JPS6350661A - Fuel control device for fuel injection type engine - Google Patents

Fuel control device for fuel injection type engine

Info

Publication number
JPS6350661A
JPS6350661A JP61192138A JP19213886A JPS6350661A JP S6350661 A JPS6350661 A JP S6350661A JP 61192138 A JP61192138 A JP 61192138A JP 19213886 A JP19213886 A JP 19213886A JP S6350661 A JPS6350661 A JP S6350661A
Authority
JP
Japan
Prior art keywords
fuel
pressure
temperature
atmospheric pressure
fuel injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61192138A
Other languages
Japanese (ja)
Inventor
Nobuo Takeuchi
暢男 竹内
Toshio Nishikawa
西川 俊雄
Katsuhiko Yokooku
横奥 克日子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP61192138A priority Critical patent/JPS6350661A/en
Publication of JPS6350661A publication Critical patent/JPS6350661A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To aim at enhancing the efficiency of heating and pressurizing means while ensuring stable evaporation at a negative pressure, by changing the pressure of pressurized fuel or the temperature of heating in accordance with the atmospheric pressure. CONSTITUTION:An engine 1 has a fuel regulator 21 for pressurizing fuel fed into a fuel injection valve 11 and a heater 22 for heating fuel up to a temperature at which fuel is not evaporated under this pressurized condition but is evaporated under negative pressure, when fuel is injected from a fuel injection valve 11. When the atmospheric pressure detected by an atmospheric pressure sensor 31 lowers, an electronic control unit 16 sets a new desired pressure which is lower than the standard atmospheric pressure by a value corresponding to the pressure reduction if stable evaporation at a negative pressure may be obtained even through the pressure of fuel and the temperature are raised up to desired fuel pressure and temperature, respectively, which have been set at during operation at the standard atmospheric pressure. With this arrangement, no useless energy is consumed, thereby it is possible to reduce the burdens of the fuel pressure regulator 21 and the heater 22.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は燃料噴射式エンジンの燃料制御装置に関し、
特に、燃料噴射弁に供給する燃料を加圧・加熱して、燃
料を気化状態で噴射させる燃料制御装置の改良に関する
[Detailed Description of the Invention] (Industrial Application Field) This invention relates to a fuel control device for a fuel injection engine.
In particular, the present invention relates to an improvement in a fuel control device that pressurizes and heats fuel supplied to a fuel injection valve and injects the fuel in a vaporized state.

(従来の技術) 燃料噴射式エンジンは、エンジンの吸入空気量。(Conventional technology) For fuel-injected engines, the amount of air intake into the engine.

吸気管圧力、エンジン回転数などに応じて燃料噴射量を
決定し、エンジンの吸気通路に設けられた燃料噴射弁を
これに対応させて間欠的に開弁することによって、エン
ジンの空燃比を制御するものであって、排気ガスの浄化
対策上有効なことが知られている。
The engine's air-fuel ratio is controlled by determining the fuel injection amount according to intake pipe pressure, engine speed, etc., and opening the fuel injection valve installed in the engine's intake passage intermittently in response to this. It is known to be effective in purifying exhaust gas.

この種の燃料噴射式エンジンにあっては、気化器式のエ
ンジンに比べて、燃料の霧化ないしは微粒化が劣るとい
う欠点があって、従来から各種の微粒化促進対策が提案
されており、ぞの1つとしていわゆる減圧沸騰現象を利
用することが、例えば実開昭60−82575号公報に
提案されている。
This type of fuel injection engine has the disadvantage that the atomization or atomization of the fuel is inferior to that of a carburetor type engine, and various measures to promote atomization have been proposed in the past. As one of these methods, the use of so-called reduced pressure boiling phenomenon has been proposed, for example, in Japanese Utility Model Application Laid-Open No. 60-82575.

