JPS6350177Y2 - - Google Patents

Info

Publication number
JPS6350177Y2
JPS6350177Y2 JP1492582U JP1492582U JPS6350177Y2 JP S6350177 Y2 JPS6350177 Y2 JP S6350177Y2 JP 1492582 U JP1492582 U JP 1492582U JP 1492582 U JP1492582 U JP 1492582U JP S6350177 Y2 JPS6350177 Y2 JP S6350177Y2
Authority
JP
Japan
Prior art keywords
power
regenerative
thyristor
bus
circuit breaker
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1492582U
Other languages
Japanese (ja)
Other versions
JPS58118033U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1492582U priority Critical patent/JPS58118033U/en
Publication of JPS58118033U publication Critical patent/JPS58118033U/en
Application granted granted Critical
Publication of JPS6350177Y2 publication Critical patent/JPS6350177Y2/ja
Granted legal-status Critical Current

Links

Description

【考案の詳細な説明】 本考案はダブルセクシヨン方式を用いた電鉄系
の給電装置に係り、特に無接点化を推し進め事故
時の保護協調を容易にとれる改良された給電装置
を提供しようとするものである。
[Detailed description of the invention] The present invention relates to a power supply system for electric railways using a double section system, and in particular aims to provide an improved power supply system that promotes contactless technology and facilitates protection coordination in the event of an accident. It is something.

直流式電気鉄道の給電装置では、き電回路区分
用としてデツドセクシヨンなるものが設けられて
いるが、このデツドセクシヨはよく知られている
ようにき電系の設備費の経済性という観点より一
重化方式のものが用いられていたが、例えば何ら
かの原因で短絡事故を生じ、事故回線のデツドセ
クシヨンに車両が進入してきたような場合、この
車両のパンダグラフを通して事故電流が車両側に
流れると共に、この車両の他方のパンタグラフを
通して事故電流が事故電流が事故点へと流れる回
路がつくられ、車両のパンタグラフがデツドセク
シヨンより離れる場合、デツドセクシヨンとパン
タグラフ間にアークが生じて、このアーク熱によ
つてデツドセクシヨンは勿論のことパンタグラフ
をも破壊されるという重大事故に陥入る場合があ
る。このような重故障を防止する方法としてデツ
ドセクシヨンを二重化したダブルセクシヨン方式
のものが近時とり入れられ、き電系の信頼性を一
段と高めている。しかしながらかかるダブルセク
シヨン方式で問題となるのは、例えば従来では新
たに設けたセクシヨンと変電所の直流正極母線と
を接続してき電回路を構成する場合、直流式高速
度遮断器を用いていた。かかる直流式高速度遮断
器であれば、よく知られているように気中アーク
により電流開閉を行なうという機械構造を要部と
するものであるから、接点の摩耗などによる保面
が面倒であり、さらに事故時に於ける動作速度が
遅いものであるからして、保護面で問題があるな
ど決して好ましいものではない。このような問題
を解決する方法として、例えば直流式高速度遮断
器と同機能を有すべく逆阻止型のサイリスタを逆
並列接続したサイリスタ遮断器を適用する方法が
一応考えられるが、事故時に流れる短絡電流等を
考慮すれば順方向のサイリスタと逆方向のサイリ
スタとはそれぞれ複数個並列接続したスタツク構
成のものを用いなければならない。このような方
法であれば遮断器そのものが大型化し且つ非常に
不経済なものとなる。従つて順方向のサイリスタ
は前述したものと全く同一構成とし、逆方向の素
子のみダイオードを用いる方法が一応考えられ
る。この方法であれば装置を小型化できしかも経
済的な装置を実現できるが、問題となるのは変電
所の直流正極母線で事故を生じたような場合、逆
方向のダイオード群を通して直流正極母線側の事
故点へと事故電流が継続して流れることになる。
この理由はダイオード群に電流遮断機能がない為
で事故電流によりダイオード群そのものが熱破壊
するという新たな問題が生ずる。
In DC electric railway power supply equipment, a dead section is installed to separate the feeding circuits, but as is well known, this dead section is a single-layer system from the viewpoint of economical equipment costs for the feeding system. For example, if a short-circuit accident occurs for some reason and a vehicle enters the dead section of the accident line, the fault current will flow to the vehicle through the vehicle's panda graph, and the vehicle's A circuit is created in which the fault current flows to the fault point through the other pantograph, and when the pantograph of the vehicle moves away from the dead section, an arc will occur between the dead section and the pantograph, and this arc heat will not only damage the dead section, but also the dead section. A serious accident may occur in which the pantograph is also destroyed. As a method to prevent such serious failures, a double section system in which the dead section is duplicated has recently been introduced, further increasing the reliability of the power feeding system. However, a problem with such a double section system is that, for example, in the past, when a newly installed section and a DC positive bus of a substation were connected to form a feeder circuit, a DC high-speed circuit breaker was used. As is well known, the main part of such a DC high-speed circuit breaker is a mechanical structure in which the current is switched by an air arc, so it is troublesome to maintain the surface due to wear of the contacts. Furthermore, since the operating speed in the event of an accident is slow, there are problems in terms of protection, which is not at all desirable. One possible way to solve this problem is to use a thyristor circuit breaker, which has reverse blocking thyristors connected in reverse parallel to have the same function as a DC high speed circuit breaker, but Considering short-circuit current, etc., it is necessary to use a stack configuration in which a plurality of forward-direction thyristors and reverse-direction thyristors are each connected in parallel. Such a method would increase the size of the circuit breaker itself and would be extremely uneconomical. Therefore, it is possible to consider a method in which the forward direction thyristor has exactly the same structure as that described above, and only the reverse direction element uses a diode. Using this method, it is possible to miniaturize the device and realize an economical device, but the problem is that if an accident occurs on the DC positive bus of a substation, the DC positive bus is The fault current will continue to flow to the fault point.
The reason for this is that the diode group does not have a current interrupting function, and a new problem arises in that the diode group itself is thermally destroyed by the fault current.

