JPS63501572A - Isoforms of soluble immune response suppressants - Google Patents

Isoforms of soluble immune response suppressants

Info

Publication number
JPS63501572A
JPS63501572A JP50607086A JP50607086A JPS63501572A JP S63501572 A JPS63501572 A JP S63501572A JP 50607086 A JP50607086 A JP 50607086A JP 50607086 A JP50607086 A JP 50607086A JP S63501572 A JPS63501572 A JP S63501572A
Authority
JP
Japan
Prior art keywords
immune response
protein
substance
soluble immune
approximately
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP50607086A
Other languages
Japanese (ja)
Inventor
ピアース,カール ダブリュ
ウェブ,デビッド アール.ジュニア
Original Assignee
エフ.ホフマン‐ ラロシユ ウント コンパニ−,リミテツド カンパニ−
ジュウイッシュ ホスピタル オブ セント ルイス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エフ.ホフマン‐ ラロシユ ウント コンパニ−,リミテツド カンパニ−, ジュウイッシュ ホスピタル オブ セント ルイス filed Critical エフ.ホフマン‐ ラロシユ ウント コンパニ−,リミテツド カンパニ−
Publication of JPS63501572A publication Critical patent/JPS63501572A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/52Cytokines; Lymphokines; Interferons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/24Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against cytokines, lymphokines or interferons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Zoology (AREA)
  • Toxicology (AREA)
  • Immunology (AREA)
  • Peptides Or Proteins (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるため要約のデータは記録されません。 (57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 可溶性免疫応答抑制物質のイソ型 発明の要旨 本発明は可溶性免疫応答抑制物質の新規なイン型に関するものである。高速液体 クロマトグラフィーおよび等電点電気泳動を使用することにより4個の異なる生 物活性イソ型(isoformθ)が単離された。[Detailed description of the invention] Isoforms of soluble immune response suppressants Summary of the invention The present invention relates to a novel in-type soluble immune response suppressor. high speed liquid By using chromatography and isoelectric focusing, four different biochemical The active isoform (isoform θ) was isolated.

本発明のイソ型は器官拒否の予防および細胞仲介反応の抑らljK有用である。The isoforms of the invention are useful in preventing organ rejection and inhibiting cell-mediated responses.

発明の背景 可溶性免疫応答抑制物質(S工R8)はコンカナバリンAまたはインターフェロ ンにより活性化されたL7−2”T細胞によって生産される抗原非特異性抑制因 子である( T、 M、 AuneおよびC!、W、 Pierce 。Background of the invention Soluble immune response suppressant (S-R8) is concanavalin A or interferon Antigen-nonspecific suppressive factor produced by L7-2” T cells activated by children (T, M, Aune and C!, W, Pierce.

1984年、’ Mechanism of S工RS action at  thecelluLar and biochemical 1evel “、 E、 Pick編集、L’Yl!]pk”、Ok l n e S 、 9巻、 Academic Press 、 ニューヨーク、257頁)。5IR8は各 種正常および悪性化細胞中で免疫応答を阻害し、細胞分裂を阻止する( T、  M。1984, 'Mechanism of S engineering RS action at thecelluLar and biochemical 1evel “, Edited by E, Pick, L’Yl! ]pk", Ok ln e S, Volume 9, Academic Press, New York, p. 257). 5IR8 is each Inhibits immune response and prevents cell division in normal and malignant cells (T, M.

Aun eおよびC,W、 Pierce 、1981年、’ Mechani sm of action of macrophage−derivedsu ppresor factor produced by 5oluble i mmuneresponse 5uppresortreatea macro phages (可溶性免疫応答抑制物質で処理したマクロファージが生産する マクロファージ由来抑制因子の作用機作)″、J。Aun e and C, W, Pierce, 1981, 'Mechani sm of action of macrophage-derivedsu ppresor factor produced by 5olable i mmuneresponse 5uppresorta macro phages (produced by macrophages treated with soluble immune response suppressants) Mechanism of action of macrophage-derived inhibitory factor)'', J.

■mmuno1.127巻、368頁; T、 M、 AuneおよびCj、  W、 Pierce、1981年、’ Identification and initial characterization of a non−sp ecificsuppresor factor produced by 5 oluble immune res−p□pS6 5uppressor−t reated macrophages (可溶性免疫応答抑制物質を処理した マクロファージが生産する非特異的抑制因子の同定および最初の性状)”、J。■ mmuno 1. Volume 127, page 368; T, M, Aune and Cj, Pierce, W., 1981, 'Identification and initial characterization of a non-sp ecific suppresor factor produced by 5 olable immune res-p□pS6 5uppressor-t Reated macrophages (treated with soluble immune response suppressants) "Identification and initial characterization of non-specific inhibitory factors produced by macrophages", J.

