JPS6350328A - Production of nickel carbonate - Google Patents

Production of nickel carbonate

Info

Publication number
JPS6350328A
JPS6350328A JP19358386A JP19358386A JPS6350328A JP S6350328 A JPS6350328 A JP S6350328A JP 19358386 A JP19358386 A JP 19358386A JP 19358386 A JP19358386 A JP 19358386A JP S6350328 A JPS6350328 A JP S6350328A
Authority
JP
Japan
Prior art keywords
soln
granule
powdery
ion exchange
impurities
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19358386A
Other languages
Japanese (ja)
Inventor
Takao Hashimoto
孝夫 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP19358386A priority Critical patent/JPS6350328A/en
Publication of JPS6350328A publication Critical patent/JPS6350328A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE:To produce high-purity NiCO3 used for Ni-Zn plating at a low cost by dissolving powdery Ni granule into a soln. contg. NH3 and carbonic acid and adding powdery Zn granule to the part of the soln. to remove impurities and thereafter pyrolytically decomposing it. CONSTITUTION:Ammonium carbonate complex of Ni [Ni(NH3)6CO3] is produced by adding 1mol powdery Ni granule to a dissolving tank 10 housed with a soln. contg. >=6mol NH3 and >=1mol carbonic acid and adding H2O2 and heating the mixture at room temp. -80 deg.C to batchwise dissolve it. Then after allowing this soln. to stand for 1-2hr, the one batch content of the upper part is transferred to an ion exchange tank 12, 0.05-1.0mol powdery metallic zinc granule is added, and impurities such as Co are deposited by performing ion exchange at normal temp. -60 deg.C and thereafter removed in a filtering stage 3A. Then pure Ni(NH3)6CO3 liquid is transferred to a pyrolytic installation 4 via a storage tank 14 and is heated at 85-100 deg.C to pyrolytically-decompose it, and the obtained NiCO3 contg. Zn.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、Ni−Znメッキ用の高純度炭酸ニッケルの
製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for producing high purity nickel carbonate for Ni--Zn plating.

[従来の技術] Ni−Znメッキは、その優れた耐食性を利用して、自
動車用や家電用メッキ鋼板に汎用されている。
[Prior Art] Ni-Zn plating is widely used in plated steel sheets for automobiles and home appliances due to its excellent corrosion resistance.

そのメッキ組成は、Zn:Ni−87: 13程度が好
ましいとされている。
It is said that the plating composition is preferably about Zn:Ni-87:13.

このメッキのNiとしては、通常炭酸ニッケル(NiC
O3)が用いられるが、メッキ性状を阻害させないため
には、Co、 Fe+ Cu+ Pb+ Cd等の不純
物が無いか極く少量であることが要請されている。
The Ni for this plating is usually nickel carbonate (NiC
O3) is used, but impurities such as Co, Fe+Cu+Pb+Cd, etc. are required to be absent or in very small amounts in order not to impair the plating properties.

高純度炭酸ニッケルの従来の製造法は、一般には、第1
0図の工程に基いている。すなわち、Niマット(Ni
Sニア2〜73%Ni)に対して空気、水および必要に
よりイオウを添加して加圧抽出50し、その後濾過51
を行い残渣を除去して粗NiSO4を得、これを精製5
2し不純物を除去してN15Oa純液を得て、その後ソ
ーダ灰Na2COiを添加し、炭酸化反応53を行い、
水を用いて濾過・水洗54し、Na2SO4廃水は肥料
用原料に用いるなどし、その後ケーキ分は乾燥55し、
炭酸ニッケルNiCO3を得ている。
Conventional methods for producing high-purity nickel carbonate generally involve the first
It is based on the process shown in Figure 0. That is, Ni matte (Ni
Air, water, and if necessary sulfur are added to Snea (2 to 73% Ni) for pressure extraction 50, followed by filtration 51.
The residue was removed to obtain crude NiSO4, which was purified in step 5.
2 and remove impurities to obtain a pure N15Oa liquid, then add soda ash Na2COi and perform a carbonation reaction 53,
Filter and wash with water 54, use the Na2SO4 wastewater as a raw material for fertilizer, etc., and then dry the cake 55,
Nickel carbonate NiCO3 is obtained.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかるに、上記従来法では、高温高圧の反応を必要とす
ること、イオウやソーダ灰が使い捨てとなることなどか
ら、製品炭酸ニッケルはきわめて高価となっている。
However, the conventional method described above requires a reaction at high temperature and high pressure, and the sulfur and soda ash are disposable, making the product nickel carbonate extremely expensive.