本考案はこの点に鑑みて考案されたものであつ
て、特に本願はサイリスタ遮断器の逆方向のダイ
オードを既設の回生用サイリスタ遮断器側へ設け
た点を一大特徴とし、以下実施例に基づき詳述す
る。
The present invention was devised in view of this point, and the main feature of the present application is that a diode in the reverse direction of the thyristor circuit breaker is provided on the side of the existing regenerative thyristor circuit breaker. The details will be explained based on the following.

図の実施例で1は商用周波の交流入力電力を直
流電力に順変換する順電力変換装置で、図では順
電力変換装置としてシリコン整流器を適用して、
この整流器にインバータの機能をも併持するよう
にして車両のブレーキ時に生ずる回生電力を当該
整流器を通して商用周波電源側へ回生するように
してもよい。2はき電線71−72側へ所要の力行
パワーを導びく為の直流正極母線で、31〜36
それぞれサイリスタ遮断器で、これらサイリスタ
遮断器はよく知られているように、例えば逆阻止
型の主サイリスタと補助サイリスタ−転流コンデ
ンサ−転流ダイオード−充電回路よりなる強制消
弧回路とでそれぞれ構成され、事故回線側へ連な
るサイリスタ遮断器のみを選択−遮断する場合、
点弧した補助サイリスタを通して転流コンデンサ
の充電電荷を主サイリスタ側へ放電させることに
よつて主サイリスタを強制消弧し、事故電流を遮
断する動作を行なう。なおサイリスタ遮断器群3
〜36で、31−32及び35−36の各サイリスタ
遮断器は一重化セクシヨン方式の場合に設置され
た既設のもので、33−34のサイリスタ遮断器が
本願に係るダブルセクシヨンの方式の場合に新た
に設けたもので、新たに設置した33−34のサイ
リスタ遮断器の容量は、既設のものに対してダブ
ルセクシヨン間81−83,82−84の距離が短か
く(この距離は車両の長さにαの長さを加えたも
の)、しかもダブルセクシヨン間の範囲のみを給
電すればよいので既設のサイリスタ遮断器の容量
に比し小容量のものでよい。5は回生母線で当該
母線下に41〜46のストツパーダイオード群を並
列接続して、各ダイオード群のアノード側は対応
するサイリスタ遮断器とそれぞれ接続され、回生
車両よりの回生電力さらには事故時に当該変電所
の給電を停止したような場合、この変電所に隣接
する健全変電所より流入する廻り込み電力などを
導びく為のものである。なおストツパーダイオー
ド群41〜46で41〜42及び45−46のダイオー
ドは一重化セクシヨン方式の場合に設けられた既
設のもので、43−44のダイオードは本願に係る
ダブルセクシヨンの方式の場合に新たに設けたも
ので、このように本願は既設のダイオード群と並
設したことを1つの特徴としている。6は回生用
のサイリスタ遮断器で、この遮断器は力行パワー
供給用のサイリスタ遮断器と全く同一の回路構成
で、事故時にストツパーダイオード群より導びか
れる回生電力、隣接変電所よりの廻り込み電力な
どを一時的に遮断するような場合、さらには図示
変電所に回生専用のインバータが設置されたとか
図示する順電力変換装置1が回生機能を有すると
か、変電所そのものが回生機能を有してインバー
タが転流失敗して大きな事故電流が流れたような
場合、この事故電流を瞬時に遮断してインバータ
或いはストツパーダイオード群を保護する機能を
有する。このようにダブルセクシヨン方式で新た
に設けた43−44のストツパーダイオードは、回
生用のサイリスタ遮断器側に設けたことを本願の
他の特徴としている。
In the embodiment shown in the figure, 1 is a forward power converter that converts commercial frequency AC input power into DC power, and in the figure, a silicon rectifier is applied as the forward power converter.
This rectifier may also have the function of an inverter, so that regenerated power generated during braking of the vehicle is regenerated to the commercial frequency power source through the rectifier. 2 is a DC positive electrode bus bar for guiding the required power to the feeder line 7 1 - 7 2 side, and 3 1 to 3 6 are thyristor circuit breakers, respectively.As these thyristor circuit breakers are well known, For example, when selecting and breaking only the thyristor breaker connected to the fault line side, which is composed of a reverse-blocking main thyristor and a forced arc-extinguishing circuit consisting of an auxiliary thyristor, a commutating capacitor, a commutating diode, and a charging circuit,
