JPS6350627B2 - - Google Patents
Info
- Publication number
- JPS6350627B2 JPS6350627B2 JP57181944A JP18194482A JPS6350627B2 JP S6350627 B2 JPS6350627 B2 JP S6350627B2 JP 57181944 A JP57181944 A JP 57181944A JP 18194482 A JP18194482 A JP 18194482A JP S6350627 B2 JPS6350627 B2 JP S6350627B2
- Authority
- JP
- Japan
- Prior art keywords
- heat
- circulation pump
- capacity
- sensor
- storage tank
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000005338 heat storage Methods 0.000 claims description 25
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 17
- 238000010586 diagram Methods 0.000 description 8
- 230000007423 decrease Effects 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- 230000008014 freezing Effects 0.000 description 2
- 238000007710 freezing Methods 0.000 description 2
- 230000002528 anti-freeze Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24D—DOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
- F24D19/00—Details
- F24D19/10—Arrangement or mounting of control or safety devices
- F24D19/1006—Arrangement or mounting of control or safety devices for water heating systems
- F24D19/1051—Arrangement or mounting of control or safety devices for water heating systems for domestic hot water
- F24D19/1057—Arrangement or mounting of control or safety devices for water heating systems for domestic hot water the system uses solar energy
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
Description
【発明の詳細な説明】
本発明は太陽熱集熱システムに関し、特に循環
ポンプの能力を可変とし、集熱効率の向上と消費
電力の低減を計つたものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a solar heat collection system, and in particular to a system in which the ability of a circulation pump is made variable to improve heat collection efficiency and reduce power consumption.
この種、太陽熱集熱システムの集熱回路(配管
系)は、現在色々な種類が考えられて、採用され
ているが、本発明はこのうち特に集熱回路が大気
に開放されているもので、この大気に開放してい
るのが蓄熱槽の位置か、蓄熱槽と集熱器の間に置
かれているものに好適なものである。 Various types of heat collection circuits (piping systems) for this kind of solar heat collection system are currently being considered and adopted, but the present invention is particularly designed for a heat collection circuit that is open to the atmosphere. , The location that is open to the atmosphere is suitable for the location of the heat storage tank or for those placed between the heat storage tank and the heat collector.
第1図a,bは従来例の説明に供する構成図
で、第1図aは蓄熱槽の中が密閉のもの、第1図
bは、大気開放のものである。これを説明する
と、1は集熱器、2は蓄熱槽、3は集熱用循環ポ
ンプ、4は集熱用配管、5は大気開放タンク、6
は熱交換器、7はシスターン、8は集熱用循環ポ
ンプ3の運転を制御する制御器(以下制御器と云
う)、9は集熱器内の温度THを測るセンサー(以
下集熱器センサーと云う)、10は蓄熱槽内の温
度TLを測るセンサー(以下蓄熱槽センサーと云
う)、K1は給水管、K2は出湯管である。 FIGS. 1a and 1b are configuration diagrams for explaining a conventional example. FIG. 1a shows a heat storage tank whose inside is closed, and FIG. 1b shows a heat storage tank that is open to the atmosphere. To explain this, 1 is a heat collector, 2 is a heat storage tank, 3 is a circulation pump for heat collection, 4 is piping for heat collection, 5 is a tank open to the atmosphere, 6
is a heat exchanger, 7 is a cistern, 8 is a controller that controls the operation of the heat collection circulation pump 3 (hereinafter referred to as the controller), 9 is a sensor that measures the temperature T H in the heat collector (hereinafter referred to as the heat collector) 10 is a sensor that measures the temperature T L in the heat storage tank (hereinafter referred to as a heat storage tank sensor), K 1 is a water supply pipe, and K 2 is a hot water outlet pipe.