減圧沸騰は、第3図に示すように、燃料の温度と圧力と
の関係で表わされる状態特性において、燃料の飽和蒸気
圧力線以上で液体状態にある燃料を、その時の燃料温度
のまま燃料の過熱曲線以下に急減圧した場合に、液体燃
料の過熱状態により気泡の急成長が生じて、瞬時的に燃
料が分裂沸騰して気化する現象である。
As shown in Figure 3, in the state characteristic expressed by the relationship between fuel temperature and pressure, reduced pressure boiling refers to fuel that is in a liquid state at a temperature above the fuel's saturated vapor pressure line. This is a phenomenon in which when the pressure is suddenly reduced below the superheating curve, bubbles rapidly grow due to the superheated state of the liquid fuel, and the fuel instantly splits and boils to vaporize.

この現象をエンジンに適用するには、例えば燃料噴出弁
の前後で燃料が、飽和蒸気圧力線以上の状態から過熱曲
線以下の状態に移行するように夾れば、燃料噴射弁から
噴出されIζ燃料はその直後に気化する。
To apply this phenomenon to an engine, for example, if the fuel is allowed to shift from a state above the saturated steam pressure line to a state below the superheat curve before and after the fuel injection valve, the Iζ fuel will be injected from the fuel injection valve. vaporizes immediately after that.

そこで、上記公報に開示されている燃料制御装置では、
燃料を加圧する加圧手段と、この加圧手段による燃料の
加圧状態では燃料噴射弁の燃料通路内で沸騰せず、且つ
燃料噴射時には急減圧に伴い減圧?18mが生じるよう
な温度にまで加熱する加熱手段とを備え、燃料通路内で
は液体状態を保持し、燃料噴射時には減圧沸騰により瞬
間的に気化させて、燃料の微粒化を促進させるようにし
ているが、この装置には次のような問題があった。
Therefore, in the fuel control device disclosed in the above publication,
Is there a pressurizing means for pressurizing the fuel, and when the fuel is pressurized by the pressurizing means, it does not boil in the fuel passage of the fuel injection valve, and when the fuel is injected, the pressure decreases due to sudden pressure reduction? The system is equipped with a heating means that heats the fuel to a temperature that generates 18 m, and maintains a liquid state in the fuel passage, and when injecting the fuel, instantaneously vaporizes it by boiling under reduced pressure to promote atomization of the fuel. However, this device had the following problems.

(発明が解決しようとする問題点) すなわち、上記構成の燃料制御装置では、吸気通路内の
圧力に対して燃料噴射弁にかかる燃料圧力を一定値(約
2.55kg / cj )に制御している。
(Problems to be Solved by the Invention) That is, in the fuel control device having the above configuration, the fuel pressure applied to the fuel injection valve is controlled to a constant value (approximately 2.55 kg/cj) with respect to the pressure in the intake passage. There is.

しかしながら、エンジンの吸気通路内に吸入される空気
は、通常は1気圧(760mnl Hg)であるが、例
えば数千メートル程度の高地では、かなり低下している
However, the air taken into the intake passage of an engine is normally 1 atm (760 mnl Hg), but the pressure is considerably lower, for example, at high altitudes of several thousand meters.

従って、燃料圧力を一定値に設定した制御では、高地走
行時のように大気圧そのものが低下した状態では、燃料
噴射弁の前後での圧力差が大きくなり、減圧沸騰が起こ
り易くなっている。
Therefore, with control in which the fuel pressure is set to a constant value, when the atmospheric pressure itself is reduced, such as when driving at high altitudes, the pressure difference before and after the fuel injection valve becomes large, making it easy for boiling to occur under reduced pressure.

しかるに、燃料圧力や燃料温度を通常走行の条件から変
更しないで運転することは、燃料の加圧手段や加熱手段
で無駄なエネルギーを消費するという問題があった。
However, if the vehicle is operated without changing the fuel pressure or temperature from the normal driving conditions, there is a problem in that energy is wasted in the fuel pressurizing means and heating means.

この発明はこのような従来技術の問題点に鑑みてなされ
たものであって、その目的とするところは、大気圧の変
化にかかわらず効率良く減n二沸騰が行なわれる燃料噴
射式エンジンの燃料制御装置を提供することにある。
This invention was made in view of the problems of the prior art, and its purpose is to provide fuel for a fuel injection engine that efficiently reduces and boils the fuel regardless of changes in atmospheric pressure. The purpose is to provide a control device.