By discharging the charge in the commutation capacitor to the main thyristor through the ignited auxiliary thyristor, the main thyristor is forcibly extinguished and the fault current is cut off. In addition, thyristor circuit breaker group 3
In 1 to 3 6 , each of the thyristor circuit breakers 3 1 - 3 2 and 3 5 - 3 6 are existing ones installed in the case of the single section system, and the thyristor circuit breakers 3 3 - 3 4 are included in the present application. In the case of the double section system, the capacity of the newly installed 3 3 - 3 4 thyristor circuit breaker is 8 1 - 8 3 , 8 between the double sections compared to the existing one. 2-8 4 is short (this distance is the length of the vehicle plus the length of α), and since it is only necessary to supply power to the area between the double sections, the capacity of the existing thyristor circuit breaker can be reduced. A relatively small capacity one is sufficient. Reference numeral 5 denotes a regenerative bus bar, and a group of stopper diodes 4 1 to 4 6 are connected in parallel under the bus bar, and the anode side of each diode group is connected to the corresponding thyristor circuit breaker, so that the regenerative power from the regenerative vehicle and In the event that the power supply to the relevant substation is stopped in the event of an accident, this substation is used to guide the loop power flowing in from the healthy substation adjacent to this substation. In the stopper diode group 4 1 to 4 6 , diodes 4 1 to 4 2 and 4 5 to 4 6 are existing ones provided in the case of the single section system, and diodes 4 3 to 4 4 are not included in the present application. This is newly provided in the case of such a double section system, and one feature of the present application is that it is arranged in parallel with the existing diode group. 6 is a thyristor circuit breaker for regeneration, and this circuit breaker has exactly the same circuit configuration as the thyristor circuit breaker for power running power supply, and in the event of an accident, the regenerative power led from the stopper diodes, and the circuit breaker from the adjacent substation. In cases where power is temporarily cut off, or when an inverter dedicated to regeneration is installed at the substation shown, or the forward power converter 1 shown has a regeneration function, or the substation itself has a regeneration function. If the inverter fails to commutate and a large fault current flows, it has a function to instantly cut off the fault current and protect the inverter or stopper diode group. Another feature of the present application is that the 4 3 -4 4 stopper diodes newly provided in the double section system are provided on the regenerative thyristor circuit breaker side.

