JPS63501985A - optical coupler - Google Patents

optical coupler

Info

Publication number
JPS63501985A
JPS63501985A JP50026586A JP50026586A JPS63501985A JP S63501985 A JPS63501985 A JP S63501985A JP 50026586 A JP50026586 A JP 50026586A JP 50026586 A JP50026586 A JP 50026586A JP S63501985 A JPS63501985 A JP S63501985A
Authority
JP
Japan
Prior art keywords
birefringence
fused
fiber
fibers
melting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP50026586A
Other languages
Japanese (ja)
Inventor
ジオージオウ,ジョーヂ.アントニー
ブーコウバラス,アンソニー.クリストス
Original Assignee
ザ ゼネラル エレクトリツク カンパニ−,ピ−.エル.シ−.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ザ ゼネラル エレクトリツク カンパニ−,ピ−.エル.シ−. filed Critical ザ ゼネラル エレクトリツク カンパニ−,ピ−.エル.シ−.
Publication of JPS63501985A publication Critical patent/JPS63501985A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4246Bidirectionally operating package structures
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29331Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by evanescent wave coupling
    • G02B6/29332Wavelength selective couplers, i.e. based on evanescent coupling between light guides, e.g. fused fibre couplers with transverse coupling between fibres having different propagation constant wavelength dependency

Abstract

(57)【要約】本公報は電子出願前の出願データであるため要約のデータは記録されません。 (57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 光カップ2 本発明は単一モードカップラに関しておシ、限定的で゛はないが特に波長分割多 重通信(WDM)カップラに関する。[Detailed description of the invention] light cup 2 The present invention relates particularly, but not exclusively, to single mode couplers, and particularly to wavelength division multiplexers. This invention relates to a heavy duty communication (WDM) coupler.

そのようなカップラは2つの単一モード光フアイバーツプラは多重通信および多 重通信解除において少ない損失で容易に波長分割する場合に大変望ましいもので ある。Such couplers can be used to connect two single-mode fiber optic couplers to multiplex and This is highly desirable for easy wavelength division with little loss when canceling multiple communications. be.

カップラをWDMで利用するためには、この力ツ、プラは波長を高度に分離しく )xodB)且つ可能な久方光偏光うを提供することでおる。In order to use a coupler in WDM, this power and plastic must be able to separate wavelengths to a high degree. ) x odB) and provide possible long-term light polarization.

従って、本発明は波長分割多重通信に有用なカップラに有シ、このカップラは相 互に融着した隣接部分および対の単一そ−ド光ファイバーか鯵■、上記融着部分 は複屈折が本質的にゼロになるようにほぼ円形の断面を有するものである。Therefore, the present invention relates to a coupler useful for wavelength division multiplexing communication, which coupler is compatible with wavelength division multiplexing. Adjacent parts fused to each other and a pair of single-stranded optical fibers, the above fused parts has a substantially circular cross section so that birefringence is essentially zero.

本発明をさらに容易に理解するために、添付図面に従って本発明の具体例を実施 例として説明する。これら図面において、 第1図は単一モード光ファイバーの切断に沿う屈折率を示す線図であシ、 第2図は2本の融着した単一モード光ファイバーを利用している波長カップラの 概略図でsb、第5図は融着した単一モード光ファイバーのいくつかの断面図を 示してる。In order to more easily understand the present invention, embodiments of the present invention are carried out according to the accompanying drawings. This will be explained as an example. In these drawings, Figure 1 is a diagram showing the refractive index along the cut of a single mode optical fiber. Figure 2 shows a wavelength coupler using two fused single mode optical fibers. The schematic diagram is sb, and Figure 5 shows several cross-sectional views of fused single mode optical fibers. It shows.

