JPS6350500B2 - - Google Patents
Info
- Publication number
- JPS6350500B2 JPS6350500B2 JP55176586A JP17658680A JPS6350500B2 JP S6350500 B2 JPS6350500 B2 JP S6350500B2 JP 55176586 A JP55176586 A JP 55176586A JP 17658680 A JP17658680 A JP 17658680A JP S6350500 B2 JPS6350500 B2 JP S6350500B2
- Authority
- JP
- Japan
- Prior art keywords
- stone
- sound
- resonator
- slit
- present
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000004575 stone Substances 0.000 claims description 29
- 239000010440 gypsum Substances 0.000 claims description 12
- 229910052602 gypsum Inorganic materials 0.000 claims description 12
- 238000000034 method Methods 0.000 claims description 12
- 239000011358 absorbing material Substances 0.000 claims description 10
- 239000000835 fiber Substances 0.000 claims description 3
- 239000011491 glass wool Substances 0.000 description 12
- 238000010276 construction Methods 0.000 description 11
- 239000000463 material Substances 0.000 description 10
- 238000010521 absorption reaction Methods 0.000 description 7
- 239000003365 glass fiber Substances 0.000 description 5
- 238000009434 installation Methods 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 238000013461 design Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 230000005484 gravity Effects 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 101100495270 Caenorhabditis elegans cdc-26 gene Proteins 0.000 description 2
- 239000006096 absorbing agent Substances 0.000 description 2
- 239000004567 concrete Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005553 drilling Methods 0.000 description 2
- 239000004579 marble Substances 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229910001369 Brass Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000004378 air conditioning Methods 0.000 description 1
- 238000004873 anchoring Methods 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- ZOMBKNNSYQHRCA-UHFFFAOYSA-J calcium sulfate hemihydrate Chemical compound O.[Ca+2].[Ca+2].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O ZOMBKNNSYQHRCA-UHFFFAOYSA-J 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000005253 cladding Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 229920006332 epoxy adhesive Polymers 0.000 description 1
- 229920006248 expandable polystyrene Polymers 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 230000033001 locomotion Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000011505 plaster Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 238000005381 potential energy Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000011150 reinforced concrete Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Landscapes
- Building Environments (AREA)
- Soundproofing, Sound Blocking, And Sound Damping (AREA)
Description
本発明は在来の乾式工法ではデツドスペースと
なつている石裏空間を逆に利用して低音域専用の
レゾネータ(resonator)とすることを特徴とす
る吸音石貼工法に係るものである。
収容人員約2000人、残響時間2秒という大規模
なコンサート専用ホールの設計、施工に当つて次
のような問題点がある。
室内空間が17000m3において2秒間の残響時間
を確保するには、理想としては空間壁面を反射性
の硬質仕上材で構成する必要があるが、大理石の
ような高価なものしかなく、適正な材料の選定に
は苦慮することとなる。高音領域の音に対しては
収容人員の衣服と人間による凹凸によつて大部分
の吸音処理が行なわれるが、低音領域に関しては
殆んど吸音効果がない。
そこで本発明者等は従来から利用されているレ
ゾネータに着目して本発明を提案するに至つた。
レゾネータは中世のデンマークやスウエーデンの
多くの教会で使用されており、教会における宗教
音楽の長い残響時間を調節する能力を持つてい
る。
本発明者は在来方法に従つて残響計算及び模型
実験を行なつた。表−1は気積17000m3の時の低
音用吸音構造の必要面積、必要数の概数を示し、
第1図、第2図、第3図及び第4図が夫々ヘルム
ホルツ型共鳴器、スリツト型共鳴器、スリツト状
共鳴吸音体及び穴あき状共鳴吸音体の概形を示す
ものである。
The present invention relates to a sound-absorbing stone cladding method that is characterized in that the space behind the stone, which is a dead space in conventional dry construction methods, is used to create a resonator exclusively for the low frequency range. The following problems arise when designing and constructing a large-scale concert hall with a seating capacity of approximately 2,000 people and a reverberation time of 2 seconds. In order to ensure a reverberation time of 2 seconds in an indoor space of 17,000m3 , ideally the walls of the space should be made of reflective hard finishing material, but only expensive materials such as marble are available, and it is difficult to find suitable materials. It will be difficult to select. Most of the sound absorption in the high frequency range is done by the clothes of the occupants and the unevenness caused by humans, but there is almost no sound absorption effect in the low frequency range. Therefore, the present inventors focused on the resonator that has been used conventionally and proposed the present invention.
