JPS6350428B2 - - Google Patents

Info

Publication number
JPS6350428B2
JPS6350428B2 JP57025242A JP2524282A JPS6350428B2 JP S6350428 B2 JPS6350428 B2 JP S6350428B2 JP 57025242 A JP57025242 A JP 57025242A JP 2524282 A JP2524282 A JP 2524282A JP S6350428 B2 JPS6350428 B2 JP S6350428B2
Authority
JP
Japan
Prior art keywords
roll
zro
coating
sio
spray coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57025242A
Other languages
Japanese (ja)
Other versions
JPS58144414A (en
Inventor
Mitsuhiko Hagiwara
Takashi Oka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP57025242A priority Critical patent/JPS58144414A/en
Publication of JPS58144414A publication Critical patent/JPS58144414A/en
Publication of JPS6350428B2 publication Critical patent/JPS6350428B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D3/02Skids or tracks for heavy objects
    • F27D3/026Skids or tracks for heavy objects transport or conveyor rolls for furnaces; roller rails

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は高温熱処理炉用ハースロールに関
し、とくにそのセラミツク溶射被膜の耐久性を、
ピツクアツプの有効な防止の下に達成することの
開発成果を提案するものである。 けい素鋼ストリツプのような金属ストリツプを
熱処理する炉に於いてストリツプを支持するハー
スロール(以下ロール)表面に金属粉、金属酸化
物の如き異物が付着積層し、ストリツプに凹凸疵
(ピツクアツプ)を与えるので、ロール表面に上
記異物の付着しにくい物質を溶射し、上記トラブ
ルを防止することが必要である。 鋼帯を750℃以上の高温で熱処理する炉におい
ては従来耐熱合金で作られたハースロールが使用
されてきたが、けい素鋼などのように酸化に対し
て活性の高い合金や、とくに高温下に焼鈍を行う
場合には鋼帯の持込む鉄粉及び酸化鉄が、ロール
表面に付着、積層する現象を顕著に生じる。 この現象を防止する方法として鉄及び酸化鉄と
の濡れ性の低いセラミツクスまたは金属サーメツ
トをロール表面に溶射することが行われ、溶射材
としてはZrO2が著しく優れていることもよく知
られているとおりである。 ZrO2だけで溶射被膜を得る場合、溶射時の高
温のため正方晶を構成し、ロール表面で急冷され
るので正方晶のまま被膜を構成している。炉の昇
温、降温時には徐熱徐冷であるため正方晶は低温
域で斜方晶に変態し、大きな体積増加を伴うため
ロール地金との膨張率差によりはく離を起こす。
この現象を防止するため2つの方法が行われてい
る。一つはZrO2の体積変化を防止する添加物と
してMgO、CaO、TiO2、Fe2O3およびAl2O3のう
ち1成分又は複数成分を5〜10重量%(以下%で
示す)加えることによつてZrO2を安定化させる
方法であり、二つ目はNi、Coなどの金属を加え
ZrO2変態時の体積変化を緩衝する方法である。 しかしいずれの方法でもZrO2以外の成分は被
膜表面への鉄紛及び酸化鉄の付着を誘発促進し、
ZrO2の効果を生かすことが出来ないという難点
があつた。 この発明は、鉄及び鉄酸化物の濡れ性を低くす
る有害成分を一定量以下に抑制すると共にZrO2
の体積変化を緩衝する物質としてとくにSiO2
代表される酸化けい素の有用性を見い出したとこ
ろに由来するものである。 けい素鋼用のハースロール材としてはSiO2
80%以上含む溶融シリカロールが有効であるが単
独では溶射できない。そこでこれを溶射成分とし
てさらに組合わせることにより、上掲した従来技
術の欠点が有利に解決された。 さてZrO2を溶射するとその条件により正方晶
と一部立方晶を構成するが被膜を徐冷するとき、
ロール材質との間に熱膨張率差によつてはく離す
る恐れがあり、低温域で斜方晶を形成する場合は
更にはく離しやすい。 この発明では鉄及び酸化鉄と濡れ性の低い
SiO2を配合することにより体積膨張を緩衝する。
このSiO2は不定形な溶融構造を有し、急激で大
きな膨張変化を有していないことが特徴である。 セラミツク被覆材の成分組成限定理由は次のと
おりである。 SiO2は粒子間結合力を高め、SiO2は多量に存
在することが好ましい。第1図にSiO2−ZrO2
セラミツクの溶射被覆層の1000℃における粒子間
結合力とSiO2量の関係を示す。該結合力はSiO2
量25重量%(以下単に%で表わす)以上で強い結
合を示す。従つて高い粒子間結合力を得るため
SiO2含有量は25%以上とする。 一方ZrO2はこのハースロールが配設されるべ
き900〜1300℃の高温雰囲気温度にても十分な耐
熱性を持つ材料として重要な成分であるから
ZrO2の熱による膨張を緩衝させてはく離の発生
を防止する結合材としてのSiO2量と合計して85
%以上、すなわちZrO2+SiO2が85%以上となる
ように配合させる必要がある。 従来ZrO2の体積の急変を防ぐために5%以上
迄添加することとされていたMgO、CaO、
TiO2、Fe2O3およびAl2O3ならびにNi、Coなど
の金属よりなる安定剤は、鉄及び酸化鉄との濡れ
性が高く、従つてZrO2を安定化するにしても好
ましくないので、安定化の目的を達し、かつ上記
濡れ性による弊害を生じない5%未満の組成にす
ることが必要である。 この発明に従うZrO2−SiO2系溶射被膜はSiO2
によつてZrO2の大きな膨張率差を緩衝できるの
で被覆厚みは1.0mmでも充分実用に耐え、一方0.1
mm未満では薄すぎてこの発明の目的を達成しない
ため0.1mm〜1.0mmの範囲とする。 SiO2が25%に満たないと、ZrO2の体積変化を
緩衝する効果を充分に生ぜず、被膜はく離を起す
うれいがあり、従つてSiO2は25%が下限である。 またこの発明のハースロールは、主として
ZrO2とSiO2から成り、そこにピツクアツプ現象
を防止すべく濡れ性を低くする必要上、ZrO2
SiO2で85%以上とし、この合計量で85%に満た
ないと鉄および鉄酸化物の濡れ性が高く有害な
MgO、CaO、TiO2およびFe2O3ならびにNi、Co
などの安定剤が過量になつてピツクアツプが付着
し易い現象をあらわすようになるのであり、これ
と同主旨においてロール表面への鉄粉、酸化鉄な
どの付着を誘発しまた促進することのないよう
に、上記安定剤は5%未満でなければならない。 ここで1000℃におけるZrO2−SiO2セラミツク
へのMgO添加量と酸化鉄との反応によるピツク
アツプ指数の関係を、MgO10%添加のときのピ
ツクアツプ発生を指数10とした比較グラフを第2
図に示した。 溶射被膜は、当然に使用を経て摩耗し、そのこ
とから0.1mm未満では寿命的に実用に適さず、一
方1.0mmを越える厚膜ではその膨張力が溶射被膜
とロール表面間の接合力より大きくなつてはく離
を来すおそれがあり、0.1〜1.0mmの範囲の厚みと
することが実際上要請される。 第3図に被覆層厚さと耐熱衝撃性(溶射被覆層
を温度1000℃から25℃に水冷する熱衝撃を繰返し