添付図面の第1図は整合した単一モード光ファイバーの屈折率線図を示している 。WDMカップラを製造するためには、所定の長さを有する2本の光ファイバー を並べ且つ保持する。一方のファイバーを他方のファイバーの周シに巻きつける 。なおこの場合巻きつけ方向は垂直ではない。次にねじられた部分を例えばオキ シブタン火炎によって加熱する。この加熱によって2本のファイバーが融着する 。所定の時間経過後、融着ファイバーを押し出して両円錐テーパを形成する。上 記加熱時間は2本のファイバーの溶融程度を決定づける。Figure 1 of the accompanying drawings shows the refractive index diagram of a matched single mode optical fiber. . To manufacture a WDM coupler, two optical fibers with a predetermined length are Arrange and hold. Wrap one fiber around the other fiber . In this case, the winding direction is not perpendicular. Next, remove the twisted part, for example. Heated by Shibutane flame. This heating fuses the two fibers together. . After a predetermined period of time, the fused fibers are extruded to form a biconical taper. Up The heating time determines the degree of melting of the two fibers.

溶融ファイバーを延伸している間に、所定の波長を有する光を一方のファイバー に照射し且つファイバーに伝送した電力をモニタする。ファイバーを延伸するこ とによシ延伸部分に両円錐テーパが形成され、このテーバはマルチモード領域と なる。この新たなマルチモード領域において、ローカルLPo、およびLP、、 モードの干渉にょシミ力がテーパに沿って移動する。テーバの長さは特別なテー バ形状において、すべての電力が一方または他方のファイバーにおけるテーパ端 部に現われるような長さである。したがってテーパの形成中に生じる電力振動を モニタすることによシ実際のテーバ形成工程が制御可能であシ、所望の程度のテ ーパとすることができる。While drawing the molten fiber, light with a predetermined wavelength is applied to one fiber. and monitor the power delivered to the fiber. drawing the fiber A biconical taper is formed in the extended portion of Toyoshi, and this taper is a multimode region. Become. In this new multimode domain, local LPo and LP, Due to mode interference, the stain force moves along the taper. The length of the tape is In the fiber configuration, all the power is at the tapered end in one or the other fiber. The length is as shown in the section. Therefore, the power oscillations occurring during taper formation can be By monitoring the actual taber forming process can be controlled and the desired degree of taber formation can be achieved. It can be used as a partner.

ここに記載の具体例の場合、連結した7アイパーの延伸は2つの電力振動が検出 された後に停止する。In the specific example described here, the extension of the connected 7-eyeper is detected by two power oscillations. stop after being

得られた一対の溶融ファイバーは第2図において参照番号10および11によっ て示されている。2本のファイバーは参照番号12で示されている部分で一体的 に融着される。なお上記12で示されている部分はまた両円錐テーパを含んでお シ、且つこのテーバの延伸は上記において述べたように製造工程中で2つの電力 振動検出時に停止されている。The resulting pair of fused fibers are designated by reference numbers 10 and 11 in FIG. is shown. The two fibers are integral at the part indicated by reference numeral 12. is fused to. Note that the part indicated by 12 above also includes a double conical taper. As mentioned above, the stretching of this taber requires two electric power sources during the manufacturing process. It is stopped when vibration is detected.

WDMカップラとして操作する場合、2つの異った波長λ1およびλ2の光をフ ァイバー10の13の位置に照射し、得られた出力を14および15の位置で検 出する。When operated as a WDM coupler, it couples light at two different wavelengths λ1 and λ2. Irradiate the fiber 10 at position 13 and detect the obtained output at positions 14 and 15. put out

融着部分は好適なボッティング剤によって包囲されている。カップラを理想的に 作用させるためには、例えば光λ、の約90チがファイバー10の出力に現われ 、光λ2の同じ割合がファイバー11の出力に現われるようにする。この波長ま たはチャネル分離の程度は広い温度範囲に渡って保持されなければならず、また λ およびλ2の偏波の程度から独立していなければならない。The fused portion is surrounded by a suitable botting agent. ideal coupler For example, approximately 90 beams of light λ, appear at the output of fiber 10. , such that the same proportion of light λ2 appears at the output of fiber 11. This wavelength or the degree of channel separation must be maintained over a wide temperature range, and must be independent of the degree of polarization of λ and λ2.

これらの要件を満足させることは難しく、且つ実際これら要件は2つの連結する 光ファイバーの融着部分の断面の性質に大きく依存していることがわかっている 。It is difficult to satisfy these requirements, and in fact they are two interconnected It is known that it is highly dependent on the cross-sectional properties of the fused portion of the optical fiber. .

