JPS6350601A - Steam turbine - Google Patents

Steam turbine

Info

Publication number
JPS6350601A
JPS6350601A JP19468986A JP19468986A JPS6350601A JP S6350601 A JPS6350601 A JP S6350601A JP 19468986 A JP19468986 A JP 19468986A JP 19468986 A JP19468986 A JP 19468986A JP S6350601 A JPS6350601 A JP S6350601A
Authority
JP
Japan
Prior art keywords
rotor
rotor disk
moving blade
oxide film
steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19468986A
Other languages
Japanese (ja)
Inventor
Toshihiro Fujiwara
藤原 敏洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP19468986A priority Critical patent/JPS6350601A/en
Publication of JPS6350601A publication Critical patent/JPS6350601A/en
Pending legal-status Critical Current

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PURPOSE:To prevent reduction in the coupling strength of a plantation section, by forming an oxide film on the surfaces of a rotor disk and a moving blade, prior to fixing the moving blade. CONSTITUTION:Prior to fixing a moving blade 7 to a rotor disk 6, the rotor disk 6 and the moving blade 7 are put in a thermostatic chamber at a temperature below transformation temperature for a given time. As a result, an oxide film 21 consisting of a layer free from thermal refining 23 and an oxide layer 24 are formed on the surfaces of the rotor disk 6 and the moving blade 7, thereby allowing the plantation section of the moving blade to be free from erosion and the coupling strength thereof to be maintained.

Description

【発明の詳細な説明】 (発明の目的) (産業上の利用分野) 本発明は蒸気タービンに係り、特に厳しい腐食環境から
ロータ円板および動翼等の回転体を保護するのに好適な
然気タービンに関する。
Detailed Description of the Invention (Objective of the Invention) (Industrial Application Field) The present invention relates to a steam turbine, and is particularly suitable for protecting rotating bodies such as a rotor disk and rotor blades from a severe corrosive environment. Regarding air turbines.

(従来の技術) 一般に、蒸気タービンにおいては、第4図に示したよう
に、周方向に順次配列された多数個のノズル翼1の内外
両端部をノズル内輪2およびノズル外輪3に一体的に固
定し、このノズル外輪3をケーシング4に固定して静止
部を構成するとともに、回転軸5と一体または嵌込みの
ロータ円板6に!J[7を植設して回転部を構成し、こ
の静止部と回転部とによって一段落を形成している。そ
して、この段落を軸方向に複数個組合せることにより蒸
気タービンが構成されている。
(Prior Art) Generally, in a steam turbine, as shown in FIG. 4, both the inner and outer ends of a large number of nozzle blades 1 arranged sequentially in the circumferential direction are integrated into a nozzle inner ring 2 and a nozzle outer ring 3. This nozzle outer ring 3 is fixed to the casing 4 to form a stationary part, and also to the rotor disk 6 which is integrated with or fitted into the rotating shaft 5! J [7 is planted to constitute a rotating section, and this stationary section and rotating section form one stage. A steam turbine is constructed by combining a plurality of these stages in the axial direction.

このような蒸気タービンにおいて、作動流体である蒸気
は、ノズル内輪2とノズル外輪3とで形成された環状通
路をほぼ軸方向に向って流れ、ノズル翼1を通ることに
Jこり十分な旋回力が与えられた後動翼7に入り、ここ
で蒸気の旋回力が動翼7を介して回転1咄5の回転力に
変換される。ざらに動翼7から流出する蒸気は次の段落
に流入して同様のり3作を繰り返す。ここで、ノズル内
輪2と口−り円板6に囲まれた空間8は、ラビリンスパ
ッキン9から漏洩した蒸気によって満されており、この
空間8の蒸気圧力P1は動翼7の下流側の蒸気圧力P2
よりも高くなっている。
In such a steam turbine, steam, which is a working fluid, flows approximately axially through an annular passage formed by a nozzle inner ring 2 and a nozzle outer ring 3, and passes through the nozzle blades 1 with sufficient swirling force. The swirling force of the steam enters the rotor blades 7, where the swirling force of the steam is converted through the rotor blades 7 into a rotational force of 1 rotation 5. The steam flowing out from the rotor blades 7 flows into the next stage and repeats the same three glue operations. Here, a space 8 surrounded by the nozzle inner ring 2 and the mouth disk 6 is filled with steam leaking from the labyrinth packing 9, and the steam pressure P1 in this space 8 is the steam downstream of the moving blade 7. pressure P2
It is higher than that.

