JPS6350323A - Monocrystalline tio2 substance doped with ta and its production - Google Patents

Monocrystalline tio2 substance doped with ta and its production

Info

Publication number
JPS6350323A
JPS6350323A JP19497686A JP19497686A JPS6350323A JP S6350323 A JPS6350323 A JP S6350323A JP 19497686 A JP19497686 A JP 19497686A JP 19497686 A JP19497686 A JP 19497686A JP S6350323 A JPS6350323 A JP S6350323A
Authority
JP
Japan
Prior art keywords
tio2
particles
monocrystalline
substance
doped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19497686A
Other languages
Japanese (ja)
Inventor
Katsuhiko Arai
克彦 荒井
Kazuo Sasazawa
笹沢 一雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP19497686A priority Critical patent/JPS6350323A/en
Publication of JPS6350323A publication Critical patent/JPS6350323A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To easily obtain pure monocrystalline substance in a simple process by mixing TiO2 and Ta2O5 in the specified proportion, pressure molding the mixture and calcining it in air. CONSTITUTION:95.0-98.5mol% TiO2 and 1.5-5.0mol% Ta2O5 are mixed and the mixture is pressure molded and thereafter calcined in air. By such a way, monocrystalline TiO2 substance consisting of 90.0-97.0mol% TiO2 and 3.0-10.0mol% Ta and being doped with Ta is obtained. The above-mentioned molded body doped with Ta consists of polycrystalline substance well-regulated in crystal size and this polycrystalline substance is made easily separable into every crystalline particles by easily causing intercrystalline cracking and is separated into monocrystalline particles by crushing it. In case the proportion of Ta doped in monocrystalline substance is less than 3.0mol%, the granular growth of crystal is not caused but it is made dense and the intercrystalline cracking is not caused. On the other hand, in case the proportion of Ta is more than 10.0mol%, the granular growth of crystal is irregularly caused and the intercrystalline cracking is not caused. Also crushed particles are polycrystalline particles and monocrystalline particles are not obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、金属酸化物の焼成過程における粒子成長状態
の解明や、物性調査等に用いられるTaをドープしたT
iO2単結晶体とその製法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is directed to Ta-doped T, which is used for elucidating the particle growth state in the firing process of metal oxides and investigating physical properties.
This invention relates to an iO2 single crystal and its manufacturing method.

〔従来の技術〕[Conventional technology]

従来、上記のような目的で用いられるT i O2系の
単結晶体は9粒径数十μm程度のTiO2の単結晶粒子
が用いられ、これは次のような方法で製造されていた。
Conventionally, TiO2 single crystal particles having a diameter of about several tens of micrometers have been used as TiO2 single crystals used for the above-mentioned purpose, and these have been produced by the following method.

まず、溶質としての酸化チタン粉末と、媒質としての弗
化カリウム粉末とを混合する。この混合物を媒質の融点
より高い温度まで昇温し、溶質と媒質とを熔解する。
First, titanium oxide powder as a solute and potassium fluoride powder as a medium are mixed. This mixture is heated to a temperature higher than the melting point of the medium to melt the solute and medium.

その後、媒質が固化する温度まで10℃/hr程度の降
温速度で冷却し2次いで、室温まで炉内において自然冷
却する。こうして+Ti○2の単結晶体と媒質とで構成
された塊状の物が得られる。
Thereafter, the medium is cooled at a cooling rate of about 10° C./hr to a temperature at which it solidifies, and then naturally cooled to room temperature in the furnace. In this way, a lump-like substance composed of a single crystal of +Ti○2 and a medium is obtained.

さらにこれを単結晶粒子とするため1次のような処理を
行う。まず、塊状の熔解物をビーカーに入れ、80℃の
温水を注いで十数分間放置した後、温水を捨てて温水洗
浄する。このような温水洗浄を繰り返し行うと、塊の中
の媒質成分が次第に崩れて溶出し、不溶性の粒子が残る
Further, in order to make this into single crystal grains, the following processing is performed. First, a lumpy melt is placed in a beaker, poured with 80°C warm water, and left to stand for more than ten minutes, then the hot water is discarded and the beaker is washed with hot water. When such hot water washing is repeated, the medium components in the mass gradually break down and dissolve, leaving behind insoluble particles.