たときのはく離に到るまでの熱衝撃回数)の関係
を示す。 これより被覆層厚さの上限は好ましくは約1.0
mmとすべきことが判る。 溶射被覆層の表面はRnax50Sの表面アラサを呈
し、そのままでは被熱処理材に疵をつけるうれい
もあるのでその表面を磨いて平滑にしてから使用
することが好ましい。 なおセラミツク被覆が施されるロールの材質は
25Cr−20Ni鋼、25Cr−12Ni鋼等のステンレス
鋼、耐熱鋳鋼などが汎用されているが、これら基
材の表面に上記セラミツク被覆層を設けることに
よつてロールの耐用寿命は著しく高められる。基
材とセラミツク層との間に両者の中間の大きさの
熱膨張係数を持つ中間層を1層もしくは2層以上
設けて被覆安定性をさらに向上させ得る。 次に上記組成のセラミツク材料にてロール表面
に被覆層を形成させる方法はガス、プラズマ溶射
装置を用いて行う。他に水プラズマ溶射装置、酸
素−アセチレン炎溶射装置があるが水プラズマ溶
射法ではプラズマジエツト温度が30000K以上と
なり高熱過ぎて成分組成中のSiO2が相の分離と
蒸発のため減少してしまい目的の被覆層とならな
い。また酸素−アセチレン炎溶射法では燃焼炎温
度が3000K前後であるため完全に溶射材料を溶融
状態とせず被覆層の結合力が弱く実用とならな
い。また被覆するセラミツクの粉末は125μ以下
が望ましい。これはガス、プラズマ溶射法で得ら
れるプラズマジエツト温度が約10000Kなのでそ
の温度で完全に溶融がなされなおかつSiO2の相
分離、蒸発が生じない粒度である。 実施例 1 けい素鋼帯の連続焼鈍炉において25%Cr−20
%Ni耐熱合金鋼ロールに、下記のセラミツク組
成となる被覆材料を125μ以下の粒度に調整した
後ガス、プラズマ溶射装置で溶射被膜を被覆した
まゝ同一部分に並べて装入し、5ケ月間にわたり
同時に比較テストを行つた。その結果を表1に示
したように65%ZrO2−30%SiO2被膜は良好であ
つたが、SiO2が少いとき、はく離のおそれがあ
りまた95%ZrO2+5%CaOの安定化ZrO2被膜は
添加物のために金属粒、金属粉のフレーク状付着
で不良であつた。またZrO2の代りにAl2O3あるい
はAl2O3とTiO2を用いたものも悪いことが判つ
た。
This invention relates to a hearth roll for high-temperature heat treatment furnaces, and particularly improves the durability of its ceramic spray coating.
It proposes the development results to be achieved under the effective prevention of pick-up. In a furnace that heat-treats metal strips such as silicon steel strips, foreign substances such as metal powder and metal oxides adhere to the surface of hearth rolls (hereinafter referred to as rolls) that support the strips, causing pick-ups on the strips. Therefore, it is necessary to thermally spray the roll surface with a substance that prevents the foreign matter from adhering to the roll surface to prevent the above troubles. Conventionally, hearth rolls made of heat-resistant alloys have been used in furnaces that heat-treat steel strips at high temperatures of 750°C or higher; When annealing is performed, iron powder and iron oxide carried by the steel strip significantly adhere to and stack on the roll surface. A method to prevent this phenomenon is to thermally spray ceramics or metal cermets that have low wettability with iron and iron oxide onto the roll surface, and it is well known that ZrO 2 is extremely superior as a thermal spraying material. That's right. When a sprayed coating is obtained using only ZrO 2 , it forms a tetragonal crystal due to the high temperature during spraying, and as it is rapidly cooled on the roll surface, the coating remains as a tetragonal crystal. When the temperature of the furnace is raised and lowered, it is slowly heated and cooled, so the tetragonal crystal transforms into the orthorhombic crystal in the low temperature range, and this is accompanied by a large volume increase, which causes peeling due to the difference in expansion coefficient with the roll metal.
Two methods have been used to prevent this phenomenon. One is to add 5 to 10% by weight (hereinafter expressed as %) of one or more of MgO, CaO, TiO 2 , Fe 2 O 3 and Al 2 O 3 as additives to prevent volume changes in ZrO 2 . The second method is to stabilize ZrO 2 by adding metals such as Ni and Co.
This is a method to buffer the volume change during ZrO 2 transformation. However, in either method, components other than ZrO 2 induce and promote the adhesion of iron powder and iron oxide to the coating surface.
The problem was that it was not possible to take advantage of the effects of ZrO 2 . This invention suppresses harmful components that reduce the wettability of iron and iron oxides to a certain amount or less, and also suppresses ZrO 2