以上のように構成される本実施例の動作を述べ
るに、定常時は順電力変換装置1→直流正極母線
2→各サイリスタ遮断器31〜36→き電線71
いは72→図示しない車両の経路を通して所要の
力行パワーを力行車両に供給し、さらに回生車両
があれば、回生車両側のき電線→ストツパーダイ
オード→回生母線5→回生用サイリスタ遮断器6
→直流正極母線2→他のき電線下に存在する力行
車両の経路を通して、力行車両に回生電力を供給
するか、さらには回生専用のインバータを設置す
ればこのインバータを介して、力行−回生の両機
能を有する順電力変換装置であれば当該変換装置
を介して回生電力を商用周波電源側へ回生させ
る。かかる定常時に於て何らかの原因で図示点
で短絡事故を生じ、しかもこの短絡事故時に71
のき電線下にある車両が既設のデツドセクシヨン
1に進入して来て、ある時間後に車両が新たに
設けた83のデツドセクシヨン側へ進入し、車両
のパンタグラフが81のデツドセクシヨンを通過
したような場合、従来装置で述べたようにデツド
セクシヨンとパンタグラフ間にアークが発生して
重故障へと至るものであるが、かかる事故時の場
合、本願によれば各サイリスタ遮断器31〜36
電路に設けた図示しない電圧差動リレーとによつ
て、先ず事故点に最も近いサイリスタ遮断器3
側の選択遮断リレーが動作して当該電路のみを
選択遮断し、ついでデツドセクシヨン83を挾ん
だ事故セクシヨン側(点側)が無電圧という条
件と、81−83のデツドセクシヨン間が“電圧あ
り”という条件とで新たに挿入したサイリスタ遮
断器34側の図示しない電圧差動リレーが動作し
て、当該電路を遮断する。このようにして事故セ
クシヨン側が全て無電圧という条件と、健全セク
シヨン側(32のサイリスタ遮断器の電路を示す)
が、〓電圧あり″という条件とで32側の図示しな
い電圧差動リレーが動作して、当該電路を即座に
遮断する。かかる一連の遮断動作を以つて車両が
位置するセクシヨン間は、短絡事故が生じると、
直に無電区間となるものであるから、たとえ車両
がデツドセクシヨンに進入したとしても従来装置
にみられるような重故障は未然に防止できるもの
である。なお点の短絡事故時に際して、例えば
事故回線に隣接する72の健全回線に回生車両が
あるような場合、この回生車両より流れ込む回生
電流がストツパーダイオード41或いは43,45
を通して事故点側へ流れないように、事故発生
と同時に動作する選択遮断リレーの出力信号を以
つて回生用のサイリスタ遮断器6で回生電流、さ
らには隣接変電所より流入する廻り込み電流など
を瞬時に遮断するようにする。このように回生電
流等を事故時に際して遮断し、事故セクシヨン側
が全て遮断した時点で再び回生用のサイリスタ遮
断器6を再投入すれば、再投入後に健全回線側の
力行車両に対して回生電力を力行パワーとして供
給できるという利点がある。
To describe the operation of this embodiment configured as above, during steady state, the forward power converter 1 → DC positive bus 2 → each thyristor circuit breaker 3 1 to 3 6 → feeder line 7 1 or 7 2 → not shown The required power running power is supplied to the power running vehicle through the vehicle path, and if there is a regenerative vehicle, the feeder line on the regenerative vehicle side → stopper diode → regenerative bus 5 → regenerative thyristor circuit breaker 6
→ DC positive electrode bus 2 → Supply regenerative power to the power running vehicle through the route of the power running vehicle that exists under other feeder lines, or furthermore, if an inverter exclusively for regeneration is installed, the power running and regeneration can be connected via this inverter. If the forward power conversion device has both functions, regenerated power is regenerated to the commercial frequency power source side through the conversion device. During this steady state, a short circuit occurs at the indicated point for some reason, and at the time of this short circuit, 7 1
It appears that a vehicle under the feeder line entered the existing dead section 81 , and after a certain time the vehicle entered the newly established dead section 83 , and the pantograph of the vehicle passed through the dead section 81 . In such a case, an arc will occur between the dead section and the pantograph as described in the conventional device, leading to a serious failure. However, in the case of such an accident, according to the present application, each of the thyristor circuit breakers 3 1 to 3 6 By means of a voltage differential relay (not shown) installed in the electrical circuit, the thyristor circuit breaker 3 closest to the fault point is first
The selective cutoff relay on the 6 side operates to selectively cut off only the relevant electrical circuit, and then the conditions are that there is no voltage on the accident section side (point side) that sandwiched the dead section 83 , and that the voltage between the dead sections 81 and 83 is " Under the condition that "voltage is present," the voltage differential relay (not shown) on the newly inserted thyristor circuit breaker 34 side operates to cut off the current circuit. In this way, the condition that there is no voltage on the fault section side and the healthy section side (showing the electrical circuit of the thyristor circuit breaker in 3 2 )
However, under the condition that "voltage is present", a voltage differential relay (not shown) on the 32 side operates and immediately interrupts the electrical circuit.With this series of interrupting operations, a short circuit occurs between the sections where the vehicle is located. When an accident occurs,
Since the area immediately becomes a non-electronic section, even if a vehicle enters a dead section, serious failures that occur with conventional devices can be prevented. In addition, in the event of a short-circuit accident, for example, if there is a regenerative vehicle on the healthy line 72 adjacent to the faulty line, the regenerative current flowing from this regenerative vehicle will flow into the stopper diode 41 or 43 , 45.
The regenerative thyristor circuit breaker 6 uses the output signal of the selective cutoff relay, which operates at the same time as the accident occurs, to instantly cut off the regenerative current, as well as the wraparound current flowing from the adjacent substation, so that it does not flow toward the fault point through the fault. so that it is shut off. In this way, if the regenerative current, etc. is cut off at the time of an accident, and the thyristor circuit breaker 6 for regeneration is turned on again when the accident section side has completely cut off, the regenerated electric power can be supplied to the powering vehicle on the healthy line side after the reheating circuit breaker 6 is turned on again. It has the advantage that it can be supplied as power for power running.