これを士数回繰り返すことによって1粒径30〜50μ
m程度の単結晶粒子が得られる。
By repeating this several times, each particle size becomes 30 to 50 μm.
Single crystal particles of about m are obtained.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、上記TiO2単結晶体には。 However, the above-mentioned TiO2 single crystal.

不純物として媒質であるカリウムが500ppm、弗素
が1100pp程度含まれる。この不純物は、単結晶内
に含まれているので温水洗浄を何度繰り返しても除去す
ることができない。
As impurities, about 500 ppm of potassium and 1100 ppm of fluorine are included. Since this impurity is contained within the single crystal, it cannot be removed no matter how many times hot water washing is repeated.

また、塊状の溶解物から最終的に単結晶粉末を得るため
には、既に述べたように何度かの温水洗浄を経なければ
ならない。従って、工程が複雑であると共に、大掛りな
洗浄設備を必要とする問題があった。
Furthermore, in order to finally obtain a single crystal powder from a lumpy melt, it is necessary to undergo several hot water washings as already mentioned. Therefore, there are problems in that the process is complicated and large-scale cleaning equipment is required.

本件発明者らは、従来のT i O2単結晶体とその製
造方法における上記従来の問題点に鑑み。
The present inventors took into consideration the above-mentioned conventional problems in the conventional TiO2 single crystal and its manufacturing method.

検討した結果、適当な割合でTaをドープしたTiO2
が結晶サイズの整った多結晶体を構成し、さらにこの多
結晶体が容易に粒界破断を起こすことに着目した。本発
明は、この点を基に。
As a result of investigation, we found that TiO2 doped with Ta at an appropriate ratio
The authors focused on the fact that the polycrystalline material forms a polycrystalline body with a uniform crystal size, and that this polycrystalline body easily causes grain boundary fracture. The present invention is based on this point.

上記従来の問題点を解決することを目的とする。The purpose is to solve the above conventional problems.

〔問題を解決するための手段〕 第一の発明によるTaをドープしたTiO2単結晶体は
、TiO2が90.0〜97.0モル%と。
[Means for Solving the Problem] The Ta-doped TiO2 single crystal according to the first invention has a TiO2 content of 90.0 to 97.0 mol%.

Taが3.0〜10.0モル%とからなるものである。It consists of 3.0 to 10.0 mol% of Ta.

また、第二の発明による上記単結晶体を製造する方法は
、TiO2を95.0〜9885モル%と。
Further, in the method for producing the above-mentioned single crystal according to the second invention, TiO2 is contained in an amount of 95.0 to 9885 mol%.

Ta2O5を1 、5〜5 、0 モ/l/ %混合シ
、コノ>H合物を加圧成型した後、空気中で焼成する方
法である。
This is a method in which a Kono>H compound containing 1,5 to 5,0 mol/l/% of Ta2O5 is pressure molded and then fired in air.

〔作   用〕[For production]

第二の発明による単結晶粒子の製造方法において、原料
となるTiO2と”l’a2 osとの混合物を加圧成
型した後、空気中で焼成すると。
In the method for producing single crystal particles according to the second invention, a mixture of TiO2 and l'a2 os as raw materials is pressure-molded and then fired in air.

第1図で示すような、第一の発明によるTaがドープさ
れたTiO2の成型体が得られる。この成型体は、結晶
サイズの整った多結晶体からなり、さらにこの多結晶体
は、容易に粒界破断を起こして、結晶粒子毎に分離しや
すく、粉砕することによって、第2図で示すような単結
晶粒子に分離される。この単結晶粒子は第1図で示すよ
うな多結晶体を構成している個々の結晶粒子の形状を、
粉砕後もはヌそのま\維持している。
A Ta-doped TiO2 molded body according to the first invention as shown in FIG. 1 is obtained. This molded body consists of a polycrystalline body with a uniform crystal size, and furthermore, this polycrystalline body easily causes intergranular fracture and is easy to separate into individual crystal grains. It is separated into single crystal particles such as: These single crystal grains are based on the shape of the individual crystal grains that make up the polycrystal as shown in Figure 1.
Even after crushing, it remains as it is.