集熱回路を流れる熱媒体は、通常凍結防止の上
から不凍液がその設置地域の最低温度より、濃度
が決められ使用される。凍結のおそれのない所で
は水が使われている。集熱器1に日射が当り、集
熱して集熱器センサー9が蓄熱槽センサー10に
比較して集熱用配管4の温度降下ΔT分だけ高
く、これらの温度がTH>TL+ΔTの時は、制御器
8により、集熱用循環ポンプ3が運転し、熱媒体
が循環する。蓄熱槽2の中の熱交換器6は熱媒体
が循環することにより、蓄熱槽2内の水をあたた
める。集熱器1で熱媒体が温度上昇することによ
り、気泡が発生するが、熱媒体が循環することに
より、開放タンク5で気泡を大気に放出する。 The heat medium flowing through the heat collecting circuit is usually used to prevent freezing, and the concentration of antifreeze is determined based on the lowest temperature in the area where the heat medium is installed. Water is used in areas where there is no risk of freezing. When solar radiation hits the heat collector 1, the heat collector sensor 9 collects heat and the heat collector sensor 9 is higher than the heat storage tank sensor 10 by the temperature drop ΔT of the heat collection pipe 4, and these temperatures are T H > T L + ΔT. At this time, the heat collecting circulation pump 3 is operated by the controller 8, and the heat medium is circulated. The heat exchanger 6 in the heat storage tank 2 warms the water in the heat storage tank 2 by circulating a heat medium. Bubbles are generated as the temperature of the heat medium increases in the heat collector 1, and as the heat medium circulates, the bubbles are released into the atmosphere in the open tank 5.
ところが、蓄熱槽容量に比べて必要以上に集熱
器枚数が多いとか、蓄熱槽内湯温が高いのに出湯
しない云わゆる給湯負荷の軽負荷の時に於ては、
集熱器が太陽熱を集熱しても、蓄熱槽内の湯温
TLより上述ΔTより高くならないと熱媒体が循環
しないので、熱媒体は気泡を発生し、しまいには
この気泡により熱媒体が下に押し下げられ、開放
タンク5よりあふれ出ることになる。その為開放
タンクの容量は熱媒体が上述の如く、開放タンク
へ押し下げられてもあふれ出ないで、次に集熱循
環ポンプが運転し十分気泡を大気に放出しても不
足しないものにしている。又集熱用循環ポンプの
能力は、集熱回路において上述の気泡が発生して
熱媒体が下へ押し下げられた後でもTH>TL+ΔT
になれば十分気泡を放出して熱媒体を循環出来る
ものが必要であつた。つまり、集熱器と蓄熱槽と
の高低差(揚程)と集熱回路配管抵抗に打ち勝つ
だけの能力を持つ必要がある。ところが、集熱回
路においては気泡が十分に放出された後は熱媒体
が集熱回路中に充満しているのでポンプの能力と
しては集熱回路の配管抵抗に打ち勝つだけでの能
力で充分となる。このため、従来においては、通
常集熱時必要以上のポンプ能力で熱媒体を循環し
ており、かえつて集熱効率の低下を招くばかり
か、無駄な電力消費を行つているという欠点があ
つた。 However, when the hot water supply load is light, such as when the number of heat collectors is larger than necessary compared to the heat storage tank capacity, or when the water temperature in the heat storage tank is high but no hot water is released,
Even if the heat collector collects solar heat, the water temperature in the heat storage tank remains
Since the heat medium will not circulate unless T L is higher than the above-mentioned ΔT, the heat medium will generate bubbles, and eventually the bubbles will push the heat medium downward and overflow from the open tank 5. Therefore, the capacity of the open tank is such that it will not overflow even if the heat medium is pushed down into the open tank as described above, and will not be insufficient even if the heat collection circulation pump is operated next and releases enough bubbles to the atmosphere. . In addition, the capacity of the circulation pump for heat collection is T H > T L + ΔT even after the above-mentioned bubbles are generated in the heat collection circuit and the heat medium is pushed down.
Therefore, we needed something that could sufficiently release air bubbles and circulate the heat medium. In other words, it is necessary to have the ability to overcome the height difference (lifting head) between the heat collector and the heat storage tank and the resistance of the heat collection circuit piping. However, in the heat collecting circuit, after the bubbles are sufficiently released, the heat medium is filled in the heat collecting circuit, so the pump's capacity is sufficient to overcome the piping resistance of the heat collecting circuit. . For this reason, in the past, the heat medium was circulated with a pump capacity higher than that normally required during heat collection, which not only resulted in a decrease in heat collection efficiency but also resulted in wasteful power consumption.