以上のように本考案に於ては、ダブルセクシヨ
ン方式のき電系の場合に、新たに挿入したデツド
セクシヨンにサイリスタ遮断器を設置し、この遮
断器のストツパーダイオードを既設の回生用サイ
リスタ遮断器側へ挿入するようにしたものである
から以下に示すように種々の効果を奏すものであ
る。
As described above, in the case of a double section feeding system, a thyristor breaker is installed in the newly inserted dead section, and the stopper diode of this breaker is connected to the existing regenerative thyristor breaker. Since it is inserted into the vessel side, it has various effects as shown below.

短絡事故時の事故セクシヨン側へ車両が進入
した場合でも、事故発生と略同時に事故セクシ
ヨン側を直ちに遮断して車両には加圧されない
き電システムとしているものであるから、き電
システムそのものの信頼性を大幅に向上するこ
とができる。
Even if a vehicle enters the accident section during a short-circuit accident, the system immediately shuts off the accident section at the same time as the accident occurs, and the power feeding system does not apply pressure to the vehicle, which increases the reliability of the power feeding system itself. can significantly improve performance.

遮断器そのものは全てサイリスタ遮断器を適
用しているので、事故時の保護動作を速応性を
もつて行なうことができ、事故の拡大を未然に
防止できる。
Since all of the circuit breakers themselves are thyristor circuit breakers, protective operations can be performed quickly in the event of an accident, and the spread of the accident can be prevented.

全てのサイリスタ遮断器のストツパーダイオ
ードは既設の回生用サイリスタ遮断器側へ集中
して配置しているので、これらストツパーダイ
オード群に短絡電流の如き大きな事故電流を流
せ得る容量をもたせる必要がないので、設備費
を非常に経減することができる。
Since the stopper diodes of all thyristor circuit breakers are concentrated on the side of the existing regenerative thyristor circuit breaker, there is no need for these stopper diodes to have a capacity that can carry large fault currents such as short circuit currents. Therefore, equipment costs can be reduced significantly.

全てサイリスタ遮断器を適用しているので、
保守面での煩わしさは全くなく非常に信頼性の
高いき電システムを提供できる。
All use thyristor circuit breakers, so
It is possible to provide an extremely reliable power feeding system without any troublesome maintenance.