そこで、本発明の目的は、Ni−Znメッキ用とし゛て
、きわめて安価でかつ高純度の炭酸ニッケルが得られる
製造法を提供することにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a manufacturing method for obtaining extremely inexpensive and highly pure nickel carbonate for Ni--Zn plating.

他の目的は、製造プロセスとして合理的であり、しかも
製造設備がシンプルとなる製造法を提供することにある
Another object is to provide a manufacturing method that is rational as a manufacturing process and requires simple manufacturing equipment.

C問題点を解決するための手段〕 前記問題点を解決するための本発明は、Ni粉粒体をア
ンモニアおよび炭酸が存在する溶液でハツチ的に溶解し
ニッケルの炭酸アンモニウム錯塩(Ni(N)lz)b
cOi)を生成し、その後これを静定させ、上部の溶液
部分のみを別の容器に移しこれに金属亜鉛粉粒体を添加
しCo等の不純物を析出分離し、不純物が分離された液
を熱分解してZn含有炭酸ニッケルを得ることを特徴と
するものである。
Means for Solving Problem C] The present invention for solving the above problems consists of dissolving Ni powder in a solution containing ammonia and carbonic acid to form an ammonium carbonate complex salt of nickel (Ni(N)). lz)b
cOi) is generated, then it is allowed to settle, and only the upper solution part is transferred to another container, metal zinc powder is added to this, impurities such as Co are precipitated and separated, and the liquid from which the impurities have been separated is obtained. It is characterized by obtaining Zn-containing nickel carbonate through thermal decomposition.

〔作 用〕[For production]

本発明法では、基本的に常温、常圧法であるし、アンモ
ニアは循環使用でき、原料のNi粉粒体は安価であるな
どの点で、全体として安価な装造法となる。
The method of the present invention is basically a normal temperature and normal pressure method, ammonia can be reused, and the raw material Ni powder is inexpensive, making it an inexpensive packaging method overall.

他方で、前述のように、本発明が対象とするメッキ用の
炭酸ニッケルでは、メッキ性状の点から、不純物の混入
を著しく嫌う。しかるに、本発明に従って、Zn粉粒体
を添加すると、Znのイオン化傾向が大であるため、た
とえば溶解したCo(NH3) 6CO3がZnとイオ
ン交換し、Coが析出するなどの態様で、Co、 Cu
、 Fe、 Pb、 Cd等の不純物が析出し、最終製
品で、各不純物の含有量は5 PPFI以下という高純
度のものが得られる。
On the other hand, as described above, nickel carbonate for plating, which is the object of the present invention, is extremely susceptible to contamination with impurities from the viewpoint of plating properties. However, when Zn powder is added according to the present invention, since Zn has a strong ionization tendency, for example, dissolved Co(NH3)6CO3 undergoes ion exchange with Zn and Co precipitates. Cu
Impurities such as , Fe, Pb, and Cd are precipitated, and the final product has a high purity with a content of each impurity of 5 PPFI or less.

ところで、本発明は、幸いZn  Niメッキ用のNi
CO3を製造することを目的としているから、不純物分
離剤としてZnを添加しても一向にさしつかえない。こ
の点が、本発明者らの斬新な着想点であり、かつ本発明
の最大の特徴とするところである。
By the way, the present invention is fortunately applicable to Ni for Zn Ni plating.
Since the purpose is to produce CO3, there is no problem in adding Zn as an impurity separating agent. This point is the novel idea of the present inventors, and is the greatest feature of the present invention.