第3図のa −Cは第2図に示されている融着カップ2に形成可能な融着断面形 状を示している。A-C in Fig. 3 shows the fusion cross-sectional shape that can be formed in the fusion cup 2 shown in Fig. 2. It shows the condition.

第3a図に示されている構造の場合、ファイバー10および11の融着部分は完 全に一体的ではなくて、2つのファイバーの外形を容易に見分けることができる 。この構造は界磁遮断効果が不十分で、このため連結部(coupling r atio )はブロッティング剤の外部条件に対して非常に感受性が高い。この ためさらにカップラは温度変化に対して非常に感受性が高く、従ってこれらの温 度変化はブロッティング剤の屈折率を変化させる。In the structure shown in Figure 3a, the fused portion of fibers 10 and 11 is completely The outer shapes of the two fibers can be easily distinguished without being completely integral. . This structure has insufficient field shielding effect, and therefore the coupling part (coupling r atio) are very sensitive to the external conditions of the blotting agent. this Moreover, couplers are very sensitive to temperature changes and therefore The degree change changes the refractive index of the blotting agent.

他の2つの構造3bkよび3Cけ2本のファイバー間のさらに大きな融着程度を 示している。融着の量は加熱の強さおよび加熱時間によって決まる。実際、fl lsc図の円形形状は溶融が完全に行われたことを示している。The other two structures 3BK and 3C have a larger degree of fusion between the two fibers. It shows. The amount of fusion is determined by the intensity and duration of heating. In fact, fl The circular shape in the lsc diagram indicates complete melting.

第3y図および第3二図における構造はボッティング剤の屈折率変化に対してそ れほど大きな感受性を示さない。The structure in Figures 3y and 32 shows that the structure is sensitive to changes in the refractive index of the botting agent. does not show great sensitivity.

しかしながら、ボッティング剤の屈折率変化に対するこの感受性は、満足なWD Mカップラの製造における唯一の要件ではない。However, this sensitivity to refractive index changes of the botting agent is sufficient for satisfactory WD This is not the only requirement in the manufacture of M couplers.

第3図に示されているすべての3つの構造は複屈折待伏によって生じる)および 応力複屈折りSから成っておシ、従って全複屈折りTは次の通シでちる。All three structures shown in Figure 3 result from birefringence ambush) and It consists of stress birefringence folds S, therefore, the total birefringence fold T is given by the following passage.

BT = Bp −1−(−BB ) 応力複屈折は通常形成複屈折と逆になる。第3a図における構造は全複屈折が非 常に小さい。なぜならば形成複屈折および応力複屈折が非常に小さく且つほぼ等 しいからである。BT = Bp -1-(-BB) Stress birefringence is usually the opposite of formation birefringence. The structure in Figure 3a has no total birefringence. Always small. This is because formation birefringence and stress birefringence are very small and almost equal. This is because it is true.

しかしながら、第3a図の構造は屈折率変化に対して感受性が高いので、温度が 変化する環境の下では安定なWDMを製造するのにふされしくない。However, the structure of Figure 3a is sensitive to changes in the refractive index, so the temperature It is not suitable to produce stable WDM under changing environment.

第5b図における隣の構造は充分に溶融されておシ、且つ界磁遮断効果が非常に 優れているので屈折率変化に対して感受性が低い。しかしながら、その長円形状 による形成複屈折がその応力複屈折よシもずっと大きく、従って異なる入力偏波 状態を有する一定の接合部を保持することのできない全複屈折を付与する。この ため第3b図の構造もまたWDMに適用する場合に望ましいものとはおいてゼロ に達する。この場合、残存する唯一の複屈折は応力によるものである。The adjacent structure in Figure 5b is sufficiently melted and the field shielding effect is very strong. Because of its superior properties, it is less sensitive to changes in the refractive index. However, its oval shape The birefringence formed by the stress birefringence is also much larger and therefore has a different input polarization. It gives a total birefringence that cannot be maintained at a constant junction with the state. this Therefore, the structure of Figure 3b is also zero, although it is desirable when applied to WDM. reach. In this case, the only remaining birefringence is due to stress.