Resonators were used in many medieval Danish and Swedish churches and had the ability to adjust the long reverberation times of religious music in churches. The inventor conducted reverberation calculations and model experiments according to conventional methods. Table 1 shows the required area and approximate number of bass sound absorbing structures when the air volume is 17000m3 .
FIGS. 1, 2, 3, and 4 show the general shapes of a Helmholtz resonator, a slit resonator, a slit-like resonant sound absorber, and a perforated resonant sound absorber, respectively.
【表】
しかしながら表−1から明らかなように、ヘル
ムホルツ型のレゾネータでも最低5000個(この場
合は音響的に低音域の残響時間が目標値より少し
長くなる)要し、十分満足しうる低音処理設計を
した場合には15000個必要とすることが判つた。
コンサート専用ホールに15000個の孔がランダム
に並んだ設計は余りにも異様であり、到底採用さ
れうべくもない。またその取付施工も指定された
位置に、コンクリート打設時の振動及びコンクリ
ートの側圧に耐えうるように固定するのは容易で
なく、経済性の点からも不利であつた。
第5図はレゾネータの基本原理を示し、レゾネ
ータは空洞部分VにネツクV′が連通して構成さ
れ、剛壁に埋込まれた状態で音波が投射した時点
で動かないこと、投射した音波の波長に比較して
その各部の寸法が十分に小さくなつていることを
要し、レゾネータに音波が入射されると、ネツク
の空気l0、mは音波の周波数に応じて振動を始
め、これによつて空洞部分の空気はスプリングの
ように規則的に圧縮されたり膨脹したりする運動
を反覆する。運動エネルギはネツクに集中し、こ
れに反してポテンシヤルエネルギは空洞部分に現
われる。
本発明者等はこれらを鋭意研究した結果、第6
図に示すようにレゾネータのネツクV′部を円筒
体よりスリツトSに置換し、更に1個宛の独立箱
B方式を廃して壁面からパネルPを持出す構成を
採用することにした。
即ち本発明の骨格は乾式石貼り工法に吸音用グ
ラスウール等の吸音材料を先付けし、更に改良し
たスリツト型レゾネータをパネル取付工法に組込
むことを特徴とするものである。
建造物壁面に対する乾式石貼り工法は、金物の
取付とボルトの緊結とのため、石裏をやむなく80
mm以上あけておく必要があり、この石裏空間がデ
ツドスペースとなるのに対して、本発明は逆にこ
の石裏空間を利用して音響実験で確認した寸法で
設けたスリツト幅をレゾネータ化することに特徴
を有するものである。またグラスウール等の吸音
材料もパネルに先付けできるので、現場における
作業工数の削減と高い施工精度が確保できる。更
に石裏空間を必要に応じて空調の吹出しにも利用
できるとともに、スリツト幅や取付パネルの建造
物躯体の出入りも、乾式工法の支持金物の寸法調
整で容易に処理しうるものであり、また湿式工法
に比して取付け速度が大幅に短縮できる。
本発明を更に詳細に説明すると、本発明は肉厚
15〜45mm、比重1.65±0.4の繊維強化石膏版の裏
面に予め吸音材料を重層接合し、これを乾式工法
によつて建造物壁面に50〜200mmの石裏空間を保
持するように取付けるとともに、版の少なくとも
一方の端縁に前記石裏空間に連通する50〜150mm
のスリツトを設けることによつてレゾネータを形
成し、版表面を高音域反射用拡散体とするととも
に、前記スリツト部分で顕著に低音を吸収するよ