他方、Ni粉粒体を炭酸アンモニウム溶液に溶解する場
合、後述するように、Ni粉粉粒体スラリー変度高いほ
どNiが溶解し易いことが明らかとなった。しかもこの
場合、連続的にNi溶解を行って、Fさくイオン交換工
程へ移送することとすると、Ni)震度が高く、かつス
ラリー濃度が高い溶液をイオン交換工程へ連続的に移送
させなければならないので、移送ラインが詰るなどのト
ラブルを生じ易い。また、Niの溶解分のみをイオン交
換工程へ移送させるには自動制御系が複雑となり、しか
も設備費も嵩む。
On the other hand, when Ni powder is dissolved in an ammonium carbonate solution, it has become clear that the higher the Ni powder slurry is, the easier it is for Ni to dissolve, as will be described later. Moreover, in this case, if Ni is to be dissolved continuously and transferred to the F-seal ion exchange process, a solution with a high seismic intensity and a high slurry concentration must be continuously transferred to the ion exchange process. Therefore, troubles such as clogging of the transfer line are likely to occur. Further, in order to transfer only the dissolved Ni content to the ion exchange process, the automatic control system becomes complicated and equipment costs increase.

そこで、本発明に従って、パンチ方式とすると、Ni濃
度が高い溶液下でNiロスを少くしつつ、しかも次のイ
オン交換工程へ円滑な移送操作を行うことができる。
Therefore, according to the present invention, by using the punch method, it is possible to reduce Ni loss in a solution with a high Ni concentration, and to perform a smooth transfer operation to the next ion exchange step.

〔発明の具体例〕[Specific examples of the invention]

以下本発明をさらに詳説する。 The present invention will be explained in more detail below.

第1図および第2図は本発明法の概略工程図で、Nll
3.:>、、;よびCo2が存在する水溶液に対して、
粉末冶金や触媒用等のXiパウダー(m元ニッケル)を
)、6加し、NH:+溶解1を行う。この溶解には、空
気や酸素でバブリングすることによってもよいが、好ま
しくは過酸化水素を間欠的または連続的に添加すること
により行う。この溶解反応は(1)式であられされる。
Figures 1 and 2 are schematic process diagrams of the method of the present invention.
3. :>, ,; and for an aqueous solution in which Co2 is present,
Xi powder (m-element nickel) for use in powder metallurgy and catalysts, etc.) is added, and NH:+dissolution 1 is performed. This dissolution may be carried out by bubbling air or oxygen, but preferably by adding hydrogen peroxide intermittently or continuously. This dissolution reaction is expressed by equation (1).

Ni + −02+ 6NH,+ Co□→N1(NH
z)bcO3・・・(1)この反応で、元来Niパウダ
ーには、1記不純物も含まれているので、この不純物は
Co (NHいl、CO3などの形で溶解する、(11
式から明らかなように、N jパウダー1モルに対して
、アンモニア6モル以上、炭酸(CO2) 1モル以上
必要となる。溶解温度は、室温〜80 ’C程度が望ま
しい。80℃を超えると、Ni (N11.) 、CO
,の熱分解が生じる虞れがある。
Ni + -02+ 6NH, + Co□→N1(NH
z) bcO3... (1) In this reaction, since the Ni powder originally contains the impurity described in 1, this impurity dissolves in the form of Co (NHI, CO3, etc.), (11
As is clear from the formula, 6 mol or more of ammonia and 1 mol or more of carbonic acid (CO2) are required for 1 mol of N j powder. The melting temperature is preferably about room temperature to 80'C. When the temperature exceeds 80℃, Ni (N11.), CO
, there is a risk of thermal decomposition of .