Its origins lie in the discovery of the usefulness of silicon oxide, particularly SiO 2 , as a substance that buffers changes in volume. SiO 2 is used as hearth roll material for silicon steel.
A fused silica roll containing 80% or more is effective, but cannot be sprayed alone. Therefore, by further combining this as a thermal spraying component, the above-mentioned drawbacks of the prior art have been advantageously solved. Now, when ZrO 2 is sprayed, it forms a tetragonal and some cubic crystal structure depending on the conditions, but when the film is slowly cooled,
There is a risk of delamination due to the difference in thermal expansion coefficient between the material and the roll material, and delamination is even more likely when orthorhombic crystals are formed in a low temperature range. In this invention, iron and iron oxide have low wettability.
Volumetric expansion is buffered by blending SiO 2 .
This SiO 2 has an amorphous molten structure and is characterized by not having rapid and large expansion changes. The reasons for limiting the composition of the ceramic coating material are as follows. SiO 2 increases the bonding force between particles, and it is preferable that SiO 2 exists in a large amount. Figure 1 shows the relationship between the bonding strength between particles and the amount of SiO 2 at 1000°C in a thermally sprayed coating layer of SiO 2 -ZrO 2 based ceramic. The bonding force is SiO 2
A strong bond is shown when the amount is 25% by weight or more (hereinafter simply expressed as %). Therefore, in order to obtain high interparticle bonding strength,
The SiO 2 content shall be 25% or more. On the other hand, ZrO 2 is an important component as it is a material that has sufficient heat resistance even at the high ambient temperature of 900 to 1300℃ where this hearth roll is installed.
The total amount of SiO 2 as a binder that buffers the thermal expansion of ZrO 2 and prevents peeling is 85
% or more, that is, ZrO 2 +SiO 2 needs to be blended so that it is 85% or more. Conventionally, MgO , CaO, and
Stabilizers made of metals such as TiO 2 , Fe 2 O 3 and Al 2 O 3 as well as Ni and Co have high wettability with iron and iron oxide, and therefore are not preferred even if they stabilize ZrO 2 . It is necessary to make the composition less than 5% so as to achieve the purpose of stabilization and not cause the above-mentioned adverse effects due to wettability. The ZrO 2 -SiO 2 based thermal spray coating according to this invention is SiO 2
Since the large expansion coefficient difference of ZrO 2 can be buffered by ZrO 2, a coating thickness of 1.0 mm is sufficient for practical use;
If it is less than mm, it will be too thin and the object of the invention will not be achieved, so it should be in the range of 0.1 mm to 1.0 mm. If the SiO 2 content is less than 25%, the effect of buffering the volume change of ZrO 2 will not be sufficiently produced, and the coating may peel off. Therefore, the lower limit of the SiO 2 content is 25%. In addition, the hearth roll of this invention is mainly
It consists of ZrO 2 and SiO 2 , and since it is necessary to reduce the wettability to prevent the pick-up phenomenon, ZrO 2 +
SiO 2 should be 85% or more, and if the total amount is less than 85%, the wettability of iron and iron oxides is high and harmful.
MgO, CaO, TiO2 and Fe2O3 and Ni, Co
If the amount of stabilizers such as In addition, the stabilizer should be less than 5%. The second comparison graph shows the relationship between the amount of MgO added to ZrO 2 -SiO 2 ceramic at 1000°C and the pick-up index due to the reaction with iron oxide, with the occurrence of pick-up when adding 10% MgO as an index of 10.