うにしたことを特徴とするもので、以下図面につ
いて本発明を更に詳述する。
本発明において使用される繊維強化石膏板は、
α型半水石膏に水を35〜45部耐水強化剤2部、E
ガラスの短繊維を0.1〜1.0(重量部)含有したも
ので、表面に印刷の施された光硬化性樹脂を塗布
含浸させ、紫外線によつて硬化させたもので、例
えばギヤルストーン(昭和高分子株式会社商品
名)が使用される。このパネルは意匠効果が優れ
ているだけでなく、不燃性でしかも大型版が製作
でき、肉厚も必要に応じて自由に設計できるもの
である。
しかも比重が1.65前後であり、900×600×20mm
の版であれば、1枚当りの重量が18Kg弱であつて
取扱いも容易であるため、高所作業においても、
従来の石貼り作業に比して安全性が高い。更にE
ガラス繊維が混入されているため、基材が石膏よ
り構成されているのにもかかわらず、曲げ強度、
耐衝撃性、粘り、太柄耐力にも優れている。
太柄の耐力試験に当り、在来の天然石材ではバ
ラツキが大きく、石目、節理等の木材でいえば節
穴や割れに該当する部分に関する安全チエツクが
繁雑であるのに反して、前記ギヤルストーンは工
業製品であるためバラツキは著しく少なく、且つ
ガラス繊維の作用によつてパネル破壊後も繊維の
纒絡によつてパネルの自重の約2倍まで保持しう
る能力があり、石材ではみららなかつた塑性域で
の安全性が見込めることが判つた。
前記パネルの表面は硬質であり、比重も1.65あ
るため、高音域音の反射に役立つことが15m2の実
物大の実験で確認された。これによつて前記パネ
ルはコンサートの反射壁での理想材料であつた天
然大理石の特徴だけを活かした代替材料となつ
た。更に同パネルの木口部分だけを肉厚に形成し
ておくことにより、太柄耐力は更に増大し、パネ
ル重量を軽減できる。
本発明で用いる吸音材料としてグラスウール
は、肉厚25mm±20mmで、密度は32±5Kg/m3のも
のが音響テストで有効であつた。しかしながら吸
音材は石裏空間とスリツト幅の変化とに伴つて変
化するものであり、また原理的にはグラスウール
以外の吸音材でも適用可能である。
また本発明で用いる金物は通常発銹しないもの
が好ましく、SUS304ステンレス鋼、黄銅、アル
ミ合金、鋼材にメツキを施したものが使用され
る。
本発明でいうスリツトは、原則的にはパネル間
接合部に生じる隙間をいい、これは支持金物の取
付位置によつて幅を変化させることができる。ス
リツトは縦横の双方若しくは何れか一方に配設さ
れ、その幅は50〜150mmである。特殊な場合とし
て、スリツトと併行してパネルに少なくとも2個
以上の開孔部を設け、これらはドリル等によつて
穿孔するか、予め発泡スチロール等をパネル製作
時に埋設することによつて設けられる。
なお本発明でいう石裏空間とは、パネルの裏面
空間をさし、石裏には吸音効率を更に向上させる
ためのグラスウールの裏打ちを行なうものであ
る。
以上説明したように、本発明は乾式工法の有す
る耐震性と施工速度の特徴をそのまま活用し、従
来欠点とされたデツドスペースとなる石裏空間を
レゾネータとして利用するとともに、吸音材料も
予め工場でパネルに裏打ちしておくことによつて
現場作業の省力化を図るとともに、スリツト幅の
調整を乾式工法の支持金物で行うことのできるよ
うにしたものである。
またコンサートホールは元来無窓であるととも
に、多くの人命を預かる公共建築物であることか
ら、室内を不燃材である前記パネルで仕上げるこ
とによつて、災害時の安全度を高めるものであ
る。また太柄耐力試験を行つた結果、パネル1mm
厚あたりの耐力P(Kg)=5.5t±4.6(t:有効太柄
石厚mm)で求められ、1/150の層間変位を伴なう
地震時にも十分追従しうるとともに、その太柄附
近の損傷の確率は10万分の6と極めて低く、しか
も基材中に混入されたガラス短繊維の纒絡作用に
より、パネルにクラツクが10万分の6の確率で入
つても、また自重の2倍の耐力を保持しており、
高い安全性が確保できるものである。
更に本発明は乾式工法の3点、4点支持、吊り
工法、穿孔等、石裏空間を確保できれば何れも使
用できるとともに、外壁部分と異なり、風荷重に