溶解には、たとえば20時間溶解槽10において攪拌機
11を用い攪拌しながら行う。溶解後は、たとえば約1
〜2時間静定し、上部の1ハツチ分を次の空のイオン交
換槽12へ移送する。取り出した1バッチ分は、回収液
槽13からυfたに仕込む。必要ならば、この移送に先
立って218過2を行ってもよい。
The dissolution is performed, for example, in the dissolution tank 10 for 20 hours while stirring using the stirrer 11. After dissolving, for example, about 1
After settling for ~2 hours, the upper hatch was transferred to the next empty ion exchange tank 12. One batch taken out is charged into the υf tank from the recovery liquid tank 13. If necessary, 218-2 may be performed prior to this transfer.

いずれにしても、溶解後の粗N1(NH3)6cOzに
対して、Znパウダーを添加し、(2)弐に基いてイオ
ン交換3を行い、続いてスラリー液の濾過3Aを行う。
In any case, Zn powder is added to 6 cOz of crude N1 (NH3) after dissolution, and ion exchange 3 is performed based on (2) 2, followed by filtration 3A of the slurry liquid.

N1(NH3)6cO3+ Co(NHa)i、cOz
 +  −・・・+ Znこのイオン交換では、Znが
イオン化傾向が大きいため、各不純物が確実に析出する
。そして、スラリー液を濾過すれば、N1(NH3)6
CO3とZn (NHユ)6cozとの混合溶液が得ら
れる。
N1(NH3)6cO3+ Co(NHa)i, cOz
+ -...+ Zn In this ion exchange, each impurity is reliably precipitated because Zn has a large tendency to ionize. Then, if the slurry liquid is filtered, N1(NH3)6
A mixed solution of CO3 and Zn(NH)6coz is obtained.

イオン交換温度は、常温〜60°Cが好ましく、60℃
を超えると、Znの溶解が優先し、イオン交換が十分に
行われない。
The ion exchange temperature is preferably room temperature to 60°C, and 60°C
If it exceeds, Zn will be dissolved preferentially and ion exchange will not be carried out sufficiently.

Niに対するZnの添加量は、前述のように、はぼZn
:N1=87 : 13の重量割合を目的としているか
ら、Ni  1モルに対して6.1モルまで最大添加で
きるけれども、析出Niに伴うロスを考えると、0.0
5〜1.0モル、最適には0.1モル程度が好ましい。
As mentioned above, the amount of Zn added to Ni is approximately
:N1 = 87 : Since the aim is a weight ratio of 13, a maximum of 6.1 mol can be added per 1 mol of Ni, but considering the loss due to precipitated Ni, 0.0
The amount is preferably 5 to 1.0 mol, most preferably about 0.1 mol.

実機上は、1〜50 g/Nの割合でZnが添加される
In actual equipment, Zn is added at a rate of 1 to 50 g/N.

その後、かくして得たN1(NH+) 6cO+純液に
対して、85〜100℃、通常93〜94℃程度で、(
3)弐の熱分解を行う。
Thereafter, the N1(NH+) 6cO+ pure solution obtained in this way was heated at 85 to 100°C, usually about 93 to 94°C (
3) Perform thermal decomposition of 2.

Ni (NH3) 6CO3+ Zn (NHi) b
cOz =NiCOff  ↓+ZnC0z↓    
     、、、 (3)この熱分解反応では、棚段を
有する連続蒸留塔を用い、その下部からスチームを直接
吹込む蒸留操作によってもよいが、炭酸ニッケルは粘着
性があるので、棚段の目に詰ることがない単藤溜による
バッチ方式が好ましく、したがって−旦濾液貯槽14に
貯えたものを仕込むのが適している。この蒸留・熱分解
工程4で蒸発したアンモニアは、NH,回収設備5で回
収し、再利用する。
Ni (NH3) 6CO3+ Zn (NHi) b
cOz =NiCoff ↓+ZnC0z↓
(3) In this thermal decomposition reaction, a continuous distillation column with trays may be used, and steam may be directly blown from the bottom of the column. However, since nickel carbonate is sticky, It is preferable to use a batch system using a single tank which does not clog the filtrate, and therefore it is suitable to charge the filtrate stored in the filtrate storage tank 14 once. The ammonia evaporated in this distillation/pyrolysis step 4 is recovered by the NH recovery equipment 5 and reused.