Shown in the figure. Thermal sprayed coatings naturally wear out with use, so if the coating is less than 0.1 mm, it is not suitable for practical use due to its lifespan, while if the coating is thicker than 1.0mm, the expansion force will be greater than the bonding force between the sprayed coating and the roll surface. There is a risk of peeling due to aging, so it is practically required that the thickness be in the range of 0.1 to 1.0 mm. Figure 3 shows the relationship between coating layer thickness and thermal shock resistance (the number of thermal shocks until peeling occurs when the sprayed coating layer is repeatedly subjected to water cooling from 1000°C to 25°C). From this, the upper limit of the coating layer thickness is preferably about 1.0
It turns out that it should be mm. The surface of the thermal spray coating layer exhibits the surface roughness of R nax 50S, and if left as is, it may cause scratches on the material to be heat treated, so it is preferable to polish the surface to make it smooth before use. The material of the roll to which the ceramic coating is applied is
Stainless steel such as 25Cr-20Ni steel and 25Cr-12Ni steel, heat-resistant cast steel, etc. are commonly used, and by providing the ceramic coating layer on the surface of these base materials, the service life of the roll can be significantly increased. The coating stability can be further improved by providing one or more intermediate layers having a thermal expansion coefficient intermediate between the base material and the ceramic layer. Next, a coating layer is formed on the roll surface using the ceramic material having the above composition using a gas or plasma spraying device. There are also water plasma spraying equipment and oxygen-acetylene flame spraying equipment, but in water plasma spraying, the plasma jet temperature is over 30,000K, which is too high and SiO 2 in the component composition decreases due to phase separation and evaporation. It does not form the desired coating layer. In addition, in the oxygen-acetylene flame spraying method, the combustion flame temperature is around 3000K, so the sprayed material is not completely molten, and the bonding strength of the coating layer is weak, making it impractical. Further, the ceramic powder to be coated is preferably 125 μm or less. This is because the plasma jet temperature obtained by gas or plasma spraying is about 10,000 K, so the particle size is such that complete melting is achieved at that temperature and no phase separation or evaporation of SiO 2 occurs. Example 1 25% Cr-20 in a continuous annealing furnace for silicon steel strip
%Ni heat-resistant alloy steel rolls were coated with a coating material having the following ceramic composition, adjusted to a grain size of 125μ or less, and then placed in the same area with the thermally sprayed coating coated using a gas or plasma spraying device for a period of 5 months. At the same time, a comparison test was conducted. As shown in Table 1, the 65% ZrO 2 -30% SiO 2 film was good, but when the amount of SiO 2 was small, there was a risk of peeling, and the 95% ZrO 2 + 5% CaO film was stabilized. The ZrO 2 coating was defective due to the adhesion of metal grains and powder in the form of flakes due to the additives. It was also found that using Al 2 O 3 or Al 2 O 3 and TiO 2 instead of ZrO 2 was also bad.