工mmuno1.127巻、1828頁; M、 T、 Auneおよび0、  W、 Pierce 1981年、’ Conversion of solu bleimmune response 5uppresor to macr ophage derivedsuppresor factor by pe roxide (J酸化物による可溶性免疫応答抑制物質のマクロファージ由来 抑制因子への変換)”、Proc、 Natl、 Acad、 Sci、 US A、78巻、5099頁)。AuneおよびPierceの最近の研究により( T、 M、 AuneおよびC,W、 Pierce、1981年、’ Con version of 5oluble immune responsesu ppressor to macrophage−derived 5uppr essorfactor by peroxide(過酸化物による可溶性免疫 応答抑制物質のマクロファージ由来抑制因子への変換)″。Engineering mmuno 1. Volume 127, page 1828; M, T, Aune and 0, W, Pierce 1981, 'Conversion of solu bleimmune response 5uppresor to macr ophage derived suppresor factor by pe roxide (a soluble immune response suppressant substance derived from macrophages due to J oxide) Conversion to repressor)”, Proc, Natl, Acad, Sci, US A, vol. 78, p. 5099). According to the recent work of Aune and Pierce ( T, M, Aune and C, W, Pierce, 1981,’ Con version of 5olable immune response ppressor to macrophage-derived 5uppr essofactor by peroxide Conversion of response inhibitors to macrophage-derived inhibitors)''.

Proc、 Natl、 Acad、 Sci、 USA、78巻、5099頁 )、E3工R8はその生物効果を表わすためにH2O2で活性化(S工R8ox )されなければならない事がわかった。さらに、S工R8の作用はSH試薬、カ タラーゼ、p−アミノ安息香酸、アスコルビン酸、タウリン、或いは天変カリに より阻害される;S工R8oxは細胞蛋白質のSH基の酸化を起すことにより細 胞分裂阻害を仲介するらしい(T、 M、 Aune、 1984年、’ Mo dification ofcellular protein 5ulfhy dryl’ groups by activatedsoluble imm une response 5uppressor (活性化可溶性免疫応答抑 制物質による細胞蛋白質SR基の修飾)″。Proc, Natl, Acad, Sci, USA, Volume 78, Page 5099 ), E3 engineering R8 is activated with H2O2 to reveal its biological effects (S engineering R8ox ) I realized that I had to do it. Furthermore, the action of S-R8 is similar to that of SH reagent, carbon Talase, p-aminobenzoic acid, ascorbic acid, taurine, or naturally occurring potassium S-R8ox is inhibited by cells by causing oxidation of SH groups in cellular proteins. It seems to mediate inhibition of cell division (T, M, Aune, 1984, 'Mo dification of cellular protein 5ulfhy dryl’ groups by activated soluble imm une response 5uppressor (activated soluble immune response suppressor) modification of cellular protein SR groups with regulatory substances)''.

J、 工mmuno1133巻、899頁)。S工R8Oxはまた免疫螢光顕微 鏡による観察で細胞内微小管の正常な配列を壊し、無細胞系で精製微小管蛋白質 の集合を阻害する( R,D、 Irons、1984年、’ SOluble immune response 5uppreBsor (S工R8) in hib1tsmicrotubu’le functj、on in vivo  and microtubuleassembly in vitro (可 溶性免疫応答抑制物質(S工R8)はin vivoの微小管作用およびin  vitroの微小管集合を阻害する)″、J、 ■mmunC)1.133巻、 2032頁)。微小管の糺胞内統合および微小管蛋白質のGTP−依存性集合が SH酸化剤に感受性であることが知られている。J. Eng. vol. 1133, p. 899). S Engineering R8Ox is also used in immunofluorescence microscopy. The normal arrangement of intracellular microtubules is disrupted by observation using a mirror, and microtubule proteins are purified in a cell-free system. (R, D, Irons, 1984, 'SOluble immune response 5uppreBsor (S engineering R8) in hib1tsmicrotube functj, on in vivo and microtubule assembly in vitro (possible Soluble immune response suppressor (S-R8) inhibits in vivo microtubule action and in Inhibits microtubule assembly in vitro)'', J, mmunC) Volume 1.133, 2032 pages). Intracystic integration of microtubules and GTP-dependent assembly of microtubule proteins It is known to be sensitive to SH oxidizing agents.