得られたZn含有炭酸ニッケルスラリーは、濾過・水洗
6を行い、その後脱水乾燥フし、製品とする。
The obtained Zn-containing nickel carbonate slurry is filtered and washed with water 6, and then dehydrated and dried to obtain a product.

ところで、上記例においては、Niパウダーを用いたが
、溶解時間を長く取れば、N i粒でもよい。
Incidentally, in the above example, Ni powder was used, but Ni particles may be used as long as the dissolution time is longer.

この意味で、本発明では、「Ni粉粒体」としている。In this sense, it is referred to as "Ni powder" in the present invention.

Znについても同様である。Ni粉粒体としては、純度
98%以上、最適には99%以上のものが望まれる。
The same applies to Zn. It is desired that the Ni powder has a purity of 98% or more, most preferably 99% or more.

一方、Niの溶解性は種々の条件によって左右される。On the other hand, the solubility of Ni depends on various conditions.

すなわち、第3図のように、溶解時間の増大に伴ってN
 i QM度が増大し、NH3= 9 mol/ e(
153g/N)でほぼ飽和するので、アンモニア濃度と
しては、150 g/It〜200g/Aが好ましい。
In other words, as shown in Figure 3, as the dissolution time increases, N
i QM degree increases, NH3 = 9 mol/e(
Since the ammonia concentration is almost saturated at 153 g/N), the ammonia concentration is preferably 150 g/It to 200 g/A.

また、第4図のように、溶解温度が高いほど溶解性に優
れるが、45度を超えてもさほど溶解性が変わらないの
で、40〜60°C程度が好ましい。
Further, as shown in FIG. 4, the higher the melting temperature, the better the solubility, but even if the temperature exceeds 45 degrees, the solubility does not change much, so a temperature of about 40 to 60 degrees Celsius is preferable.

第5図のように、回転羽根の回転数が高いほど溶解性に
富むが、回転用モータの限界から考えて700〜110
00rpが望ましい。第6図のようにNi粉粒体スラリ
ー濃度は高いのが好ましく、8〜12mol/ffが好
ましい。さらに第7図のように、N i ?Q度が高い
と、Niロスが少く、Znがン容解し易い。
As shown in Figure 5, the higher the rotation speed of the rotating blade, the higher the solubility, but considering the limits of the rotating motor,
00rp is desirable. As shown in FIG. 6, the Ni powder slurry concentration is preferably high, preferably 8 to 12 mol/ff. Furthermore, as shown in FIG. 7, N i ? When the Q degree is high, Ni loss is small and Zn is easily dissolved.

第8図のように、エアより過酸化水素を用いるのが望ま
しく、かつその量が多い方がよく、しがも所定面を添加
する際、Cのように、1時間ごと7mlずつ添加し2時
間で合計14mj!添加するのがよいことから、分注ま
たは連続添加方式が好ましい。なお、過酸化水素の添加
量は対Niモル比で0、8 mol / 1以上が好ま
しい。
As shown in Figure 8, it is preferable to use hydrogen peroxide rather than air, and it is better to use a large amount of hydrogen peroxide.However, when adding hydrogen peroxide to a given area, as shown in C, 7 ml is added every hour. Total 14mj in time! A dispensing or continuous addition method is preferable because it is convenient to add. The amount of hydrogen peroxide added is preferably 0.8 mol/1 or more in molar ratio to Ni.

他方で、Znの添加量としては、NiロスおよびZn未
溶解分量を少くするために、第9図のように、20〜3
5g/lが好ましい。
On the other hand, in order to reduce the Ni loss and the undissolved amount of Zn, the amount of Zn added is 20 to 3, as shown in Figure 9.
5 g/l is preferred.

〔実施例〕〔Example〕

次に実施例を示す。 Next, examples will be shown.

第2図に示すプロセスの下でまずNi?8解をハツチ的
に行った。
Under the process shown in Figure 2, first Ni? 8 solutions were carried out in a hatched manner.