断面形状が円形になる直前に、形成複屈折は応力複屈折の値と同じ値を有し、従 って全複屈折はゼロとなる。Just before the cross-sectional shape becomes circular, the formation birefringence has the same value as the stress birefringence, and the Therefore, the total birefringence is zero.

カップラは光分に溶融されるので、これを包囲しているプロッティング剤の屈折 率の変化に対してそれほど感受性が高くなく、従って広い@度範囲に渡って操作 することができる。また、カッグラの複屈折がゼロであるということは、カップ ラがすべての可能な偏波入力状態で操理解されるように、WDMカップラの波長 周期はまた溶融断面に関係しておシ、従って複屈折ゼロの構造がその周期の最大 および最小において所望のチャネル波長を正確に有していないならば、微調整に よシ最大および最小値に一致させなければならない。この微調整によシ複屈折の 値をゼロより大きく調整しても、偏波の感受性の低下は同じくらいわずかに犠牲 にするにすぎない、従って5つの主な要件即ち高度に分離すること、広い温度範 囲に渡って高度な分離を保持すること、および偏波入力状態にもかかわらず上記 2つの要件を満足することの間で妥協することが可能である。Since the coupler is fused into light, the refraction of the plotting agent surrounding it Less sensitive to rate changes and therefore can be operated over a wide range of degrees can do. Also, the fact that the birefringence of Kagura is zero means that the cup The wavelength of the WDM coupler is The period is also related to the melt cross section, so a structure with zero birefringence will have a maximum period of and if you don't have exactly the desired channel wavelength at the minimum, fine tune it. must match the maximum and minimum values. This fine adjustment will reduce the birefringence. Adjusting the value above zero will result in an equally small sacrifice in polarization sensitivity. Therefore, there are five main requirements: high degree of separation, wide temperature range. maintains a high degree of isolation across the entire range and above despite polarization input conditions It is possible to compromise between satisfying the two requirements.

国際調査報告 +lI+−−mmh−−+hnm、PCT/GB 86100739international search report +lI+--mmh--+hnm, PCT/GB 86100739

Claims (3)

【特許請求の範囲】[Claims] 1.一緒に溶融した隣接部分およびこの溶融部分において形成した両円錐テーパ を有する一対の単一モード光フアイバーから成る波長分割多重通信に用いられる カツブラにおいて、上記溶融部分がほぼ円形の断面を有すると共に本質的にゼロ の複屈折を有することを特徴とするカツブラ。1. Adjacent sections fused together and a biconical taper formed in this fused section used for wavelength division multiplexing communications consisting of a pair of single mode optical fibers with In Katsubura, the fused portion has a substantially circular cross section and is essentially zero. A cutlet characterized by having birefringence of . 2.2本の単一モード光フアイバーを一緒に加熱して溶融し、且つ2本のフアイ バーに張力を加えて溶融位置に両円錐テーパを形成することから成り、2つの異 つた所定の波長を有する光を上記フアイバーの一方に照射し、照射した光を2本 のフアイバーの別々の端部で検出し、且つ溶融フアイバー中における形成複屈折 が応力複屈折に等しく在るまで伝送した光を溶融工程中でモニタし、且つ溶融部 分の断面が本質的に円形であることを特徴とする波長分割多重通信用光カツブラ を製造する方法。2. Heating and melting two single mode optical fibers together, and It consists of applying tension to the bar to form a double conical taper at the melting location, and consists of two different One of the fibers is irradiated with light having a predetermined wavelength, and the two irradiated lights are detected at separate ends of the fiber and the birefringence formed in the molten fiber. The transmitted light is monitored during the melting process until the stress birefringence is equal to the stress birefringence. Optical cutter for wavelength division multiplexing communication characterized by an essentially circular cross section How to manufacture. 3.2つの電力振動がモニタされた時、溶融されているフアイバーの延伸を停止 することを特徴とする請求の範囲第2項記載の方法。3. Stop drawing the fused fiber when two power oscillations are monitored. The method according to claim 2, characterized in that:
JP50026586A 1985-12-04 1986-12-04 optical coupler Pending JPS63501985A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB858529864A GB8529864D0 (en) 1985-12-04 1985-12-04 Wdm coupler
GB8529864 1985-12-04

Publications (1)