(問題点を解決するための手段) 上記目的を達成するために、この発明は、燃料噴射弁に
供給する燃料を加圧する加圧手段と、この加圧手段によ
る加圧状態では沸騰せず前記燃料噴射弁から噴射した時
に減圧沸騰が発生する温度に前記燃料を加熱する加熱手
段とを備えた燃料噴射式エンジンにおいて、大気圧検出
手段を備え、この大気圧検出手段の検出した大気圧に応
じて前記加圧手段による燃料圧力若しくは前記加熱手段
による燃料圧力を変更する減圧沸騰条件変更手段を設け
た。
(Means for Solving the Problems) In order to achieve the above object, the present invention provides a pressurizing means for pressurizing fuel to be supplied to a fuel injection valve, and a pressurizing means for pressurizing fuel that does not boil under pressure by the pressurizing means. A fuel injection type engine comprising a heating means for heating the fuel to a temperature at which reduced pressure boiling occurs when injected from a fuel injection valve, comprising an atmospheric pressure detecting means, and responding to the atmospheric pressure detected by the atmospheric pressure detecting means. A reduced pressure boiling condition changing means is provided for changing the fuel pressure by the pressurizing means or the fuel pressure by the heating means.

(作 用) 上記構成の燃料制御装置においては、加圧手段ないしは
加熱手段による燃料の加圧圧力、加熱温度が大気圧に応
じて、例えば大気圧が1気圧よりも低くなると、燃料の
圧力および温度が低下した大きさに対応させて低く変更
されるので、安定した減圧沸騰を確保しつつ、加熱・加
圧手段の効率化が図れる。
(Function) In the fuel control device having the above configuration, the pressurizing pressure and heating temperature of the fuel by the pressurizing means or the heating means depend on the atmospheric pressure. For example, when the atmospheric pressure becomes lower than 1 atm, the pressure of the fuel and Since the temperature is changed to a lower value in accordance with the magnitude of the decrease, it is possible to improve the efficiency of the heating/pressurizing means while ensuring stable boiling under reduced pressure.

(実施例) 以下、この発明の好適な実施閏について添附図面を参照
にして詳細に説明する。
(Embodiments) Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

第1図から第2図は、この発明に係る燃料噴射式エンジ
ンの燃料H7ll III装置の一実施例を示している
1 to 2 show an embodiment of a fuel H7ll III device for a fuel injection engine according to the present invention.

第1図は燃料噴射式エンジンの燃r31 iIl制御装
置の全体構成を示し、1は上ンジン、2はエンジン1の
シリンダ3に摺動自在に嵌挿したピストン4により容積
可変に形成された燃焼卒、5は一端がエアクリーナ6を
介して大気に連通し、他端が上記燃焼室2に開口して吸
気をエンジン1に供給するだめの吸気通路、7は一端が
上記燃焼室2に間口し、他端が大気に開放された排気を
排出するための排気通路であって、上記吸気通路5の途
中には、吸入空気旦を制御するスロットル弁8が配設さ
れているとともに、吸気通路5の燃焼室2の近傍には、
仕切壁9により上下に区画された大通路面積の主吸気通
路5aおよび小通路面積の副吸気通路5bとが形成され
ていて、主吸気通路5aの上流端には低負荷時に閉じ、
中、高負荷時に開くシャツタ弁10と、該主吸気通路5
aのシャツタ弁10の下流側に燃料を噴射供給する燃料
噴射弁11とが各々配設されている。
Figure 1 shows the overall configuration of the fuel control system for a fuel injection engine, where 1 is an upper engine, 2 is a combustion chamber formed with a variable volume by a piston 4 that is slidably inserted into a cylinder 3 of the engine 1. An intake passage 5 has one end communicating with the atmosphere via an air cleaner 6 and the other end opening into the combustion chamber 2 to supply intake air to the engine 1. Reference numeral 7 has one end opening into the combustion chamber 2. , is an exhaust passage for discharging exhaust gas whose other end is open to the atmosphere, and a throttle valve 8 for controlling the intake air flow rate is disposed in the middle of the intake passage 5. In the vicinity of the combustion chamber 2,
A main intake passage 5a with a large passage area and a sub-intake passage 5b with a small passage area are vertically divided by a partition wall 9, and at the upstream end of the main intake passage 5a there is formed a main intake passage 5a which closes at low load and which closes at low load.
A shirt starter valve 10 that opens during medium and high loads, and the main intake passage 5
A fuel injection valve 11 for injecting and supplying fuel is disposed downstream of the shatter valve 10 of a.