【表】 実施例 2 実施例1と同一条件で比較テストを行つたがそ
の結果を表−2に示すように制限をこえたCaO、
MgO、Fe2O3が付着の原因になつていることが
判る。
[Table] Example 2 A comparative test was conducted under the same conditions as in Example 1, but as shown in Table 2, CaO exceeded the limit.
It can be seen that MgO and Fe 2 O 3 are the causes of adhesion.

【表】 実施例 3 基材としてSCH13を用い、その表面に実施例
1と同一のセラミツクを125μ以下の粒度に調整
した後、窒素ガスを主体としたガス、プラズマ溶
射装置で0.4mm厚さに被覆層を形成させ、さらに
研磨仕上げしたロールをけい素鋼帯の連続熱処理
炉に取付け使用したところ5ケ月経過後にもビル
ドアツプの発生が全くなく、また被覆層のはく
離、亀裂等も皆無であり、従来の被覆しない
SCH13製ロールに比べて2倍以上の耐用寿命が
得られた。 実施例 4 基材として熱膨張係数15×10-6/℃のSCH22
を用いたロールの胴周に熱膨張係数が13×10-6
℃の80%Ni−20%Cr系金属よりなる下地溶射層
を0.2mm施し、その上に実施例−1と同一のセラ
ミツク(熱膨張係数8×10-6/℃)溶射被覆を形
成する被覆材料を125μ以下の粒度に調整した後、
窒素ガスを主体としたガス、プラズマ溶射装置で
厚さ0.6mmに被覆層を形成し、研磨仕上げしたロ
ールをけい素鋼帯の連続熱処理炉に取付け使用し
たところ8ケ月経過後にも何らビルドアツプは認
められず、被覆層の亀裂、はく離等も全くなく比
較用のZrO2被覆ロールに比べて1.5倍以上の耐用
寿命が得られた。 実施例−5 基材として熱膨張係数15×10-6/℃のSCH22
を用い80%Ni−20%Crの金属下地層(熱膨張係
数13×10-6/℃)および80%Ni−20%Cr合金と
ZrSiO4との重量比1:1の組成になるサーメツ
ト下地被覆層(熱膨張係数9×10-6/℃)を各々
0.2mmづつ溶射形成し、その表面に実施例1と同
一の被覆材料を125μ以下の粒度に調整した後、
窒素ガスを主体としたガス、プラズマ溶射装置で
厚さ0.4mmにセラミツク被覆層を形成し、研磨仕
上げしたロールをけい素鋼帯の連続熱処理炉に取
付け使用したところ15ケ月経過後にも何らのビル
ドアツプも認められず被覆層の亀裂やはく離も全
くなく、従来のSCH22ロールに比べて4倍以上
の耐用寿命が得られた。 以上のように、この発明によれば、鋼帯が持込
む金属粉や金属酸化物のロール表面への凝着性が
大幅に低下するのでロールの連続使用期間が大幅
に長くなり、操業の安定あるいはロールの再研磨
コストの低下に大きく貢献できるなど大きな効果
を奏する。
[Table] Example 3 Using SCH13 as a base material, the same ceramic as in Example 1 was applied on the surface to a particle size of 125μ or less, and then sprayed with a gas mainly composed of nitrogen gas and a plasma spraying device to a thickness of 0.4 mm. When a roll with a coating layer formed and polished was installed in a continuous heat treatment furnace for silicon steel strips, there was no build-up at all even after 5 months, and there was no peeling or cracking of the coating layer. Conventional uncoated
The service life was more than twice that of the SCH13 roll. Example 4 SCH22 with a thermal expansion coefficient of 15×10 -6 /°C as a base material
The thermal expansion coefficient of the roll body using
A 0.2 mm base sprayed layer made of 80% Ni-20% Cr metal at ℃ is applied, and a sprayed coating of the same ceramic (thermal expansion coefficient 8 x 10 -6 /℃) as in Example-1 is formed on top of that. After adjusting the material to a particle size of 125μ or less,
A coating layer was formed to a thickness of 0.6 mm using a gas and plasma spraying device mainly composed of nitrogen gas, and the polished roll was installed in a continuous heat treatment furnace for silicon steel strips and no build-up was observed after 8 months. There was no cracking or peeling of the coating layer, and the service life was more than 1.5 times that of the comparative ZrO 2 coated roll. Example-5 SCH22 with a thermal expansion coefficient of 15×10 -6 /℃ as the base material
80%Ni-20%Cr metal underlayer (thermal expansion coefficient 13× 10-6 /℃) and 80%Ni-20%Cr alloy.
A cermet undercoat layer (thermal expansion coefficient 9×10 -6 /°C) having a composition of 1:1 by weight with ZrSiO 4 was added to each layer.
After spraying 0.2 mm each and applying the same coating material as in Example 1 on the surface to a particle size of 125μ or less,
A ceramic coating layer was formed to a thickness of 0.4 mm using a nitrogen gas or plasma spraying device, and the polished roll was installed in a continuous heat treatment furnace for silicon steel strips and no build-up occurred after 15 months. There was no cracking or peeling of the coating layer, and the service life was more than four times longer than that of the conventional SCH22 roll. As described above, according to this invention, the adhesion of metal powder and metal oxide carried by the steel strip to the roll surface is significantly reduced, so the continuous use period of the roll is significantly extended, and the operation is stabilized. In addition, it has great effects such as greatly contributing to lowering the cost of regrinding rolls.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はSiO2−ZrO2系セラミツク溶射被覆層
のSiO2含有量と粒子間結合力の関係を示すグラ
フ、第2図は同じくMgOの添加量とピツクアツ
プ指数の関係グラフ、第3図はSiO2−ZrO2系セ
ラミツク溶射被覆層の層厚と耐熱衝撃性の関係を
示すグラフである。
Figure 1 is a graph showing the relationship between the SiO 2 content and interparticle bonding strength of a SiO 2 -ZrO 2 based ceramic spray coating layer, Figure 2 is a graph showing the relationship between the amount of MgO added and the pick-up index, and Figure 3 is a graph showing the relationship between the amount of MgO added and the pick-up index. 2 is a graph showing the relationship between the layer thickness and thermal shock resistance of a SiO 2 −ZrO 2 based ceramic spray coating layer.