Niパウダーとしては、関東化学o聯社製のものを用い
、NJが102g/β、CO2が44g//存在する液
1!!に、116g添加した。溶解後、純度99%以上
のZn粉末を33g/βの割合で添加し、室温(25〜
30℃)で1時間攪拌しながらイオン交換を行った。
As the Ni powder, one manufactured by Kanto Kagaku Orensha was used, and liquid 1 containing 102 g/β of NJ and 44 g of CO2 was used! ! 116g was added to. After dissolving, Zn powder with a purity of 99% or more was added at a ratio of 33 g/β, and
Ion exchange was performed while stirring at 30° C. for 1 hour.

溶解工程では、第3図のような溶解特性がみられ、約5
0時間で飽和濃度58 g/lとなった。
In the dissolution process, the dissolution characteristics as shown in Figure 3 are observed, and the dissolution characteristics are approximately 5.
The saturation concentration was 58 g/l at 0 hours.

また、イオン交換後、得られたN1C(h製品は、第1
表のように高純度のものであった。これに対して、同表
に併示したように、イオン交換を行わないものは、純度
がきわめて悪いものであった。
In addition, after ion exchange, the obtained N1C (h product is the first
As shown in the table, it was of high purity. On the other hand, as shown in the same table, those without ion exchange had extremely poor purity.

第   1   表 〔発明の効果〕 以上の通り、本発明によれば、経済的なプロセスによっ
て、高純度でかつ安価なZn−Ni用炭酸ニッケルを得
ることができる。また、Niの溶解をシンプルな設備で
効率よく行うことができる。
Table 1 [Effects of the Invention] As described above, according to the present invention, highly pure and inexpensive nickel carbonate for Zn-Ni can be obtained through an economical process. Further, Ni can be efficiently dissolved using simple equipment.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明法のプロセス例示図、第2図は実験装置
の概要図、第3図〜第9図はNiまたはZnの溶解特性
図、第10図は従来法の工程図である。 第1図 第4図 第5図 ラネ餠吟聞(H) 第6図 第7図 Nil覆(g#) Time  (1−1rl H2O2のバ零加tsNi 瑣り壓81へ良!fオ彩マ
第9図 Zn ?#加量(g/N+ 第10図 番 iCO3
FIG. 1 is an illustrative process diagram of the method of the present invention, FIG. 2 is a schematic diagram of an experimental apparatus, FIGS. 3 to 9 are diagrams of dissolution characteristics of Ni or Zn, and FIG. 10 is a process diagram of the conventional method. Fig. 1 Fig. 4 Fig. 5 Raneko Ginmon (H) Fig. 6 Fig. 7 Figure 9 Zn ?# Addition (g/N+ Figure 10 No. iCO3

Claims (2)

【特許請求の範囲】[Claims] (1)Ni粉粒体をアンモニアおよび炭酸が存在する溶
液でバッチ的に溶解しニッケルの炭酸アンモニウム錯塩
(Ni(NH_3)_6CO_3)を生成し、その後、
これを静定させ、上部の溶液部分のみを別の容器に移し
これに金属亜鉛粉粒体を添加しCo等の不純物を析出分
離し、不純物が分離された液を熱分解してZn含有炭酸
ニッケルを得ることを特徴とするNi・Znメッキ用高
純度炭酸ニッケルの製造法。
(1) Ni powder is dissolved in a solution containing ammonia and carbonic acid in a batch manner to produce ammonium carbonate complex salt of nickel (Ni(NH_3)_6CO_3), and then,
After this is allowed to settle, only the upper solution portion is transferred to another container, metal zinc powder is added thereto, impurities such as Co are precipitated and separated, and the liquid from which the impurities have been separated is thermally decomposed to produce Zn-containing carbonate. A method for producing high-purity nickel carbonate for Ni/Zn plating, characterized by obtaining nickel.
(2)熱分解に当り、1バッチ分ごと棚段のない単蒸溜
設備にて行う特許請求の範囲第1項記載のNi・Znメ
ッキ用高純度炭酸ニッケルの製造法。
(2) A method for producing high-purity nickel carbonate for Ni/Zn plating according to claim 1, in which pyrolysis is carried out for each batch in a single distillation facility without trays.
JP19358386A 1986-08-19 1986-08-19 Production of nickel carbonate Pending JPS6350328A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19358386A JPS6350328A (en) 1986-08-19 1986-08-19 Production of nickel carbonate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19358386A JPS6350328A (en) 1986-08-19 1986-08-19 Production of nickel carbonate