本発明はこの点を改善して、熱媒体が気泡を発
生し下へ押し下げられた時あるいは集熱器内が空
の時には集熱用循環ポンプの能力を大とし、気泡
あるいは空間がないことを検知すると能力を小と
して、循環ポンプの消費電力を減少し、さらに熱
媒体を必要以上速く循環させないようにしたもの
である。以下、本発明を図面に従つて説明する。
第2図〜第4図は本発明実施例である。 The present invention improves this point by increasing the capacity of the circulation pump for heat collection when the heat medium generates bubbles and is pushed down or when the heat collector is empty, thereby ensuring that there are no bubbles or spaces. When detected, the capacity is reduced to reduce the power consumption of the circulation pump and prevent the heat medium from being circulated faster than necessary. The present invention will be explained below with reference to the drawings.
2 to 4 show examples of the present invention.
まず第2図について説明する。第2図aは系統
図で、第2図bは制御のブロツク図である。20
は能力可変集熱用循環ポンプ、21は流量センサ
ーである。なお、第1図と同一部分は同一符号を
記す。能力可変集熱用循環ポンプ20には直流モ
ータ、2極4極切換誘導モータ等を使つたものを
使う。 First, FIG. 2 will be explained. FIG. 2a is a system diagram, and FIG. 2b is a control block diagram. 20
21 is a variable capacity circulation pump for heat collection, and 21 is a flow rate sensor. Note that the same parts as in FIG. 1 are denoted by the same reference numerals. The variable capacity heat collecting circulation pump 20 uses a DC motor, a two-pole four-pole switching induction motor, or the like.
次に動作を説明する。今集熱回路に熱媒体が充
満している場合は、水位センサーWS22は熱媒
体があるので、信号が出ず、制御器11内の増幅
器29によりリレーRY330は励磁されず、この
為接点RY332は開になつている。この状態で、
集熱器センサー9と蓄熱槽センサー10とによる
温度がTH>TL+ΔTになつた時(ここでΔTは集
熱配管4により降下する温度である。)、すなわ
ち、集熱器1に日射が当り、集熱して、集熱器セ
ンサー9と、蓄熱槽センサー10とがTH>TL+
ΔTになつた時は、制御器11内の比較増幅器2
5により、リレーRY126が励磁して接点RY13
1が閉になる。一方、流量センサーFS21はこ
の場所の熱媒体がまだ循環していない(流れてい
ない)ので、制御器11内の増幅器27へ信号が
行かずリレーRY228は励磁しない。この為接点
RY233はb側にある。この接点RY2のb側、a
側は循環ポンプ20のそれぞれ能力大側、能力小
側に結線されている。この為循環ポンプ20は能
力大の運転になる。しばらくして熱媒体が循環す
ると、流量センサーFS21が流れを検知し増幅
器27により、リレーRY228が励磁し、接点
RY233はa側にたおれ、循環ポンプ20は能力
小運転になる。太陽が雲にかくれる等して日射量
が少なくなり、集熱器センサー9と蓄熱槽センサ
ー10とがTH<TL+ΔTになると、比較増幅器2
5でリレーRY126が励磁せず接点RY131が開
となり、循環ポンプ20は運転停止する。 Next, the operation will be explained. If the heat collecting circuit is currently filled with a heat medium, the water level sensor WS22 will not output a signal due to the presence of the heat medium, and the relays RY3 and 30 will not be energized by the amplifier 29 in the controller 11. RY 3 32 is open. In this state,
When the temperature measured by the heat collector sensor 9 and the heat storage tank sensor 10 becomes T H > T L +ΔT (here, ΔT is the temperature dropped by the heat collection pipe 4), that is, the heat collector 1 receives solar radiation. hits and collects heat, and the heat collector sensor 9 and the heat storage tank sensor 10 are T H > T L +
When ΔT is reached, comparison amplifier 2 in controller 11
5, relay RY 1 26 is energized and contacts RY 1 3
1 is closed. On the other hand, since the heat medium at this location is not yet circulating (not flowing) in the flow rate sensor FS21, no signal is sent to the amplifier 27 in the controller 11, and the relay RY 2 28 is not excited. For this reason, the contact
RY 2 33 is on the b side. b side of this contact RY 2 , a
The sides are connected to the large capacity side and the small capacity side of the circulation pump 20, respectively. For this reason, the circulation pump 20 operates at maximum capacity. After a while, when the heat medium circulates, the flow rate sensor FS21 detects the flow, and the amplifier 27 energizes the relay RY 2 28, which closes the contact.