また、上記エアクリーナ6の下流には吸気空気量を計測
するエアフローセンサ12が設けられ、その出力信号は
エアクリーナ6内に設置された吸気温センサー13と、
スロットル弁8に連動した開度センサ14およびエンジ
ン1の冷却水温を計測する水温センサ15の出力信号と
ともに電子コントロールユニット16に入力されている
Further, an air flow sensor 12 for measuring the amount of intake air is provided downstream of the air cleaner 6, and its output signal is sent to an intake air temperature sensor 13 installed inside the air cleaner 6.
The output signal is input to the electronic control unit 16 along with output signals from an opening sensor 14 linked to the throttle valve 8 and a water temperature sensor 15 that measures the cooling water temperature of the engine 1 .

一方、上記燃料噴射弁11への燃料の供給系は以下のよ
うに構成されている。
On the other hand, a fuel supply system to the fuel injection valve 11 is configured as follows.

燃料噴射弁11と燃料タンク17との間は、燃料供給通
路18で接続され、燃料供給通路18には燃料タンク1
7から下流に向けて、燃料を加圧するために通常のもの
より容?が大きい燃料ポンプ1つ、燃料フィルタ20、
燃料噴射弁11から燃料が噴射された時に減圧沸Il仝
が発生する設定圧力、例えば3.5kQ/cf程度に調
圧するための燃圧レギュレータ21、燃料を設定温度、
例えば120℃程度まで加熱するための加熱器22、加
圧された燃料の圧力値を検知する燃圧センサ23、加熱
された燃料の温度を検知する燃温センサ24の順に設置
されている。
The fuel injection valve 11 and the fuel tank 17 are connected through a fuel supply passage 18, and the fuel tank 1 is connected to the fuel supply passage 18.
Is it more voluminous than normal to pressurize the fuel downstream from 7? 1 large fuel pump, 20 fuel filters,
A fuel pressure regulator 21 for adjusting the pressure to a set pressure at which reduced pressure boiling occurs when fuel is injected from the fuel injection valve 11, for example, about 3.5 kQ/cf;
For example, a heater 22 for heating to about 120° C., a fuel pressure sensor 23 for detecting the pressure value of the pressurized fuel, and a fuel temperature sensor 24 for detecting the temperature of the heated fuel are installed in this order.

また、燃料噴射弁11と燃料タンク17との間には、過
剰に供給された燃料を戻すためのリターン通路25が接
続され、リターン通路25には燃料タンク17から燃料
噴射弁11側に向けて、リターン燃料を断熱膨張させて
減圧する膨張器と、この膨張器を冷却し燃料温度を低下
させる減圧・冷却装置26、リターン燃料の圧力が燃圧
レギュレータ21の設定圧力よりも高い時に、これをレ
ギュレータ21の下流に戻し、加熱器22ないしは燃料
ポンプ19の負担を軽減するとともに、レギュレータ2
1の設定圧力よりも低い時および異常高温時に、リター
ン燃料をリターン通路25に戻す燃圧リミッタ27の順
に設けられている。
Further, a return passage 25 for returning excess fuel is connected between the fuel injection valve 11 and the fuel tank 17. , an expander that adiabatically expands and depressurizes the return fuel; a decompression/cooling device 26 that cools the expander and lowers the fuel temperature; and a regulator that controls the return fuel when the pressure of the return fuel is higher than the set pressure of the fuel pressure regulator 21 to reduce the burden on the heater 22 or fuel pump 19, and also to reduce the burden on the regulator 21.
A fuel pressure limiter 27 is provided in order to return the return fuel to the return passage 25 when the pressure is lower than the set pressure of No. 1 or when the temperature is abnormally high.