【図面の簡単な説明】[Brief explanation of drawings]

図はダブルセクシヨン方式に適用した場合の本
考案による一実施例を示す給電装置の具体的な回
路構成図。 1は順電力変換装置、2は直流正極母線、31
〜36はサイリスタ遮断器、41〜46はストツパ
ーダイオード、5は回生用母線、6は回生用サイ
リスタ遮断器、71〜72はき電線、81〜84はデ
ツドセクシヨン。
The figure is a specific circuit configuration diagram of a power supply device according to an embodiment of the present invention when applied to a double section system. 1 is a forward power converter, 2 is a DC positive electrode bus, 3 1
36 are thyristor breakers, 41 to 46 are stopper diodes, 5 is a regenerative bus, 6 is a regenerative thyristor breaker, 71 to 72 are feeder lines, and 81 to 84 are dead sections.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 商用周波の交流入力電力を直流電力に順変換す
る順電力変換装置と、この装置より導びかれる直
流電力をダブルセクシヨン方式のき電線側へ給電
する直流正極母線と、ダブルセクシヨン方式の各
回線毎に分割され直流正極母線より入力される直
流電力を各き電線側へ給電する複数のサイリスタ
遮断器と、これらサイリスタ遮断器と対応して設
けられ、且つき電線側より導びかれる隣接変電所
の廻り込み電力、回生電力などを回生母線側へ出
力する複数のストツパーダイオードと、常時は回
生母線より入力される前記廻り込み電力、回生電
力などを直流正極母線側へ出力し、事故時のみ入
力電力を遮断して事故回線の選択遮断後に再投入
される回生用サイリスタ遮断器とでそれぞれ構成
したことを特徴とする直流式電気鉄道の給電装
置。
A forward power conversion device that converts commercial frequency AC input power into DC power, a DC positive bus that feeds the DC power led from this device to the feeder line side of the double section system, and each of the double section systems. A plurality of thyristor circuit breakers that feed DC power that is divided into each line and is input from the positive DC bus to each feeder line, and an adjacent substation that is installed in correspondence with these thyristor circuit breakers and is led from the feeder line side. A plurality of stopper diodes output the circulating power, regenerative power, etc. to the regenerative bus side, and output the circulating power, regenerative power, etc., which is normally input from the regenerative bus, to the DC positive bus side. A power supply device for a DC electric railway, comprising a regenerative thyristor circuit breaker that cuts off input power only and then turns on again after selectively cutting off a faulty line.
JP1492582U 1982-02-05 1982-02-05 DC electric railway power supply device Granted JPS58118033U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1492582U JPS58118033U (en) 1982-02-05 1982-02-05 DC electric railway power supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1492582U JPS58118033U (en) 1982-02-05 1982-02-05 DC electric railway power supply device

Publications (2)

Publication Number Publication Date
JPS58118033U JPS58118033U (en) 1983-08-11
JPS6350177Y2 true JPS6350177Y2 (en) 1988-12-23

Family

ID=30027374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1492582U Granted JPS58118033U (en) 1982-02-05 1982-02-05 DC electric railway power supply device

Country Status (1)

Country Link
JP (1) JPS58118033U (en)

Also Published As

Publication number Publication date
JPS58118033U (en) 1983-08-11

Similar Documents

Publication Publication Date Title
KR960001555B1 (en) Power supply installation for dc electric railroad
JPS6350177Y2 (en)
JPS5846897Y2 (en) DC electric railway power supply device
JPS6023221Y2 (en) DC electric railway power supply equipment
JPS5846895Y2 (en) DC electric railway power supply device
JPS59102626A (en) Dc feeding unit of double section type
JPS5914371B2 (en) Short-circuit protection method for power supply system
JPS5846896Y2 (en) DC electric railway power supply device
JPS5933716Y2 (en) DC electric railway power supply device
JPS5933717Y2 (en) DC electric railway power supply equipment
JPH0688513B2 (en) DC power supply
JPH0339302Y2 (en)
JPS5833135B2 (en) DC electric railway power supply device
JPS59128021A (en) Double section type dc feeder
JPS60176832A (en) Power feed device for d.c. type electrical railways
JPS59102625A (en) Dc feeding unit of double section type
JPS59102627A (en) Dc feeding unit of double section type
JPS59120530A (en) Power supply equipment of double section type
JPS5832053B2 (en) DC electric railway power supply device
JPS638032A (en) Control method of direct current feeder system
JPH0688511B2 (en) DC power supply
JPH0688510B2 (en) DC power supply
JPS5832054B2 (en) DC electric railway power supply device
JPH0755633B2 (en) Substation control method for electric railway
JPS59106326A (en) Double section type direct current feeder