このように蒸気の有する熱エネルギを回転エネルギに変
換する動TA7は、第5図および第6図に示したように
、回転@5の周方向に複数枚植設されており、その植設
方法にはダブディル構造が採用されている。このダブデ
ィル構造は、ロータ円板6の外周部にフック部として2
段のダブディル10を形成するとともに動翼7の植込部
11に上記ダブディル10と係合するダブディル溝12
を形成し、ロータ円板6の1個所に形成した切欠部に!
J+m7を半径方向に挿入するとともにこの切欠部から
動翼7をダブディル10に沿って周方向に移動させて順
次組込むようにしたものである。しかして、隣接する動
翼7の植込部11間に間隙13が形成されると、植込部
11における接線方向の拘束力が弱くなって組込まれた
動翼7の固有振動数にばらつきが生じ、この(i!a’
fiG動数がノズル翼1出口にお【ブる蒸気の衝動力の
変動による助成周波数と合致すると動翼7が破損する恐
れらあるので、動翼7を組込む時は数枚の翼を一群どし
て翼先端部をシュラウドバンド14で結合し、上記間隙
13を極力小さくするようにしている。
As shown in FIGS. 5 and 6, a plurality of dynamic TAs 7 that convert the thermal energy of steam into rotational energy are installed in the circumferential direction of the rotation @ 5, and the installation method is as follows. The dub dill structure is adopted. This dovetail structure has two hooks on the outer periphery of the rotor disk 6.
A dove dill groove 12 that forms the dove dill 10 of the stage and engages with the dove dill 10 in the implanted portion 11 of the rotor blade 7.
, and in the notch formed in one place of the rotor disk 6!
J+m7 is inserted in the radial direction, and the rotor blades 7 are moved circumferentially from this notch along the dovetail 10 to be sequentially assembled. Therefore, when a gap 13 is formed between the implanted portions 11 of adjacent rotor blades 7, the tangential restraining force in the implanted portions 11 becomes weaker, causing variations in the natural frequency of the incorporated rotor blades 7. arise, this (i!a'
If the fiG frequency matches the auxiliary frequency due to fluctuations in the impulse force of the steam flowing at the nozzle blade 1 outlet, the rotor blade 7 may be damaged. The blade tips are connected by a shroud band 14, and the gap 13 is made as small as possible.

(発明が解決しようとする問題点) しかしながら、現在の組立技術では上記間隙13を零に
することは難しく、またタービン運転時の植込部11の
弾性変形によりある程麿の間隙が生ずることは避けるこ
とができないので、タービン運転時には上記間隙13か
ら蒸気が浸入しより圧力の低い動翼アの下流側に流出し
ていた。このため、上記間隙13から侵入した蒸気は、
ダブディル10とダブディル溝12の係合部に形成され
た間隙15内に充満して滞留し、蒸気中に含まれた不純
物が上記係合部の間隙15に堆積するという問題があっ
た。特に、地熱然気を作わノ流体とする地熱タービンに
おいては、地熱蒸気中にスケールや腐食性物質が多量に
含まれているので上記間隙15に多聞の腐食性物質が堆
積し、さらにロータ円板6および動翼7等の回転体は作
動流体との相対速度が大きく高応力状態に晒されるので
作!Il流体による浸食の度合いが大さくなり、上記係
合部周辺のロータ円板6や動翼7が腐食してその係合強
度が低下し、最悪の場合植込部11に割れ16が生じて
動翼7が飛散するという問題があった。
(Problems to be Solved by the Invention) However, with the current assembly technology, it is difficult to reduce the gap 13 to zero, and it is difficult to reduce the gap 13 to zero due to elastic deformation of the implanted portion 11 during turbine operation. Since this cannot be avoided, during turbine operation, steam enters through the gap 13 and flows out to the downstream side of the rotor blade A where the pressure is lower. Therefore, the steam that entered through the gap 13,
There has been a problem in that the impurities contained in the steam fill and remain in the gap 15 formed at the engaging portion between the dove dill 10 and the dove dill groove 12, and are deposited in the gap 15 at the engaging portion. In particular, in geothermal turbines that use geothermal natural air as the fluid, the geothermal steam contains a large amount of scale and corrosive substances, so a large amount of corrosive substances accumulate in the gap 15, and furthermore, the rotor circle Rotating bodies such as the plate 6 and rotor blades 7 have high relative speeds with the working fluid and are exposed to high stress conditions. The degree of erosion by the Il fluid increases, and the rotor disk 6 and rotor blades 7 around the engagement portion corrode, reducing the engagement strength, and in the worst case, cracks 16 may occur in the implanted portion 11. There was a problem that the rotor blades 7 were scattered.