よる設計、天然石材のバルツキに基く極端に高い
安全率を不用とし、パネル自重も比重が石材の2/
3と軽量であり、ガラス繊維によつて粘りも高い。
また内装のため支持金物はドブ漬けメツキをする
だけで使用できるので、非常に経済的であり、施
工も容易である。
次に本発明の実施例を挙げる。
実施例 1
600×900×20mmの平板に成型された繊維強化石
膏版1(ギヤルストン、既出)の木口の4個所
に、予め工場において孔2を穿設したのち、長さ
40mm、径6mmのSUS304ステンレス鋼製太柄ピン
3を植立し、エポキシ系接着剤で接着するととも
に、吸音材料として厚さ25mm、密度32Kg/m3のグ
ラスウールマツト4(旭フアイバーグラス株式会
社製品)を前記繊維強化石膏版1の表面に接合し
た。
一方鉄筋コンクリート造コンサートホールの内
壁5に溝型断面の取付金物6を碇着金物7を介し
て碇着し、同取付金物6の両脚片に前記板1の出
入りを調整しながらその太柄ピン3に一体に固着
された平板8を固着し、前記各版1を所要の石裏
間隙9を有するように前記内壁5に取付けた。
(第7図参照)
この方法によると在来の湿式工法に比して施工
速度が1/3になるとともに、吸音材料の工場によ
る取付けによつて現場での工数が減少し、且つ従
来処理に窮していた残材等もでず、施工の信頼度
も高まつた。
また音響的には縦目地を100mmあけた取付とし、
石裏空間を90mmとつてレゾネータを構成し、かく
して乾式工法の有する耐震性及び、石裏空間のグ
ラスウール付きレゾネータ化を一括して実施しう
る。
実施例 2
第8A図及び第9A図は前記繊維強化石膏版1
の他の実施例を示し、同板1はコ字断面に成型さ
れ、その裏面凹部にグラスウールマツト4が一部
嵌合するように重層接層され、かくして石裏空間
を大きくとり、パネル重量を軽減しうるととも
に、版厚が薄くなつても太柄部分が厚くなること
によつて太柄耐力を逆に向上せしめるものであ
る。なお第8B図及び第9B図は実施例1の繊維
強化石膏板1の第8A、第9A図に対応する部分
を比較対照のために示したもので、各部の寸法
(mm)が併せて示されている。
第10図及び第11図は前記スリツトの幅を決
定するための測定データの一部を示すもので、第
10図のA,Bは夫々繊維強化石膏版にグラスウ
ールの裏打ちがなく且つスリツト幅が73mm及び17
mmの場合を示し、第11図のC,Dは夫々繊維強
化石膏版にグラスウールの裏打ちが施され、且つ
スリツト幅が73mm及び17mmの場合を示す。
これから明らかなように、スリツト幅は大きい
方が有利であり、グラスウールを裏打ちするとそ
の吸音率は向上するとともに、最も処理し難い
125Hzの超低音域が0.42の高い吸音率を示し、且
つ250、500、1000Hzと高音になるに従つてマイル
ドに吸音率が小さくなり、音響学的には困難視さ
れ、従来では確保できなかつた残響時間2秒を満
足させることができた。
また石裏空間の気積とスリツト幅との間には微
秒な相関々係があり、石裏空間50〜200mm、スリ
ツト幅50〜150mmの場合が最も好ましいことが判
つた。
以上本発明を実施例について説明したが、本発
明は勿論このような実施例にだけ局限されるもの
ではなく、本発明の精神を逸脱しない範囲内で
種々の設計の改変を施しうるものである。[Table] However, as is clear from Table 1, even a Helmholtz type resonator requires at least 5000 resonators (in this case, the reverberation time in the acoustically low range will be a little longer than the target value), and sufficient bass processing can be achieved. It was determined that 15,000 pieces would be required if the design was made.