5IRS蛋白質の生化学的構造解析も行なわれていた( T、 M、 Aune 、 Webb 、 1983年、+VPurificationand par tial characterization of the lymphok ineθoluble immune response 5uppresso r (リンホカイン可溶性免疫応答抑制物質の精製および部分的性状研究)“1 .T、 ■mmunol、 131巻、2848頁; T、 M。Biochemical structural analysis of the 5IRS protein was also conducted (T, M, Aune , Webb, 1983, +V Purification and par tial characterization of the lymphok ineθolable immune response 5uppresso r (Purification and partial characterization study of lymphokine soluble immune response suppressant) “1 .. T, ■ mmunol, volume 131, page 2848; T, M.

Auneら、1983年、VPurification of racLio− 1abeled 5oluble immune response 5upp ressor (放射標識可溶性免疫応答抑制物質の精製)“、J、 J。Aune et al., 1983, VPurification of racLio- 1abeled 5olable immune response 5upp ressor (purification of radiolabeled soluble immune response suppressant)”, J, J.

oppenheimおよびS、 Cohen編集、工ntsrkeukins  。edited by Oppenheim and S. Cohen, Eng. .

Lymphokiyles and 0ytolcines、 Academi c Press、 ニューヨーク、383頁)。初期の研究から逆相高速液体の クロマトグラフィーにより二つの生物活性ピークが回収できることがわかった。Lymphokyles and Oytolcines, Academi c Press, New York, p. 383). Early research on reversed-phase high-speed liquids It was found that two biologically active peaks could be recovered by chromatography.

一つのピークは20%プロパツールで溶出され(以後S工R8−αと呼ぶ)、二 番目のピークは60%プロパツールで溶出される(以後5XRP;−βと呼ぶ)  (T、 M、 Aune、1983年、’ Purification an d partial characterization ofthe lym phokine 日01u’ble immune responsesupp ressor (’)ンホカイン可溶性免疫応答抑制物質の精製および部分的性 状研究)”、J、工mmuno1.161巻、2848頁)。続いて5IR8− αはC−18およびジフェニル修飾シリカ担体を用いた逆相液クロにより徹底的 に精製された( T、 M、 Aune、1983年、’ Purificat ion and partial characterization oft he lymphokine 5oluble immune respons esuppreθsor ”、、T、 工mmun01.131巻、2848頁 )。One peak was eluted with 20% propatool (hereinafter referred to as S-R8-α), and the second The second peak is eluted with 60% propatool (hereafter referred to as 5XRP;-β) (T, M, Aune, 1983, 'Purification an d partial characterization of the lym phokine day 01 u’ble immunity response supp resor (’) Purification and partial sex of immunophokine soluble immune response suppressor ”, J. Eng. vol. 1.161, p. 2848).Subsequently, 5IR8- α was thoroughly determined by reverse-phase liquid chromatography using C-18 and diphenyl-modified silica supports. Purified (T, M, Aune, 1983, 'Purificat ion and partial characterization of he lymphokine 5olable immune responses esuppreθsor”, T, engineering mmun01.131 volume, 2848 pages ).

ジフェニルカラムのクロマトグラフィーの結果、二つの生物活性ピークが観察さ れた。5DS−ポリアクリルアミドデル電気泳動(5DS−PAGE )にかげ ると、最初のピークはM、 W、 14.000の検出可能な一つの蛋白を含み 、二番目のピークはM、 W、 ’11,000の一つの蛋白質を含んでいた。As a result of diphenyl column chromatography, two biologically active peaks were observed. It was. 5DS-polyacrylamide del electrophoresis (5DS-PAGE) Then, the first peak contains one detectable protein of M, W, 14.000. , the second peak contained one protein, M, W, '11,000.

この報告ではS lR8−βの性状研究はされていなかった。This report did not investigate the properties of S1R8-β.