さらに、上記加熱器22の上流側の燃料供給通路18と
、燃料リミッタ27の上流側のリターン通路25との間
には、加熱器22で加熱される前の燃料とリターン燃料
との間で熱交換を行なゎじるための熱交換器28が設け
である。
Further, between the fuel supply passage 18 on the upstream side of the heater 22 and the return passage 25 on the upstream side of the fuel limiter 27, heat is generated between the fuel before being heated by the heater 22 and the return fuel. A heat exchanger 28 is provided for carrying out the exchange.

上記燃圧レギュレータ21の設定圧力、加熱器22によ
る加熱温度および燃料ポンプ19の制御は、燃圧センサ
23.燃温センサ24の出力信号などを入力値として上
記電子コントロールユニット16で行なわれる。
The set pressure of the fuel pressure regulator 21, the heating temperature by the heater 22, and the control of the fuel pump 19 are controlled by the fuel pressure sensor 23. This is performed by the electronic control unit 16 using the output signal of the fuel temperature sensor 24 as an input value.

なお、電子コントロールユニット16の入力信号は、上
記した各センサからのもの以外に排気通路7に設けられ
たA/Fセンサ29.エンジン1の回転数センサ30お
よび大気圧センサ31がある。
In addition to the input signals from the above-mentioned sensors, the electronic control unit 16 receives input signals from the A/F sensor 29. There is a rotation speed sensor 30 and an atmospheric pressure sensor 31 for the engine 1 .

第2図は電子コントロールユニット16による燃料噴射
制御の、特に燃料圧力と燃料温度との制徨0用サブルー
チンの一例を示している。
FIG. 2 shows an example of the fuel injection control by the electronic control unit 16, particularly a subroutine for controlling the fuel pressure and fuel temperature to zero.

まず、同図kffi’1f2Ilフローでは図示を′a
略しているが、以下の手順で燃料の噴射偵が決定される
First, in the kffi'1f2Il flow in the same figure, the illustration is 'a'
Although omitted, the fuel injection location is determined by the following procedure.

システムを初期化した後、回転数センサ30からのエン
ジン1の回転数N信号と、エアフローセンサ12からの
吸入空気ff1Q(i号とが読み込まれ、で燃料噴射弁
11からの基本噴射量τaを上記エンジン回転数Nおよ
び吸入空気flQに応じて下記式、 τa  =  <Q/N)XK K:噴射聞換算係数 に基づいて算出する。
After initializing the system, the engine 1 rotation speed N signal from the rotation speed sensor 30 and the intake air ff1Q (i) from the air flow sensor 12 are read, and the basic injection amount τa from the fuel injection valve 11 is calculated. It is calculated based on the following formula according to the engine speed N and intake air flQ: τa = <Q/N)XK K: injection ratio conversion coefficient.

燃料の噴rFJ岱が設定されると、第2図のサブルーチ
ンがスタートし、まず、ステップS1で大気圧センサ3
1からの大気圧値Pがサンプリングされる。
When the fuel injection rFJ is set, the subroutine shown in FIG. 2 starts, and first, in step S1, the atmospheric pressure sensor 3 is
Atmospheric pressure values P from 1 are sampled.

次いで、燃温センサ24からの燃料温度TFおよび燃圧
センサ23からの燃料圧力F)Fがそれぞれステップ8
2.同S3でサンプリングされる。
Next, the fuel temperature TF from the fuel temperature sensor 24 and the fuel pressure F) from the fuel pressure sensor 23 are determined in step 8.
2. It is sampled at S3.