The design of 15,000 randomly arranged holes in a concert hall is so unusual that there is no way it could be adopted. In addition, it is not easy to fix it in a specified position in a manner that can withstand the vibrations and lateral pressure of the concrete during concrete pouring, and it is also disadvantageous from an economic point of view. Figure 5 shows the basic principle of a resonator.A resonator is constructed by connecting a hollow part V with a neck V', and it is embedded in a rigid wall and does not move when a sound wave is projected. The dimensions of each part of the resonator must be sufficiently small compared to the wavelength, and when a sound wave is incident on the resonator, the air l 0 and m in the network begin to vibrate according to the frequency of the sound wave. Therefore, the air in the cavity repeats regular compression and expansion motions like a spring. Kinetic energy is concentrated in the net, whereas potential energy appears in the cavity. As a result of intensive research on these, the inventors found that the 6th
As shown in the figure, the neck V' of the resonator was replaced with a slit S instead of a cylinder, and the independent box B system for one unit was also abolished in favor of a structure in which the panel P was brought out from the wall surface. That is, the framework of the present invention is characterized in that a sound-absorbing material such as sound-absorbing glass wool is pre-applied to the dry stone installation method, and an improved slit-type resonator is incorporated into the panel installation method. The dry stone pasting method for building walls requires that the back side of the stone be 80mm thick because of the installation of hardware and the tightening of bolts.
mm or more, and this space behind the stone becomes a dead space.In contrast, the present invention uses this space behind the stone to create a resonator with a slit width of the dimensions confirmed by acoustic experiments. It has particular characteristics. In addition, sound-absorbing materials such as glass wool can be attached to the panels in advance, reducing the number of on-site work hours and ensuring high construction accuracy. In addition, the space behind the stone can be used for air conditioning as needed, and the width of the slit and the entrance and exit of the mounting panel into the building frame can be easily adjusted by adjusting the dimensions of the supporting hardware in the dry construction method. Installation speed can be significantly reduced compared to wet construction methods. To explain the present invention in more detail, the present invention
A sound-absorbing material is layered in advance on the back side of a fiber-reinforced gypsum slab with a size of 15 to 45 mm and a specific gravity of 1.65 ± 0.4, and this is attached to the building wall using a dry method so as to maintain a space behind the stone of 50 to 200 mm. 50 to 150 mm communicating with the space behind the stone on at least one edge of the plate
It is characterized by forming a resonator by providing slits, making the surface of the plate a diffuser for reflecting high-frequency ranges, and at the same time, the slits significantly absorb low-frequency sounds. The present invention will now be described in further detail. The fiber reinforced gypsum board used in the present invention is
Add 35 to 45 parts of water to α-type hemihydrate gypsum, 2 parts of water resistance enhancer, E
Contains 0.1 to 1.0 (parts by weight) of short glass fibers, the surface of which is coated and impregnated with a printed photocurable resin and cured with ultraviolet light. Co., Ltd. (product name) is used. This panel not only has an excellent design effect, but is also nonflammable, can be manufactured in large versions, and can be freely designed with wall thickness as required. Moreover, the specific gravity is around 1.65, and it is 900 x 600 x 20 mm.
The weight of each plate is just under 18 kg and it is easy to handle, so it can be used even when working at heights.
It is safer than traditional stone-pasting work. Further E
Because glass fiber is mixed in, the bending strength is low even though the base material is made of plaster.