Publications (1)

Publication Number Publication Date
JPS6350328A true JPS6350328A (en) 1988-03-03

Family

ID=16310401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19358386A Pending JPS6350328A (en) 1986-08-19 1986-08-19 Production of nickel carbonate

Country Status (1)

Country Link
JP (1) JPS6350328A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100329483B1 (en) * 1999-06-15 2002-11-16 주식회사 세원소재 Method for preparing nickel compound from waste nickel compound
JP2006241529A (en) * 2005-03-03 2006-09-14 Taiheiyo Kinzoku Kk Refining method for removing sulfur and the like from nickel compound or cobalt compound, and method for producing ferronickel
CN104118914A (en) * 2014-08-14 2014-10-29 安徽工业大学 Synthetic method of nickel carbonate nanosheet
CN113044895A (en) * 2019-12-27 2021-06-29 荆门市格林美新材料有限公司 Preparation method of low-impurity high-nickel basic nickel carbonate

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100329483B1 (en) * 1999-06-15 2002-11-16 주식회사 세원소재 Method for preparing nickel compound from waste nickel compound
JP2006241529A (en) * 2005-03-03 2006-09-14 Taiheiyo Kinzoku Kk Refining method for removing sulfur and the like from nickel compound or cobalt compound, and method for producing ferronickel
CN104118914A (en) * 2014-08-14 2014-10-29 安徽工业大学 Synthetic method of nickel carbonate nanosheet
CN113044895A (en) * 2019-12-27 2021-06-29 荆门市格林美新材料有限公司 Preparation method of low-impurity high-nickel basic nickel carbonate
CN113044895B (en) * 2019-12-27 2023-09-05 荆门市格林美新材料有限公司 Preparation method of low-impurity high-nickel basic nickel carbonate

Similar Documents

Publication Publication Date Title
US20110129397A1 (en) Method for recovering valuable metal from waste catalyst
US4233063A (en) Process for producing cobalt powder
CN101511736A (en) Process for producing iron arsenide compound with good crystallinity
EP4335823A1 (en) Manganese sulfate purification and crystallization method
US8168155B2 (en) Method for production of ammonium paratungstate tetrahydrate and highly pure ammonium paratungstate tetrahydrate
US4508690A (en) Method of producing very pure magnesium oxide
JP2703487B2 (en) Method for producing nickel hydroxide
CA1147970A (en) Process for cobalt recovery from mixed sulfides
JPS6350328A (en) Production of nickel carbonate
US2808313A (en) Method for the production of high purity caesium compounds from caesium-bearing minerals
US3656937A (en) Process for treatment of mattes and sulphurated nickel concentrates
US4071422A (en) Process for concentrating and recovering gallium
JP2000226214A (en) Production of high-purity alkali stannate compound
AU685018B2 (en) Process for preparing high-purity zirconium oxychloride crystals
KR100277503B1 (en) Separation and recovery of nickel, vanadium and molybdenum from petroleum desulfurization spent catalyst
CN1030308C (en) Process for preparation of titanate
US6531108B1 (en) Process for producing free hydroxylamine aqueous solution
US4065300A (en) Method for extraction of copper products from copper bearing material
US3350167A (en) Method of preparing hydrated nickel carbonate and the product thereof
JPH0977516A (en) Production of high purity strontium carbonate
JPH0362651B2 (en)
JPS6345131A (en) Production of cobalt sulfate having high purity
US3321273A (en) Process for the preparation of metal sulfamates
US3172830A (en) Koh ore
KR100345743B1 (en) A method for preparation of high purity nickel sulfate crystal