Claims (1)

【特許請求の範囲】 1 耐熱合金より成るロール材の胴周表面に、酸
化ジルコニウムを主体とするセラミツク溶射被膜
を形成した鋼板の高温熱処理炉用ハースロールに
おいて、該溶射被膜が、酸化ジルコニウムの安定
剤5重量%未満を含みかつ、SiO2換算で少くと
も25重量%を占める酸化けい素を、ZrO2換算の
酸化ジルコニウムとの合計で、85重量%以上を含
有する組成に成ることを特徴とする高温熱処理炉
用ハースロール。 2 溶射被膜が、厚み0.1〜1.0mmの範囲である1
記載のハースロール。 3 溶射被膜がロール材の熱膨張係数よりも大き
く溶射被膜のそれよりも小さい熱膨張係数の耐熱
合金層よりなる下地溶射被覆をそなえる1または
2記載のハースロール。
[Scope of Claims] 1. A hearth roll for a high-temperature heat treatment furnace for a steel plate in which a ceramic sprayed coating mainly composed of zirconium oxide is formed on the circumferential surface of a roll material made of a heat-resistant alloy, in which the sprayed coating has a stable zirconium oxide coating. The composition is characterized by having a composition containing less than 5% by weight of silicon oxide and at least 25% by weight in terms of SiO 2 and 85% by weight or more in total with zirconium oxide in terms of ZrO 2 . Hearth roll for high-temperature heat treatment furnaces. 2 The thermal spray coating has a thickness in the range of 0.1 to 1.0 mm1
Hearth roll as described. 3. The hearth roll according to 1 or 2, wherein the thermal spray coating is provided with a base thermal spray coating made of a heat-resistant alloy layer having a thermal expansion coefficient larger than that of the roll material and smaller than that of the thermal spray coating.
JP57025242A 1982-02-20 1982-02-20 Hearth roll for high temperature heat treatment Granted JPS58144414A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57025242A JPS58144414A (en) 1982-02-20 1982-02-20 Hearth roll for high temperature heat treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57025242A JPS58144414A (en) 1982-02-20 1982-02-20 Hearth roll for high temperature heat treatment

