ergometer for cycling and cranking
JPS6014876A (en) Training apparatus
JP3475445B2 (en) Exercise load device
US4576051A (en) Ergometer having an eddy current brake serving as a loading device
US4746846A (en) Direct current motor control, and uses to measure force, and with a physical exercise device
JPS6464543A (en) Thermal equilibrium control method for rotor
JPS6223593B2 (en)
Schmitt et al. Measuring and Characterization of a Pedal Electric Cycle (Pedelec) on a Full System
JPH08338774A (en) Bicycle