ステップS4では、大気圧値Pが1気圧すなわち760
mm HIJよりも高いか否かが判定され、大気圧値P
がこれよりも高い場合には、標準大気圧(1気圧)時の
目標燃料圧力PC9目標燃料温度TCに対する補正は行
なわず、次のステップに移行する。
In step S4, the atmospheric pressure value P is 1 atm, that is, 760
It is determined whether or not it is higher than mm HIJ, and the atmospheric pressure value P
If is higher than this, the target fuel pressure PC9 at standard atmospheric pressure (1 atm) is not corrected to the target fuel temperature TC, and the process moves to the next step.

一方、ステップS4で大気圧値Pが760mm Hりよ
りも小さいと判定されると、ステップS5が実行される
On the other hand, if it is determined in step S4 that the atmospheric pressure value P is smaller than 760 mm H, step S5 is executed.

ステップS5では、まず、目標燃料圧力pcがら大気圧
値Pと760mmHgとの差圧(△P)が城痺され、新
たな目標燃料圧力Pc −として設定される。
In step S5, first, the differential pressure (ΔP) between the atmospheric pressure value P and 760 mmHg is determined from the target fuel pressure pc, and is set as a new target fuel pressure Pc -.

ここで、この実施例では燃料圧力だ()を減少させると
、第3図に示す目標点A(Pc、Tc>が液体と気体と
が混在する不支定領域に入るので、新たな目標燃料温度
TC−は次のようにして設定している。
In this example, if the fuel pressure () is decreased, the target point A (Pc, Tc> shown in FIG. 3 enters the unstable region where liquid and gas coexist, so the new target fuel temperature TC- is set as follows.

まず、目標燃料温度Tc 、 Tc =は、第3図の状
態図で、飽和蒸気圧力線に沿ってその上方に位置する曲
線B上に設定され、圧力の函Wlt =f(P)として
求めておく。
First, the target fuel temperature Tc, Tc = is set on the curve B located above the saturated steam pressure line in the phase diagram of Fig. 3, and is determined as a pressure box Wlt = f(P). put.

そして、目標燃料圧力をpcからPc =に変えた時に
、目標燃料温度をTcからTC−に変えるための変化量
Δ丁を、上記函数t=f(P)から求めて、目標燃料温
度TOからΔ丁を減算することで新たな目標燃料温度T
c−を設定している。
Then, when the target fuel pressure is changed from pc to Pc =, the amount of change Δt to change the target fuel temperature from Tc to TC- is calculated from the above function t=f(P), and from the target fuel temperature TO A new target fuel temperature T is obtained by subtracting ΔT.
c- is set.

以上の各ステップで目標燃料圧力PcないしはPc −
と目標燃料温度1”cないしはTc−が設定されると、
ステップ8Bでは現在の燃料圧力PFとPc −(Pc
 )との差の絶対iriが求められ、その値が所定の範
囲α内にあれば次のステップに移るが、範囲外の場合に
はステップ$7で燃料圧力PFがαの範囲内になるよう
に燃圧レギュレータ21の制御が行なわれる。
In each step above, the target fuel pressure Pc or Pc −
When the target fuel temperature 1”c or Tc- is set,
In step 8B, the current fuel pressure PF and Pc - (Pc
) is calculated, and if the value is within a predetermined range α, the process moves to the next step, but if it is outside the range, step $7 is performed so that the fuel pressure PF is within the range α. The fuel pressure regulator 21 is controlled.

燃料圧力PFが目標燃料圧力Pc −(Pc )から所
定の範囲α内に収まると、ステップ3.5では現在の燃
料温度T「とTc ′(Tc )との差の絶対値が求め
られ、その値が所定の範囲β内にあれば制御フローは終
了するが、範囲外の場合にはステップSっで燃料温度T
Fがβの範囲内になるように加熱器22の制御が行なわ
れ、燃1”l 温度1〕「が目標燃料温度Tc −(T
c )+βに収まるとサブルーチンは終了する。
When the fuel pressure PF falls within the predetermined range α from the target fuel pressure Pc - (Pc), in step 3.5, the absolute value of the difference between the current fuel temperature T' and Tc' (Tc) is determined, and the If the value is within the predetermined range β, the control flow ends, but if it is outside the range, the fuel temperature T is
The heater 22 is controlled so that F is within the range of β, and the fuel temperature 1"l temperature 1]" becomes the target fuel temperature Tc - (T
c) When the value falls within +β, the subroutine ends.