It also has excellent impact resistance, tenacity, and thick handle strength. When testing the strength of thick handles, conventional natural stone materials have large variations, and safety checks for areas such as grains and joints that correspond to knot holes and cracks in wood are complicated. Because it is an industrial product, there is very little variation, and due to the action of glass fibers, even after the panel is broken, it has the ability to hold up to about twice its own weight by entwining the fibers, which is not seen with stone. It was found that safety can be expected in the plastic region. The surface of the panel is hard and has a specific gravity of 1.65, so it was confirmed in a 15m 2 full-scale experiment that it is useful for reflecting high-frequency sounds. This makes the panel an alternative material that takes advantage of the characteristics of natural marble, which was an ideal material for concert reflective walls. Furthermore, by forming only the end portion of the panel to be thick, the thick handle strength can be further increased and the weight of the panel can be reduced. As the sound absorbing material used in the present invention, glass wool with a wall thickness of 25 mm±20 mm and a density of 32±5 Kg/m 3 was effective in acoustic tests. However, the sound absorbing material changes depending on the space behind the stone and the slit width, and in principle sound absorbing materials other than glass wool can also be used. Further, the metal used in the present invention is preferably one that does not usually rust, and SUS304 stainless steel, brass, aluminum alloy, or plated steel is used. A slit in the present invention basically refers to a gap that occurs at the joint between panels, and the width of this slit can be changed depending on the mounting position of the supporting metal. The slits are arranged in both the vertical and horizontal directions, or in either direction, and have a width of 50 to 150 mm. In special cases, at least two or more openings are provided in the panel in parallel with the slits, and these are provided by drilling with a drill or the like, or by embedding foamed polystyrene or the like in advance during panel manufacture. The space behind the stone in the present invention refers to the space on the back side of the panel, and the back of the stone is lined with glass wool to further improve sound absorption efficiency. As explained above, the present invention makes full use of the seismic resistance and construction speed characteristics of the dry construction method, utilizes the space behind the stones, which is a dead space that has been considered a drawback in the past, as a resonator, and also uses sound-absorbing materials in advance with panels at the factory. By lining the slit with the slit, it saves on-site work, and the width of the slit can be adjusted using the support metal used in the dry method. Furthermore, since concert halls are originally windowless and are public buildings in which many lives are taken care of, by finishing the interior with the above-mentioned panels, which are noncombustible materials, safety in the event of a disaster is increased. In addition, as a result of the thick handle strength test, the panel 1mm
The proof stress per thickness is determined by P (Kg) = 5.5t±4.6 (t: effective thickness of the thick stone in mm), and it can sufficiently follow earthquakes that involve 1/150 interstory displacement, and the area around the thick stone The probability of damage to the panel is extremely low at 6/100,000, and even if there is a 6/100,000 chance that a crack will occur in the panel due to the entangled effect of the short glass fibers mixed in the base material, it will still weigh twice its own weight. It maintains the strength of
This ensures high safety. Furthermore, the present invention can be used with dry construction methods such as 3-point or 4-point support, hanging construction methods, and drilling, as long as the space behind the stone can be secured. Eliminating the need for a high safety factor, the panel's own weight is 2/2 that of stone.
3, it is lightweight and has high tenacity due to the glass fiber.
In addition, the supporting metal fittings for the interior can be used simply by dipping and plating, making it very economical and easy to install. Next, examples of the present invention will be given. Example 1 Holes 2 were pre-drilled at the factory at four locations at the end of a fiber-reinforced gypsum board 1 (Gyalston, already mentioned) formed into a flat plate of 600 x 900 x 20 mm, and then the length
A thick-handled SUS304 stainless steel pin 3 with a diameter of 40 mm and a diameter of 6 mm was planted and adhered with epoxy adhesive, and a glass wool mat 4 with a thickness of 25 mm and a density of 32 kg/m 3 (Asahi Fiber Glass Co., Ltd. product) was installed as a sound absorbing material. ) was bonded to the surface of the fiber-reinforced gypsum board 1. On the other hand, a mounting hardware 6 with a groove-shaped cross section is anchored to the inner wall 5 of a reinforced concrete concert hall via anchoring hardware 7, and thick pins 3 are attached to both leg pieces of the mounting hardware 6 while adjusting the entrance and exit of the plate 1. A flat plate 8, which was integrally fixed to the plate 8, was fixed, and each plate 1 was attached to the inner wall 5 so as to have a required clearance 9 between the stones.