なお、第一の発明において、Taの割合を上記の範囲に
限定したのは9次の理由による。単結晶体のドープされ
たTaの割合が3.0モル%より少ないと、結晶の粒成
長が起こらずに緻密化し2粒界破断が起こらない。しか
も、粉砕された粒子は多結晶体であり、単結晶粒子が得
られない。他方、Taの割合が10.0モル%より多い
と、結晶の粒成長が不規則に起こり、やはり粒界破断が
起こらない。しかも、粉砕した粒子は多結晶粒子であり
、単結晶粒子が得られない。
In addition, in the first invention, the reason why the proportion of Ta is limited to the above range is as follows. When the proportion of doped Ta in the single crystal is less than 3.0 mol %, grain growth of the crystal does not occur, the crystal becomes dense, and two-grain boundary fracture does not occur. Moreover, the pulverized particles are polycrystalline, and single-crystal particles cannot be obtained. On the other hand, when the proportion of Ta is more than 10.0 mol %, grain growth of the crystal occurs irregularly, and grain boundary fracture does not occur either. Moreover, the pulverized particles are polycrystalline particles, and single-crystalline particles cannot be obtained.

また、第二の発明による原料のTa2O5の割合は、上
記Taの割合から必然的に決定される。
Further, the proportion of Ta2O5 in the raw material according to the second invention is necessarily determined from the proportion of Ta.

〔実 施 例〕〔Example〕

次に、この発明の詳細な説明する。 Next, the present invention will be explained in detail.

(実施例1) 純度99.99%のTiO2粉末85.OOgと、純度
99.99%のTa2O5粉末15.00gと、エタノ
ール400mβとをボールミルに15時間かけて混合し
た。
(Example 1) TiO2 powder with a purity of 99.99% 85. OOg, 15.00 g of Ta2O5 powder with a purity of 99.99%, and 400 mβ of ethanol were mixed in a ball mill for 15 hours.

この混合物を100℃の温度で乾燥し、TiO2とTa
2O5の混合粉末を得た。該混合粉末にポリビニールア
ルコールを4%含む有機バインダを15g加え、儒潰機
で攪拌した後、 5Qmeshの篩を通過させて250
μm以下の粉末を選別した。
This mixture was dried at a temperature of 100°C, and TiO2 and Ta
A mixed powder of 2O5 was obtained. 15g of an organic binder containing 4% polyvinyl alcohol was added to the mixed powder, stirred with a crusher, passed through a 5Q mesh sieve, and
Powders with a size of μm or less were selected.

この粉末を1 ton / am 2の圧力で直径15
11φ。
This powder was heated to a diameter of 15 mm at a pressure of 1 ton/am2.
11φ.

厚さ2 mlの円板形に加圧成型し、複数の成型物を作
った。
A plurality of molded products were made by pressure molding into a disc shape with a thickness of 2 ml.

該成形物を空気中において1次の温度プロファイルで焼
成した。まず、150℃/hrの昇温速度で1450℃
まで昇温し、この温度を4時間保持した後、300℃/
hrの速度で隆温し、常温で炉から取り出した。これに
より、第1図で示すような結晶体からなる焼結体が得ら
れた。
The molded product was fired in air with a first-order temperature profile. First, the temperature was raised to 1450°C at a heating rate of 150°C/hr.
After increasing the temperature to 300℃/
The mixture was heated at a rate of 1 hr and taken out from the furnace at room temperature. As a result, a sintered body consisting of a crystalline body as shown in FIG. 1 was obtained.

得られた焼結体を摺潰機に入れて30分間粗粉砕し、更
にエタノールを加えて、ボールミルで15時間粉砕し、
第2図で示すような粒径18〜29μmの粒子を得た。
The obtained sintered body was placed in a crusher and coarsely crushed for 30 minutes, then ethanol was added and crushed in a ball mill for 15 hours.
Particles having a particle size of 18 to 29 μm as shown in FIG. 2 were obtained.

この粒子は、X線回折法によって分析した結果、Taを
6.0モル%含むTiO2の単結晶粒子であることが確
認され。
As a result of analyzing this particle by X-ray diffraction, it was confirmed that it was a single crystal particle of TiO2 containing 6.0 mol% of Ta.

その純度は99.99%であった。以上の結果を表1に
まとめた。
Its purity was 99.99%. The above results are summarized in Table 1.

(実施例2) 実施例1において、原料中のTiO2粉末の量を85.
00gから80.62gに変え、Ta2O5粉末の量を
15.OOgから19.38gに変えた以外は、実施例
1と同じ方法と条件で単結晶粒子を製造した。
(Example 2) In Example 1, the amount of TiO2 powder in the raw material was changed to 85.
00g to 80.62g, and the amount of Ta2O5 powder was changed to 15.0g. Single crystal particles were produced using the same method and conditions as in Example 1, except that OOg was changed to 19.38g.