燃料の圧力および温度がそれぞれ目標伯PC′(Pc 
>、 Tc −(Tc )に設定されると、燃1′N噴
射時期か否かを判別し、燃料噴)j時期になるのを持っ
て、上記した式で求めた燃料噴射パルス幅τaに応じた
燃料を燃料噴射弁11から噴射供給する。
The pressure and temperature of the fuel are respectively the target ratio PC' (Pc
>, Tc - (Tc), it is determined whether it is the fuel 1'N injection timing or not, and when the fuel injection timing (J) is reached, the fuel injection pulse width τa determined by the above formula is set. The corresponding fuel is injected and supplied from the fuel injection valve 11.

さて、以上のように制御される燃料制御装置では、大気
圧Pが低下し、標準大気圧時に設定した目標燃料圧力P
C1燃料温度Tcまで加圧ないしは加熱しなくても安定
した減圧沸騰が可能となる条件では、標準大気圧から低
下した分だけ低くした新たな目標燃料圧力Pc−と燃料
温度Tc ”に設定するので、従来のこの種の装置のよ
うに無駄なエネルギー消費がなくなり、燃圧レギュレー
タ21、加熱器22の負担を軽くできる。
Now, in the fuel control device controlled as described above, the atmospheric pressure P decreases, and the target fuel pressure P set at standard atmospheric pressure is reduced.
C1 Under conditions where stable boiling under reduced pressure is possible without pressurizing or heating up to the fuel temperature Tc, a new target fuel pressure Pc- and fuel temperature Tc'' lowered by the amount lowered from standard atmospheric pressure are set. Unlike conventional devices of this kind, wasteful energy consumption is eliminated, and the burden on the fuel pressure regulator 21 and heater 22 can be reduced.

(発明の効果) 以上、実施例で詳細に説明したように、この発明に係る
燃料噴m式エンジンの燃料−1111]装置によれば、
変化する大気圧に応じて燃料の温度と圧力とを変更し、
減圧沸Il!に必要な最小限度の加熱と加圧しか行なわ
ないので、効率良く減圧沸騰が実施できる。
(Effects of the Invention) As described above in detail in the embodiments, according to the fuel injection m-type engine fuel-1111] device according to the present invention,
changing fuel temperature and pressure in response to changing atmospheric pressure;
Vacuum boiling! Since only the minimum amount of heating and pressurization required for boiling is performed, reduced pressure boiling can be carried out efficiently.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明装置の全体構成図、第2図はコントロー
ラの作動を示ずフローチャート図、第3図は燃料の状態
特性の説明図である。 1・・・・・・・・・エンジン   11・・・・・・
燃料噴)1弁19・・・・・・燃料ポンプ 21・・・・・・燃圧レギュレータ 22・・・・・・加熱器
FIG. 1 is an overall configuration diagram of the apparatus of the present invention, FIG. 2 is a flowchart showing the operation of the controller, and FIG. 3 is an explanatory diagram of the state characteristics of fuel. 1・・・・・・・・・Engine 11・・・・・・
Fuel injection) 1 valve 19... Fuel pump 21... Fuel pressure regulator 22... Heater

Claims (1)