そこで本発明の目的は上述した従来技術が有する問題点
を解W5シ、[1−り円板と動翼の係合部に堆積する蒸
気中の腐食性物質からの浸食を防止し、動翼植込部の係
合強度を維持できるようにした蒸気タービンを提供する
ことにある。
Therefore, the purpose of the present invention is to solve the above-mentioned problems of the prior art. An object of the present invention is to provide a steam turbine that can maintain the engagement strength of an implanted part.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 上記目的を達成するために、本発明は、動翼組込み前に
ロータ円板および1lltaの表面に酸化皮膜を形成す
るようにしたものである。
(Means for Solving the Problems) In order to achieve the above object, the present invention forms an oxide film on the surfaces of the rotor disk and the rotor blade before assembling the rotor blade.

(作 用) 上記構成に基づいて本発明の詳細な説明すると、ロータ
円板および動翼の表面に酸化皮膜を形成したから、ロー
タ円板および動翼の金属面を腐食環境から保護できる。
(Function) The present invention will be described in detail based on the above configuration. Since an oxide film is formed on the surfaces of the rotor disk and the rotor blade, the metal surfaces of the rotor disk and the rotor blade can be protected from a corrosive environment.

したがって、腐食によるロータ円板と動翼の係合部の強
度低下を防止でき、動翼植込部に割れが発生するのを防
止でき、信頼性の高い蒸気−ビンを得ることができる。
Therefore, it is possible to prevent a decrease in the strength of the engagement portion between the rotor disk and the rotor blade due to corrosion, prevent cracks from occurring in the rotor blade implantation portion, and obtain a highly reliable steam bottle.

(実施例) 以下、本発明による蒸気タービンの実施例を第1図乃至
第3図を参照して説明する。なお、従来と同一部分には
同一符号を用いる。
(Example) Hereinafter, an example of a steam turbine according to the present invention will be described with reference to FIGS. 1 to 3. Note that the same reference numerals are used for parts that are the same as in the prior art.

第1A図において符号7は動翼を示し、各りJ黄7はロ
ータ円板6にダブディル構造により組込まれており、ロ
ータ円板6の外周部に形成されたダブディル10と各動
翼7の植込部11に形成されたダブディル溝12が係合
している。上記ダブディル10が一体に形成されたロー
タ円板6および植込部11が一体に形成された動翼7の
表面には、第1B図に示したように酸化皮膜21が形成
されている。この酸化皮膜21は、肋W組込み前にロー
タ円板6および動カフを恒温槽内にA1変態;侃度以下
で一定時間放置することによって形成されたもので、地
鉄22表面に形成され各石材中に含よれるCr、P等に
よって成牛される非調’11 立23とこの非調質層2
3の上に形成される酸化層24とで構成されている。上
記恒温槽の酸化皮膜形成温度は一連の腐食試験から経験
的に決定されており、300℃または400℃がもつと
も好ましいことが判明している。
In FIG. 1A, reference numeral 7 indicates a rotor blade, and each J yellow 7 is incorporated into the rotor disc 6 by a dovetail structure, and the dovetail 10 formed on the outer periphery of the rotor disc 6 and each rotor blade 7 are A dovetail groove 12 formed in the implanted portion 11 is engaged. As shown in FIG. 1B, an oxide film 21 is formed on the surfaces of the rotor disk 6 on which the dovetail 10 is integrally formed and the rotor blade 7 on which the implanted portion 11 is formed integrally. This oxide film 21 is formed by leaving the rotor disk 6 and the dynamic cuff in a thermostatic chamber at a temperature below the A1 transformation temperature for a certain period of time before assembling the rib W, and is formed on the surface of the base steel 22. The non-tempered layer 2 is formed by Cr, P, etc. contained in the stone.
3 and an oxide layer 24 formed on top of the oxide layer 24. The temperature at which the oxide film is formed in the constant temperature bath has been determined empirically from a series of corrosion tests, and it has been found that 300°C or 400°C is preferable.