Publication Number Publication Date
JPS63501985A true JPS63501985A (en) 1988-08-04

Family

ID=10589233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50026586A Pending JPS63501985A (en) 1985-12-04 1986-12-04 optical coupler

Country Status (4)

Country Link
EP (1) EP0248065A1 (en)
JP (1) JPS63501985A (en)
GB (2) GB8529864D0 (en)
WO (1) WO1987003702A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8629123D0 (en) * 1986-12-05 1987-01-14 Hussey C D Fibre optic components
CA2015211C (en) * 1989-04-28 1993-10-05 Takao Matsumoto Optical wavelength demultiplexer
US6459526B1 (en) 1999-08-09 2002-10-01 Corning Incorporated L band amplifier with distributed filtering

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2812346A1 (en) * 1977-03-23 1978-09-28 Tokyo Shibaura Electric Co LIGHT DISTRIBUTOR
DE2804103A1 (en) * 1978-01-31 1979-08-02 Siemens Ag INTERFEROMETER WITH A COIL FROM A SINGLE-MODE WAVE CONDUCTOR
JPS55147604A (en) * 1979-05-08 1980-11-17 Toshiba Corp Production of photo distributor
US4483582A (en) * 1980-04-23 1984-11-20 The United States Of America As Represented By The Secretary Of The Navy Wavelength multiplexer-demultiplexer
US4490163A (en) * 1982-03-22 1984-12-25 U.S. Philips Corporation Method of manufacturing a fiber-optical coupling element
GB2150703B (en) * 1983-11-30 1987-03-11 Standard Telephones Cables Ltd Single mode fibre directional coupler
EP0171479A1 (en) * 1984-08-03 1986-02-19 Magnetic Controls Company Transmissive multiport star coupler assembly and method
DE3446816A1 (en) * 1984-12-21 1986-07-10 Standard Elektrik Lorenz Ag, 7000 Stuttgart OPTICAL COUPLER

Also Published As

Publication number Publication date
GB8529864D0 (en) 1986-01-15
EP0248065A1 (en) 1987-12-09
GB8629039D0 (en) 1987-01-14
WO1987003702A1 (en) 1987-06-18
GB2184258A (en) 1987-06-17

Similar Documents

Publication Publication Date Title
JP2711351B2 (en) Optical fiber coupler
EP1194802B1 (en) Temperature stabilization of tapered fiber optic components
US6134362A (en) Short length fused fiber optical couplers and method of making same
AU4164500A (en) Strain-isolated optical temperature sensor
KR960024498A (en) MXO multiplex / demultiplex units
CN108387173A (en) A kind of ultra-compact all -fiber Mach-Zehnder interferometer and preparation method thereof
CA2309564C (en) Method of manufacturing polarization-maintaining optical fiber coupler
JP2000161910A (en) Optical fiber mach-zehnder interferometer having asymmetrical coupler
JPH0394208A (en) Optical fiber coupler
KR20100095252A (en) Mach-zehnder interferometer-type optical fiber, preparation method thereof and sensor comprising the same
JPS63501985A (en) optical coupler
EP0213778A2 (en) Interferometers
EP1151336B1 (en) Fabrication of multiplexing and demultiplexing single-mode fiber optic couplers
CA2022367C (en) Simplified wdm fused fiber coupler design
JPH08220370A (en) Optical fiber couplre
CA2203751C (en) 3 x 3 waveguide coupler for bidirectional dual wavelength transmission and signal sampling and method for making the same
US7065267B2 (en) Athermal fused coupler package for optical fibers
KR100855827B1 (en) All-fiber interferometer and method of manufacturing the same
JP2677641B2 (en) Manufacturing method of multiplexer / demultiplexer
JPH03154010A (en) Manufacture of optical fiber coupler
CA2386068A1 (en) Method for producing an optical coupler for extracting a signal from a polarization maintaining optical fibre, and corresponding coupler
Chaudhuri Some passive all-fiber components for optical fiber communication systems: Physics and technology
CA2314997A1 (en) Temperature insensitive fiber based mach-zehnder interferometer filter devices
JP2005345516A (en) Manufacturing method of optical fiber coupler
JPS63216008A (en) Wide-wavelength region single-mode fused coupler