RY 2 33 falls to the a side, and the circulation pump 20 is operated at low capacity. When the amount of solar radiation decreases due to the sun being hidden by clouds, etc., and the values of the heat collector sensor 9 and the heat storage tank sensor 10 become T H < T L +ΔT, the comparator amplifier 2
5, the relay RY 1 26 is not energized and the contact RY 1 31 is opened, and the circulation pump 20 stops operating.
又、太陽熱を集熱して蓄熱槽2の湯温が上昇
し、集熱器センサー9と蓄熱槽センサー10とが
TH>TL+ΔTにならない時は、熱媒体から気泡が
発生しこの気泡で集熱回路内の熱媒体が押し下げ
られることになる。この場合は水位センサーWS
22が増幅器29に信号を出しリレーRY330が
励磁して接点RY332が閉となり、循環ポンプ2
0へ電源電圧が印加される。この場合流量センサ
ーFS21は熱媒体が循環していないので、増幅
器27へは信号を出さないのでリレーRY228を
励磁せず接点RY233はb側になつており、循環
ポンプ20は能力大で運転する。 In addition, the temperature of the water in the heat storage tank 2 increases by collecting solar heat, and the heat collector sensor 9 and the heat storage tank sensor 10 are activated.
When T H > T L +ΔT does not hold, bubbles are generated from the heat medium, and these bubbles push down the heat medium in the heat collection circuit. In this case, the water level sensor WS
22 sends a signal to the amplifier 29, relay RY 3 30 is energized, contact RY 3 32 is closed, and circulation pump 2
A power supply voltage is applied to 0. In this case, since the heat medium is not circulating in the flow rate sensor FS21, it does not output a signal to the amplifier 27, so the relay RY 2 28 is not energized and the contact RY 2 33 is on the b side, and the circulation pump 20 has a large capacity. drive with
次に熱媒体の循環を流量センサーFS21が感
知し接点RY233はa側になり、循環ポンプ20
は能力小で運転する。発生した気泡は熱媒体が循
環することにより、大気開放タンク5により放出
される。放出されると、気泡がないのでこれを感
知し水位センサーWS22は信号を送らなくな
り、接点RY332は開となり、循環ポンプ20へ
は電圧が印加されず運転が停止する。この状態で
集熱器センサー9と蓄熱槽センサー10とが太陽
熱を集熱したとか、出湯したことにより蓄熱槽内
湯温が下がることにより、TH>TL+ΔTになる
と、リレーRY126が励磁し接点RY131が閉と
なり、流量センサーFS21が熱媒体の循環を感
知しない間は循環ポンプは能力大で運転し、流量
センサーFS21が循環を感知すれば能力小で運
転する。この為循環ポンプの運転の為の消費電力
を約25〜30%減少出来たこと、大気開放タンク5
の容量を約30〜50%減少出来たこと、及び熱媒体
が集熱回路に常に充満しているので集熱量が約10
%上昇したこと等の効果があつた。 Next, the flow rate sensor FS21 senses the circulation of the heat medium, and the contact RY 2 33 becomes the a side, and the circulation pump 20
drive at low capacity. The generated air bubbles are released by the atmosphere open tank 5 as the heat medium circulates. Once released, since there are no air bubbles, the water level sensor WS22 senses this and stops sending a signal, the contact RY 3 32 is opened, and no voltage is applied to the circulation pump 20, stopping its operation. In this state, if T H > T L + ΔT occurs because the heat collector sensor 9 and the heat storage tank sensor 10 collect solar heat or the water temperature in the heat storage tank decreases due to hot water being tapped, the relay RY 1 26 is energized. The contact RY 1 31 is closed, and the circulation pump operates at high capacity while the flow rate sensor FS21 does not sense circulation of the heat medium, and operates at low capacity when the flow rate sensor FS21 senses circulation. As a result, the power consumption for operating the circulation pump was reduced by approximately 25 to 30%, and the atmosphere-opening tank 5
The capacity of the heat exchanger can be reduced by about 30 to 50%, and since the heat medium is always filled in the heat collection circuit, the amount of heat collected can be reduced by about 10%.