第2図および第3図は地熱タービン用ロータ材であるC
r−No−V鋼の3%食塩水下における腐食試験結果を
示し、図中・記号は酸化皮膜を形成していないしの、ム
記号は300 ’Cの恒)易槽内に10時間放置したも
の、WA記号は400℃の恒温槽内に10時間放置した
ものを示している。上記試験結果から明らかなように、
酸化皮膜を形成したムのは腐食減aが少なくなるととし
に対腐食疲労寿命が改善され、酸化皮膜が腐食環境下に
おける金属材料の保護膜として有効であることがわかる
Figures 2 and 3 are rotor materials for geothermal turbines.
The results of a corrosion test of r-No-V steel in 3% saline solution are shown. In the figure, the symbol indicates that no oxide film was formed, and the symbol indicates that the steel was left in a constant temperature bath at 300'C for 10 hours. The WA symbol indicates that the product was left in a constant temperature bath at 400°C for 10 hours. As is clear from the above test results,
It can be seen that when the corrosion loss a of the metal with the oxide film formed is reduced, the fatigue life against corrosion is improved, and the oxide film is effective as a protective film for metal materials in a corrosive environment.

このようにロータ円板6および1FJJH7の表面に酸
化皮膜21を形成してから動rA7を組込むようにすれ
ば、運転時に隣接する8響の植込部11の間隙13から
蒸気が侵入し、ロータ円板6と動翼7との係合部に形成
された間隙15内に蒸気中の腐食性物質が堆積しても、
ロータ円板6および動W7の金属面が腐食を受けことは
ない。このため、動翼の植込部11の係合強度を維持す
ることができ、動翼飛散という重大事故に直結する植込
部110割れ16の発生を防止することができる。
By forming the oxide film 21 on the surfaces of the rotor disc 6 and 1FJJH7 in this way and then incorporating the rotor A7, steam can enter from the gap 13 of the adjacent 8-tone implantation part 11 during operation, and the rotor Even if corrosive substances in the steam accumulate in the gap 15 formed at the engagement portion between the disk 6 and the rotor blade 7,
The metal surfaces of the rotor disk 6 and the dynamic W7 are not subject to corrosion. Therefore, the engagement strength of the implanted portion 11 of the rotor blade can be maintained, and it is possible to prevent the occurrence of cracks 16 in the implanted portion 110, which can directly lead to a serious accident such as flying off the rotor blade.

なお、酸化皮膜21の形成作業は、タービン新設時およ
び補修等による部品新装時に必ず処置するようにする。
The oxide film 21 must be formed when a new turbine is installed or when new parts are installed due to repairs or the like.

また、上述のように恒温槽で酸化皮膜を形成する代りに
、シアン塩(MCN)やシアン酸塩(MCNO−1の雰
囲気中で行なう塩浴軟窒化や、N )−13ガス中で行
なうガス軟窒化、または各種浸炭作業によりロータ円板
および動翼の表面を硬化さけることによっても耐廐食性
という点で同様の効果が得られる。
In addition, instead of forming an oxide film in a constant temperature bath as described above, salt bath nitrocarburizing is performed in an atmosphere of cyanate (MCN) or cyanate (MCNO-1), or gas soft nitriding is performed in an atmosphere of N2-13 gas. A similar effect in terms of corrosion resistance can be obtained by avoiding hardening of the rotor disk and rotor blade surfaces by nitrocarburizing or various carburizing operations.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように、本発明によれば勅要組
込み前にロータ円板および動翼の表面に酸化皮膜を形成
したから、腐食による動翼植込部の係合強度の低下を防
止でき、重大事故に直結する動翼植込部の割れの発生を
防止することができる。したがって、信頼性の高い蒸気
タービンを得ることができる。
As is clear from the above explanation, according to the present invention, since an oxide film is formed on the surfaces of the rotor disk and rotor blades before the rotor blades are assembled, a decrease in the engagement strength of the rotor blade implantation part due to corrosion is prevented. This makes it possible to prevent the occurrence of cracks in the rotor blade implant, which can directly lead to serious accidents. Therefore, a highly reliable steam turbine can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1A図は本発明による蒸気タービンのロータ円板と動
翼を示す斜視図、第1B図は第1A図の△部d3よび8
部の表面拡大図、第2図および第3図は地熱タービン用
ロータ拐の腐食試験結果を示す図、第4図は蒸気タービ
ンの一段落部を示す断面図、第5図は蒸気タービンのダ
ブティル構造を示づ゛分解斜視図、第6図はロータ円板
に動翼を組込んだ状態を示す正面図である。 6・・・ロータ円板、7・・・動翼、10・・・ダブテ
イル、11・・・植込部、12・・・ダブテイル溝、1
3.15・・・間隙、21・・・酸化皮膜、22・・・
地鉄、23・・・非調?1層、24・・・酸化層。 出願人代理人  佐  藤  −雄 筋IA図 5受食日合間(日) 佑2 図 績坦し数 N 筋3 図 躬4図 ぢ5 図
FIG. 1A is a perspective view showing the rotor disk and rotor blades of the steam turbine according to the present invention, and FIG. 1B is the △ portions d3 and 8 of FIG. 1A.
Figures 2 and 3 are diagrams showing the corrosion test results of the rotor shaft for a geothermal turbine. Figure 4 is a sectional view of one stage of the steam turbine. Figure 5 is the dovetail structure of the steam turbine. 6 is an exploded perspective view, and FIG. 6 is a front view showing a state in which the rotor blades are assembled into the rotor disk. 6... Rotor disk, 7... Moving blade, 10... Dovetail, 11... Implanted part, 12... Dovetail groove, 1
3.15... Gap, 21... Oxide film, 22...
Subway, 23...out of order? 1 layer, 24... oxidized layer. Applicant's agent Sato - Male muscle IA figure 5 Interval between eating days (days) Yu 2 Number of flat records N Muscle 3 Figure 4 Figure 5