この粒子はTaを8.0モル%含むT i O2の単結
晶粒子であり8粒径が17〜33μm、純度が99.9
9%であった。この結果を表1に示す。
These particles are single crystal particles of TiO2 containing 8.0 mol% of Ta, have a particle size of 17 to 33 μm, and have a purity of 99.9.
It was 9%. The results are shown in Table 1.

(実施例3) 実施例1において、原料中のTiO2粉末の量を85.
OOgから89.67gに変え、Ta2O5粉末の量を
15.00gから10.33gに変えた以外は、実施例
1と同じ方法と条件で単結晶粒子を製造した。
(Example 3) In Example 1, the amount of TiO2 powder in the raw material was changed to 85.
Single crystal particles were produced using the same method and conditions as in Example 1, except that OOg was changed to 89.67g and the amount of Ta2O5 powder was changed from 15.00g to 10.33g.

この粒子はTaを4.0モル%含むTiO2の単結晶粒
子であり5粒径が13〜25μm、純度が99.99%
であった。この結果を表1に示す。
This particle is a single crystal particle of TiO2 containing 4.0 mol% of Ta, the particle size is 13 to 25 μm, and the purity is 99.99%.
Met. The results are shown in Table 1.

(実施例4) 実施例1において、原料中のTiO2粉末の量を85.
00gから92.12gに変え、Ta2O5粉末の量を
15.OOgから7.88 gに変えた以外は、実施例
1と同じ方法と条件で単結晶粒子を製造した。
(Example 4) In Example 1, the amount of TiO2 powder in the raw material was changed to 85.
00g to 92.12g, and the amount of Ta2O5 powder was changed to 15.0g. Single crystal particles were produced using the same method and conditions as in Example 1, except that the weight was changed from OOg to 7.88 g.

この粒子はTaを3.0モル%含むT i O2の単結
晶粒子であり2粒径が17〜24μm、純度が99.9
9%であった。この結果を表1に示す。
These particles are single-crystal particles of TiO2 containing 3.0 mol% of Ta, have a 2-particle diameter of 17 to 24 μm, and a purity of 99.9.
It was 9%. The results are shown in Table 1.

(実施例5) 実施例1において、原料中のTiO2粉末の量を85.
00gから76.50gに変え、’l’a2OS粉末の
量を15.00gから23.50gに変えた以外は、実
施例1と同じ方法と条件で単結晶粒子を製造した。
(Example 5) In Example 1, the amount of TiO2 powder in the raw material was changed to 85.
Single crystal particles were manufactured using the same method and conditions as in Example 1, except that the amount of 'l'a2OS powder was changed from 15.00 g to 23.50 g.

この粒子はTaを10.0モル%含むTlO2の単結晶
粒子であり9粒径が25〜36μm、純度が表   1 比較例        30〜50  99.9499
.99%であった。この結果を表1に示す。
These particles are single crystal particles of TlO2 containing 10.0 mol% of Ta, have a particle size of 25 to 36 μm, and have a purity of 99.9499.
.. It was 99%. The results are shown in Table 1.

(比較例) 既に述べた従来の製造方法により製造されたTiO2単
結晶粉末の粒径及び純度を表1に示す。
(Comparative Example) Table 1 shows the particle size and purity of TiO2 single crystal powder produced by the conventional production method described above.

〔発明の効果〕〔Effect of the invention〕

以上説明した通り、Taを上記の割合でドープしたT 
i O2は、結晶サイズの整った多結晶体として得られ
、これは容易に粒界破断を起こす。従って、この多結晶
体を単に粉砕するだけで、第一の発明による単結晶粒子
が得られ、従来のように1面倒な温水洗浄を行う必要が
無くなる。このため、工程が簡素化されると共に。
As explained above, T doped with Ta at the above ratio
iO2 is obtained as a polycrystalline substance with a uniform crystal size, which easily undergoes grain boundary fracture. Therefore, the single crystal particles according to the first invention can be obtained by simply pulverizing this polycrystal, and there is no need to perform the troublesome hot water washing as in the conventional method. Therefore, the process is simplified and.

洗浄設備が不要となる。No cleaning equipment is required.