There were effects such as a % increase in sales.
第3図は能力可変循環ポンプ20を直流モータ
にて駆動して能力を無段階とし、流量センサー2
1の信号で駆動制御するもので、熱媒体が流れて
いない時をポンプの能力を大とし、流れが最大の
時にポンプ能力を最小とし、その間は無段階に制
御するようにしたものである。流量センサー21
の信号を増幅器27で増幅し、制御器34で循環
ポンプ20を制御する。制御器34の電源は上述
のリレーRY1,RY3の接点RY1,RY3,31,3
2で制御される。大気開放タンクは蓄熱槽がその
役目をしている。 Figure 3 shows a variable capacity circulation pump 20 driven by a DC motor to make the capacity stepless, and a flow rate sensor 2.
The drive is controlled by a single signal, and the pump capacity is increased when no heat medium is flowing, and is minimized when the flow is at its maximum, during which time the pump capacity is controlled steplessly. Flow rate sensor 21
The signal is amplified by an amplifier 27, and a controller 34 controls the circulation pump 20. The power supply of the controller 34 is provided by the contacts RY 1 , RY 3 , 31, 3 of the relays RY 1 , RY 3 mentioned above.
Controlled by 2. A heat storage tank serves as a tank that is open to the atmosphere.
本発明の説明は蓄熱槽に集熱回路の熱交換器の
あるもので行つているが、蓄熱槽給湯(水)側が
大気開放式でもよく、又熱交換器のない大気開放
式でもよい。第4図はこの実施例である。又、本
発明の流量センサー21は圧力センサーで行うこ
とが出来る。又、センサー系を簡略するため水位
センサー22をやめて、大気開放タンク容量は大
のままで循環ポンプの消費電力減少の為として使
うことも出来る。更に、集熱器近傍に空気抜き弁
を設け、循環ポンプがとまれば、熱媒体を集熱器
から回収する形式のシステムにおいても、熱媒体
を集熱器へ充満させるまでは能力大で、その後は
能力小で運転させるようにしてもよい。 Although the present invention has been described using a heat storage tank with a heat exchanger in a heat collecting circuit, the heat storage tank may be of an open type on the hot water (water) side, or may be open to the atmosphere without a heat exchanger. FIG. 4 shows this embodiment. Further, the flow rate sensor 21 of the present invention can be a pressure sensor. Further, in order to simplify the sensor system, the water level sensor 22 can be omitted, and the tank capacity opened to the atmosphere can be left large and used to reduce the power consumption of the circulation pump. Furthermore, even in systems where an air vent valve is installed near the heat collector and the circulation pump is stopped, the heat medium is recovered from the heat collector, the capacity is high until the heat medium is filled into the heat collector, and then the capacity is high. It may be arranged to operate at a low capacity.
叙上のように本発明によれば循環ポンプにおけ
る消費電力を低減できるばかりでなく、熱媒体の
循環速度(流量)を集熱により好適な速度にする
ことにより集熱効率を向上させることができる。 As described above, according to the present invention, not only the power consumption in the circulation pump can be reduced, but also the heat collection efficiency can be improved by adjusting the circulation speed (flow rate) of the heat medium to a speed suitable for heat collection.
第1図a,b:従来の太陽熱集熱システムの構
成図、第2図a,b:本発明の太陽熱集熱システ
ムの構成図、及びその制御ブロツク図、第3図:
他の実施例の制御ブロツク図、第4図:他の実施
例構成図。
符号、20:能力可変集熱循環用ポンプ、2
1:流量センサ。
Figures 1a and b: Block diagram of a conventional solar heat collection system, Figure 2 a and b: Block diagram of the solar heat collection system of the present invention and its control block diagram, Figure 3:
Control block diagram of another embodiment, FIG. 4: Configuration diagram of another embodiment. Code, 20: Variable capacity heat collection circulation pump, 2
1: Flow rate sensor.