Publications (2)

Publication Number Publication Date
JPS58144414A JPS58144414A (en) 1983-08-27
JPS6350428B2 true JPS6350428B2 (en) 1988-10-07

Family

ID=12160510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57025242A Granted JPS58144414A (en) 1982-02-20 1982-02-20 Hearth roll for high temperature heat treatment

Country Status (1)

Country Link
JP (1) JPS58144414A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3662409D1 (en) * 1985-04-30 1989-04-20 Yamauchi Corp Press roll for paper machines
JP5414496B2 (en) * 2009-12-10 2014-02-12 Jfeスチール株式会社 Hearth Roll

Also Published As

Publication number Publication date
JPS58144414A (en) 1983-08-27

Similar Documents

Publication Publication Date Title
JP2824189B2 (en) Powder supply composition for refractory oxide coating formation, method of use and product
US6607787B2 (en) Process for producing a coating on a refractory structural member
JPH0330209B2 (en)
US3785882A (en) Cube-on-edge oriented silicon-iron having improved magnetic properties and method for making same
JPS6350428B2 (en)
JP4229508B2 (en) High temperature hearth roller
US2857292A (en) Process for applying protective metallic coatings
CN114379240B (en) Thermal print head substrate with composite lead-free protective layer and manufacturing method thereof
US8753722B2 (en) Method for coating a metal crucible element with a mixture of glass and ceramic
JPS6123755A (en) Roll for heat treating furnace
JPH05473B2 (en)
JPS6326183B2 (en)
JPH0432011B2 (en)
JPS602661A (en) Roll for heat treatment furnace
JP3224463B2 (en) Cermet spray material containing high thermal expansion hard oxide and hearth roll with spray coating
JP2957397B2 (en) Hearth roll with high thermal expansion hard oxide spray material and spray coating
JPH01176064A (en) Formation of thermal sprayed film having excellent buildup resistance
JPS62103314A (en) Manufacture of transfer roll for heat treating furnace
JPH0517840A (en) Thermal spraying powder and thermal spray coating method for roll
JP3172547B2 (en) Antioxidant for graphite-containing refractories
JPS602658A (en) Roll for heat treatment furnace having superior roll pickup resistance
Kurushivna et al. The thermal shock endurance of a plasma sprayed ZrO2 coating on steel
JP3076888B2 (en) 2 melting point heat-resistant sprayed material and heat-resistant member processed by thermal spraying
JPH0463105B2 (en)
JP2626736B2 (en) Roll for heat treatment furnace with excellent build-up resistance