Claims (1)

【特許請求の範囲】[Claims] 回転軸と一体または嵌込みのロータ円板の外周部にフッ
ク部を形成し、このフック部に動翼の植込部を係合せし
めて複数枚の動翼を回転軸まわりに組込んだ蒸気タービ
ンにおいて、動翼組込み前にロータ円板および動翼の表
面に酸化皮膜を形成するようにしたことを特徴とする蒸
気タービン。
A steam turbine in which a hook part is formed on the outer periphery of a rotor disk that is integrated with or fitted into the rotating shaft, and a plurality of moving blades are assembled around the rotating shaft by engaging the implanted part of the moving blade with the hook part. A steam turbine characterized in that an oxide film is formed on the surfaces of the rotor disk and the rotor blades before the rotor blades are assembled.
JP19468986A 1986-08-20 1986-08-20 Steam turbine Pending JPS6350601A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19468986A JPS6350601A (en) 1986-08-20 1986-08-20 Steam turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19468986A JPS6350601A (en) 1986-08-20 1986-08-20 Steam turbine

Publications (1)

Publication Number Publication Date
JPS6350601A true JPS6350601A (en) 1988-03-03

Family

ID=16328643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19468986A Pending JPS6350601A (en) 1986-08-20 1986-08-20 Steam turbine

Country Status (1)

Country Link
JP (1) JPS6350601A (en)

Similar Documents

Publication Publication Date Title
US5189874A (en) Axial-flow gas turbine cooling arrangement
KR100379728B1 (en) Rotor assembly shroud
EP2949874B1 (en) Dual walled seal assembly
AU2006252116B2 (en) Sealing device
US4111603A (en) Ceramic rotor blade assembly for a gas turbine engine
US6565322B1 (en) Turbo-machine comprising a sealing system for a rotor
US3537713A (en) Wear-resistant labyrinth seal
US5048183A (en) Method of making and repairing turbine blades
US6682307B1 (en) Sealing system for a rotor of a turbo engine
EP0615055A1 (en) A stator blade cooling
US20130149118A1 (en) Labyrinth seals
US20130017072A1 (en) Pattern-abradable/abrasive coatings for steam turbine stationary component surfaces
US10088049B2 (en) Thermally protected seal assembly
US4863343A (en) Turbine vane shroud sealing system
US4378961A (en) Case assembly for supporting stator vanes
GB1318654A (en) Bladed rotors
US9784114B2 (en) Rotating assembly for a turbomachine
US20130058764A1 (en) Stepped, conical honeycomb seal carrier
US5961125A (en) Brush seal for use on rough rotating surfaces
US4280795A (en) Interblade seal for axial flow rotary machines
JPS62131930A (en) Shaft seal apparatus to turbo machine, especially, multiaxisgas turbine engine
US5433453A (en) Articulated snout rings having spaced teeth
JPH02149701A (en) Axial-flow steam turbine
US5049032A (en) Particulate seal for elastic fluid turbines
US6632069B1 (en) Step of pressure of the steam and gas turbine with universal belt