【特許請求の範囲】[Claims] 燃料噴射弁に供給する燃料を加圧する加圧手段と、この
加圧手段による加圧状態では沸騰せず前記燃料噴射弁か
ら噴射した時に減圧沸騰が発生する温度に前記燃料を加
熱する加熱手段とを備えた燃料噴射式エンジンにおいて
、大気圧検出手段を備え、この大気圧検出手段の検出し
た大気圧に応じて前記加圧手段による燃料圧力若しくは
前記加熱手段による燃料圧力を変更する減圧沸騰条件変
更手段を設けてなることを特徴とする燃料噴射式エンジ
ンの燃料制御装置。
a pressurizing means for pressurizing the fuel supplied to the fuel injection valve; and a heating means for heating the fuel to a temperature at which it does not boil under the pressure applied by the pressurizing means and boils under reduced pressure when injected from the fuel injection valve. In a fuel injection engine equipped with an atmospheric pressure detection means, the fuel injection engine is equipped with an atmospheric pressure detection means, and the fuel pressure by the pressurization means or the fuel pressure by the heating means is changed according to the atmospheric pressure detected by the atmospheric pressure detection means. 1. A fuel control device for a fuel injection engine, comprising: means.
JP61192138A 1986-08-19 1986-08-19 Fuel control device for fuel injection type engine Pending JPS6350661A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61192138A JPS6350661A (en) 1986-08-19 1986-08-19 Fuel control device for fuel injection type engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61192138A JPS6350661A (en) 1986-08-19 1986-08-19 Fuel control device for fuel injection type engine

Publications (1)

Publication Number Publication Date
JPS6350661A true JPS6350661A (en) 1988-03-03

Family

ID=16286316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61192138A Pending JPS6350661A (en) 1986-08-19 1986-08-19 Fuel control device for fuel injection type engine

Country Status (1)

Country Link
JP (1) JPS6350661A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004005694A3 (en) * 2002-07-02 2004-03-18 Greentech Motors Israel Ltd Operating system, kit and method for engine
WO2007083448A1 (en) * 2006-01-20 2007-07-26 Toyota Jidosha Kabushiki Kaisha Fuel supply device, automobile having the fuel supply device, and fuel supply method
IT202200000686A1 (en) * 2022-01-18 2023-07-18 Ngv Powertrain S R L FUEL CONDITIONING SYSTEM AND A PROPULSION SYSTEM INCLUDING THE CONDITIONING SYSTEM

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004005694A3 (en) * 2002-07-02 2004-03-18 Greentech Motors Israel Ltd Operating system, kit and method for engine
WO2007083448A1 (en) * 2006-01-20 2007-07-26 Toyota Jidosha Kabushiki Kaisha Fuel supply device, automobile having the fuel supply device, and fuel supply method
IT202200000686A1 (en) * 2022-01-18 2023-07-18 Ngv Powertrain S R L FUEL CONDITIONING SYSTEM AND A PROPULSION SYSTEM INCLUDING THE CONDITIONING SYSTEM

Similar Documents

Publication Publication Date Title
US6766269B2 (en) LPG fuel composition estimation method and system
US5148776A (en) Coordinated water and fuel injection system
US4242992A (en) Internal combustion engine with fuel injectors
JP2002115801A (en) Steam temperature control device for vaporizer
JPH09195820A (en) Fuel feeding device of intratube injection type internal combustion engine
US4485792A (en) Method for supplying an internal combustion engine with liquefied petroleum gas and apparatus for performing the method
US4497300A (en) Fuel supply system for an internal combustion engine
JPS6350661A (en) Fuel control device for fuel injection type engine
CN107559083B (en) A kind of dynamic automotive oxygen sensor heating means
JPS60256545A (en) Liquified petroleum gas cabrator of internal combustion engine
US20060242949A1 (en) Fuel fractionation method and fuel fractionation apparatus for internal combustion engine
JPS62255540A (en) Fuel control device for fuel injection type engine
JPS6316161A (en) Pressure controlling method for liquefied gas fuel
US11686268B2 (en) Internal combustion engine control method and control device
JPH0223704B2 (en)
JPS6316160A (en) Fuel pressure control device
JPS62255539A (en) Fuel control device for fuel injection type engine
JP2764515B2 (en) Fuel supply device for internal combustion engine
US11913391B2 (en) Controller and control method for internal combustion engine
JPS6350660A (en) Fuel control device for fuel inject type engine
JP2768388B2 (en) Decompression boiler type vaporizer and control method thereof
JPS6218675Y2 (en)
JPS6341659A (en) Fuel control device in fuel injection type engine
JP3042637B2 (en) Control method of decompression boiler type vaporizer
JPH06229276A (en) Fuel injection control device for internal combustion engine