また、媒質を使用せずに単結晶粒子が製造できるため、
純粋な単結晶体が容易に得られる効果がある。
In addition, since single crystal particles can be produced without using a medium,
It has the effect of easily obtaining a pure single crystal.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、第二の発明における粉砕前の焼結体の結晶構
造を示す電子顕微鏡写真、第2図は。 同焼結体を粉砕した後の顕微鏡写真である。 発明者荒井 支床 笹沢 −雄
FIG. 1 is an electron micrograph showing the crystal structure of the sintered body before pulverization in the second invention, and FIG. This is a micrograph of the sintered body after it has been crushed. Inventor Arai Subbed Sasazawa - Male

Claims (1)

【特許請求の範囲】 1、TiO_2が90.0〜97.0モル%と、Taが
3.0〜10.0モル%とからなるTaをドープしたT
iO_2単結晶体。 2、TiO_2を95.0〜98.5モル%と、Ta_
2O_5を1.5〜5.0モル%混合し、これを加圧成
型し、空気中で焼成するTaをドープしたTiO_2単
結晶体の製造方法。
[Claims] 1. Ta-doped T consisting of 90.0 to 97.0 mol% of TiO_2 and 3.0 to 10.0 mol% of Ta
iO_2 single crystal. 2. 95.0 to 98.5 mol% of TiO_2 and Ta_
A method for producing a Ta-doped TiO_2 single crystal, in which 1.5 to 5.0 mol% of 2O_5 is mixed, pressure molded, and fired in air.
JP19497686A 1986-08-19 1986-08-19 Monocrystalline tio2 substance doped with ta and its production Pending JPS6350323A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19497686A JPS6350323A (en) 1986-08-19 1986-08-19 Monocrystalline tio2 substance doped with ta and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19497686A JPS6350323A (en) 1986-08-19 1986-08-19 Monocrystalline tio2 substance doped with ta and its production

Publications (1)

Publication Number Publication Date
JPS6350323A true JPS6350323A (en) 1988-03-03

Family

ID=16333476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19497686A Pending JPS6350323A (en) 1986-08-19 1986-08-19 Monocrystalline tio2 substance doped with ta and its production

Country Status (1)

Country Link
JP (1) JPS6350323A (en)

Similar Documents

Publication Publication Date Title
EP1144736B1 (en) Agglomeration of silicon powders
KIMURA et al. Preparation of Bi4Ti3O12 powders in the presence of molten salt containing LiCl
JPS6350323A (en) Monocrystalline tio2 substance doped with ta and its production
JP2522772B2 (en) W-doped TiO2 single crystal particles and method for producing the same
JPS6350324A (en) Monocrystalline tio2 substance doped with mo and its production
JPS6065726A (en) Partially stabilized ziroconia body
JPS6350322A (en) Monocrystalline tio2 substance doped with nb and its production
JPH08510436A (en) Doped zinc oxide powder, process for its production, and ceramics obtained from said powder
JPS6340711A (en) Production of beta-type silicon nitride
JPH04300296A (en) Production of barium titanate single crystal
JPH0283212A (en) Synthesis of lanthanide-alkaline earth metal-copper-oxygen type superconductor material
JP3157184B2 (en) Manufacturing method of high-density oxide superconductor
JP4044315B2 (en) Single crystal manufacturing method
KR101640237B1 (en) Manufacturing method of uranium aluminide powder and uranium aluminide powder using thereof
KIMURA et al. Phase and Morphology of Pbnb2o6 Obtained by Molten Salt Synthesis
JPH0867517A (en) Member consisting of indium-tin oxide and production thereof
JP3165921B2 (en) Manufacturing method of oxide superconducting sintered body
KR101905713B1 (en) Potassium titanate and method for producing thereof
CN116283286A (en) Sodium niobate-based leadless piezoelectric textured ceramic and preparation method thereof
JPH04305014A (en) Production of oxide superconductor
JP2014055072A (en) Method for producing amorphous silicon oxide sintered product and amorphous silicon oxide sintered product produced by the same
JPH0458437B2 (en)
JP2510705B2 (en) Method for producing transparent aluminum oxynitride composite sintered body
JP2712049B2 (en) Manufacturing method of iron silicide thermoelectric element
JP3073996B2 (en) Method for producing sintered body of Y1Ba2Cu3O7-x-based oxide superconductor and Y1Ba2Cu3O7-x-based oxide superconductor