(See Figure 7) This method reduces the construction speed to 1/3 compared to the conventional wet construction method, reduces the number of man-hours on site by installing the sound-absorbing material at the factory, and is faster than conventional treatment. There was no need for leftover materials, and the reliability of the construction work increased. Also, for acoustics, the vertical joints are installed with a 100mm gap,
A resonator is constructed by setting the space behind the stone to 90 mm, and thus the earthquake resistance of the dry method and the conversion of the space behind the stone into a resonator with glass wool can be achieved at the same time. Example 2 Figures 8A and 9A show the fiber-reinforced gypsum board 1
Another embodiment of the present invention is shown in which the board 1 is formed into a U-shaped cross section, and a glass wool mat 4 is laminated in layers so as to partially fit into the concave part of the back surface of the board 1, thus taking up a large space behind the stone and reducing the weight of the panel. In addition, even if the thickness of the plate becomes thinner, the thick handle portion becomes thicker, thereby improving the yield strength of the thick handle. In addition, FIGS. 8B and 9B show the parts corresponding to FIGS. 8A and 9A of the fiber-reinforced gypsum board 1 of Example 1 for comparison, and the dimensions (mm) of each part are also shown. has been done. Figures 10 and 11 show part of the measurement data for determining the width of the slit. Figures A and B in Figure 10 respectively show cases where the fiber-reinforced gypsum board is not lined with glass wool and the slit width is 73mm and 17
C and D in FIG. 11 show cases in which the fiber-reinforced gypsum board is lined with glass wool and the slit widths are 73 mm and 17 mm, respectively. As is clear from this, the larger the slit width is, the more advantageous it is, and lining it with glass wool improves its sound absorption coefficient and is the most difficult to process.
The ultra-low frequency range of 125Hz exhibits a high sound absorption coefficient of 0.42, and as the frequency increases to 250, 500, and 1000Hz, the sound absorption coefficient decreases mildly, which is considered difficult from an acoustic standpoint and could not be achieved with conventional methods. We were able to satisfy the reverberation time of 2 seconds. Furthermore, there is a slight correlation between the volume of the space behind the stone and the width of the slit, and it has been found that the case where the space behind the stone is 50 to 200 mm and the slit width is 50 to 150 mm is most preferable. Although the present invention has been described above with reference to embodiments, the present invention is, of course, not limited to such embodiments, and can be modified in various ways without departing from the spirit of the present invention. .
第1図乃至第4図は夫々表−1に示された低温
用吸音構造体の説明図、第5図a,b,cはレゾ
ネータの原理説明図、第6図はレゾネータの形状
を示す斜面図で左は従来のレゾネータ、右は本発
明によつて構成されたレゾネータを示す。第7図
は本発明の方法の実施状況を示す縦断面図、第8
A、第9A図は本発明に使用される繊維強化石膏
版の他の例を示す縦断面図及び要部拡大図、第8
B、第9B図は第7図に示す実施例の第8A、第
9A図に対応する部分を示すものであり、第10
図及び第11図は各種繊維強化石膏版による低音
吸収能力測定結果を示す図表である。
1…繊維強化石膏版、4…グラスウールマツ
ト、9…石裏空間、S…スリツト。
Figures 1 to 4 are explanatory diagrams of the low-temperature sound absorbing structure shown in Table 1, Figures 5 a, b, and c are diagrams explaining the principle of a resonator, and Figure 6 is a slope showing the shape of the resonator. In the figure, the left side shows a conventional resonator, and the right side shows a resonator constructed according to the present invention. FIG. 7 is a longitudinal sectional view showing the implementation status of the method of the present invention;
A, FIG. 9A is a vertical cross-sectional view and an enlarged view of the main parts showing another example of the fiber-reinforced gypsum board used in the present invention, and FIG.
B and FIG. 9B show parts corresponding to FIGS. 8A and 9A of the embodiment shown in FIG.