Claims (1)
この集熱回路内に循環ポンプによつて熱媒体を循
環させて成る太陽熱集熱システムにおいて、 上記循環ポンプの能力を少なくとも2段階に切
り替え可能と成すとともに上記集熱回路中の熱媒
体の流れあるいは圧力を検知する流量センサある
いは圧力センサを設け、この流量センサあるいは
圧力センサの出力に応答して上記循環ポンプの能
力を替えるようにしたことを特徴とする太陽熱集
熱システム。[Claims] 1. A heat collection circuit is formed between a heat collector and a heat storage tank,
In a solar heat collection system in which a heat medium is circulated in the heat collection circuit by a circulation pump, the capacity of the circulation pump can be switched between at least two stages, and the flow of the heat medium in the heat collection circuit or A solar heat collecting system characterized in that a flow rate sensor or a pressure sensor for detecting pressure is provided, and the capacity of the circulation pump is changed in response to the output of the flow rate sensor or pressure sensor.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57181944A JPS5971950A (en) | 1982-10-15 | 1982-10-15 | Solar heat collecting system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57181944A JPS5971950A (en) | 1982-10-15 | 1982-10-15 | Solar heat collecting system |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5971950A JPS5971950A (en) | 1984-04-23 |
JPS6350627B2 true JPS6350627B2 (en) | 1988-10-11 |
Family
ID=16109608
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57181944A Granted JPS5971950A (en) | 1982-10-15 | 1982-10-15 | Solar heat collecting system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5971950A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0528240U (en) * | 1991-09-27 | 1993-04-16 | 株式会社くろがね工作所 | Drawer end plate mounting device |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4786504B2 (en) | 2006-11-10 | 2011-10-05 | 川崎重工業株式会社 | Heat medium supply facility, solar combined power generation facility, and control method thereof |
JP5275680B2 (en) * | 2008-05-14 | 2013-08-28 | 株式会社長府製作所 | Forced circulation solar water heater |
JP5696926B2 (en) * | 2010-09-30 | 2015-04-08 | 株式会社ノーリツ | Solar water heating system |
-
1982
- 1982-10-15 JP JP57181944A patent/JPS5971950A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0528240U (en) * | 1991-09-27 | 1993-04-16 | 株式会社くろがね工作所 | Drawer end plate mounting device |
Also Published As
Publication number | Publication date |
---|---|
JPS5971950A (en) | 1984-04-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2178149A3 (en) | Fuel cell power generation system | |
JPS6350627B2 (en) | ||
JP2000121171A (en) | Solar heat water heating system | |
JP3234976B2 (en) | Solar hot water system and method for charging heat medium into circulation circuit in solar hot water system | |
JPH11337188A (en) | Storage type hot water supply equipment | |
CN201293470Y (en) | Freeze proof solar thermal collection system | |
JPS6310443Y2 (en) | ||
JPS60164150A (en) | Heat pump type hot water supplier | |
JPH0250377B2 (en) | ||
JPS6152556A (en) | Solar heat collecting device | |
JPS56168059A (en) | System for power generation and collecting heat by solar beams | |
JPS61280346A (en) | Control device for solar heat collecting device | |
JPH1183210A (en) | Refrigerant circuit device, and hot water storage system of hot water supplier | |
JPS6310444Y2 (en) | ||
JPH018920Y2 (en) | ||
JPH0119011Y2 (en) | ||
JPS6137534B2 (en) | ||
JPS6011394Y2 (en) | solar water heater | |
JPH0124526Y2 (en) | ||
JPS5860A (en) | Device to prevent excessive temperature rise in forced circulation type solar heat hot water device | |
JPS60233454A (en) | Solar heat water heater | |
JPH0332708B2 (en) | ||
JPS5937646Y2 (en) | solar heat collector | |
JPH0413618B2 (en) | ||
JPS5977254A (en) | Solar heat water heater |