Figures 1 and 11 are charts showing the results of measuring the low sound absorption ability of various fiber-reinforced gypsum slabs. 1...Fiber-reinforced gypsum board, 4...Glass wool mat, 9...Stone back space, S...Slit.
Claims (1)
れた石膏版を建造物内壁面に乾式工法によつて石
裏空間を存するように貼着けるとともに、前記版
の少なくとも一方の端縁に前記空間に連通するス
リツトを設けてレゾネータを形成し、同スリツト
部分を低音域吸収部とするとともに、前記版の表
面を高音域を反射する拡散体とすることを特徴と
する吸音石貼工法。1 A gypsum slab with a layer of sound-absorbing material layered on the back side and reinforced with fibers is attached to the inner wall surface of the building by a dry method so as to leave a space behind the stone, and at least one edge of the slab is provided with the space. A sound-absorbing stone pasting method characterized in that a resonator is formed by providing a slit that communicates with the plate, the slit portion is used as a low-frequency sound absorbing part, and the surface of the plate is used as a diffuser that reflects high-frequency sound.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP55176586A JPS57104745A (en) | 1980-12-16 | 1980-12-16 | Lining method of sound absorbing stone |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP55176586A JPS57104745A (en) | 1980-12-16 | 1980-12-16 | Lining method of sound absorbing stone |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS57104745A JPS57104745A (en) | 1982-06-29 |
JPS6350500B2 true JPS6350500B2 (en) | 1988-10-11 |
Family
ID=16016149
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP55176586A Granted JPS57104745A (en) | 1980-12-16 | 1980-12-16 | Lining method of sound absorbing stone |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS57104745A (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5443529U (en) * | 1977-09-02 | 1979-03-24 | ||
JPS54154119A (en) * | 1978-05-25 | 1979-12-05 | Shimizu Construction Co Ltd | Wideeband sound absorbing wall |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS51112309U (en) * | 1975-03-10 | 1976-09-10 |
-
1980
- 1980-12-16 JP JP55176586A patent/JPS57104745A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5443529U (en) * | 1977-09-02 | 1979-03-24 | ||
JPS54154119A (en) * | 1978-05-25 | 1979-12-05 | Shimizu Construction Co Ltd | Wideeband sound absorbing wall |
Also Published As
Publication number | Publication date |
---|---|
JPS57104745A (en) | 1982-06-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100322253B1 (en) | Panel for honeycomb-foam aluminum soundproof wall | |
US6789645B1 (en) | Sound-insulating sandwich element | |
US6244378B1 (en) | Dual sonic character acoustic panel and systems for use thereof | |
US5661273A (en) | Soundproof wall | |
JP5296600B2 (en) | Partition wall structure | |
US3275101A (en) | Acoustic structural unit | |
WO2019239435A1 (en) | Prefabricated polyethylene sandwich block and panel | |
JP2001003482A (en) | Hollow double sound insulating wall structure | |
EP0965701A1 (en) | Sound insulating panel | |
JPS6350500B2 (en) | ||
JP2004068299A (en) | Sound absorption structure of interior design in building and interior trimming panel for building | |
JPS649421B2 (en) | ||
KR200226733Y1 (en) | Construction Structure of Floorboard with Sound Absorption Structure | |
JP2698107B2 (en) | Noise barrier | |
JP3083455B2 (en) | Unit building ceiling structure | |
RU181404U1 (en) | FLOATING MONOLITHIC RESONANT SOUND-INSULATING AND SOUND-ABSORBING SYSTEM | |
CN218374704U (en) | Light steel keel structure | |
KR100281242B1 (en) | Noise-proof foamed aluminum panel with resonance structure | |
US4614553A (en) | Method of manufacturing acoustic panels for controlling reverberation of sound in enclosed environments | |
JPH0594195A (en) | Sound insulation structure body and sound insulation/ sound absorption composite structure body | |
KR200359829Y1 (en) | Soundproof panel | |
JP2005307437A (en) | Sound insulating structure for building | |
JPS60258354A (en) | Composite vibration dampening floor | |
JPS6123527Y2 (en) | ||
JP2004084216A (en) | Partition wall |