無細胞系mRNA翻訳系で調製した5IR8を用いて実験も行なわれた(工、  Nowowiejski−Wieder S、 1984年、’ Ce1lfr ee translation of the lymphokine sol ubleimmune response 5uppressor (SlR8 ) anclcharacterization of its mRNA ( リンホカイン可溶性免疫応答抑制物質(5IR8)の無細胞系翻訳およびそのm RNAの性状研究)′、J、工mmuno1.132巻、556頁)。393D 2.6ハイブリドーマ細胞からPo1y A” RNAを短離し、メチル水銀ア ガロースデル電気泳動で分画してウサギ赤血球抽出物翻訳系を用いて翻訳した。Experiments were also conducted using 5IR8 prepared using a cell-free mRNA translation system (Engineering, Nowiejski-Wieder S, 1984,' Ce1lfr ee translation of the lymphokine sol ubleimmune response 5uppressor (SlR8 ) anclcharacterization of its mRNA ( Cell-free translation of lymphokine soluble immune response suppressor (5IR8) and its m (Research on the properties of RNA)', J, Eng. 393D 2.6 Shortly release Po1yA” RNA from hybridoma cells and add methylmercury It was fractionated by Garose del electrophoresis and translated using a rabbit red blood cell extract translation system.

5IR8活性をコードするRNAは2つの分画に回収された:1つは25Sの大 きさに対応し、M、 W、 14,000および8,000のSlR8を生成し 、二番目は21および22sに対応してM、 W、 8.000のS工R5i  ’i生成した。この結果は、S 工R8に二種以上の型が存在する遺伝的な裏づ けの可能をはじめて確立した。RNA encoding 5IR8 activity was recovered in two fractions: one with large 25S corresponding to the size of M, W, 14,000 and 8,000 SlR8. , the second is M, W, 8.000 S engineering R5i corresponding to 21 and 22s 'i generated. This result provides genetic evidence for the existence of two or more types of S-R8. For the first time, we established the possibility of

発明の詳細な記載 本発明は、分子篩クロマトグラフィーで分子量CM、W、 )およそ11000 であり、羊赤血球(5RBO)の試験管内抗体産生細胞応答でアッセイした時お よそ1、OX 10” −7,OX 1011単位の抑制/μy蛋白質の比活性 を有する可溶性免疫応答抑制物質(5IR8)の新規な型(s工Rs−G5.5 IR8−(!6.5IR8−G7およびS工RB−β7)に関するものである。Detailed description of the invention The present invention has a molecular weight of approximately 11,000 by molecular sieve chromatography. and when assayed with in vitro antibody-producing cell responses of sheep red blood cells (5RBO). 1, OX 10"-7, OX 1011 units of inhibition/μy protein specific activity A novel type of soluble immune response suppressor (5IR8) with IR8-(!6.5IR8-G7 and S-engine RB-β7).

5IR8の活性を検出するために使用するバイオアッセイの詳細は例1を参照の こと。See Example 1 for details of the bioassay used to detect 5IR8 activity. thing.

不発明によるS工R8蛋白質の新型は一つまたはそれ以上の高速液体クロマトグ ラフィー(apLc )のステップを利用し、続いて調久用等電点電気泳動によ り得ることが出来る。本発明の好ましい態様では19IR8蛋白質の新規イソ型 は第1図に要約したようにして得られる。A novel version of S-R8 protein due to non-invention can be applied to one or more high performance liquid chromatographs. using the Laffey (apLc) step, followed by tonic isoelectric focusing. can be obtained. In a preferred embodiment of the present invention, a novel isoform of the 19IR8 protein is obtained as summarized in FIG.

上述の方法で得られる本発明の5IR8蛋白質の新規イン型はそれぞれ粒状デル による調裂工FFで単一の5IR8活性ピークとして検出される(詳細は例2参 照のこと)。5IR8蛋白質のイン型の比活性は5RBCに対する試験管内抗体 生成細胞応答による測定でμgの蛋白質当り1.OX 1011−7.Q X  1 []11 SU (7)範囲テアった(詳細は第2表参照のこと)。5IR 8蛋白質の種種のイン型の分析の結果、全ての型がM、W、およそ110DDの はy等しい太さであることが示唆された。Each of the novel in-type 5IR8 proteins of the present invention obtained by the above-mentioned method is a granular delta. Detected as a single 5IR8 active peak in the cracking FF (see Example 2 for details). Teru). The specific activity of the in-type 5IR8 protein is determined by the in vitro antibody against 5RBC. 1.5 g of protein per μg of protein as measured by cell response. OX 1011-7. Q X  1 [ ] 11 SU (7) Range was torn (see Table 2 for details). 5IR As a result of analysis of the in-types of 8 proteins, all types were M, W, approximately 110DD. It was suggested that the thickness is equal to y.

さらに、本発明による好ましいS工R8蛋白質のイソ型であるSlR3−G7は 次の表に示す部分アミノ酸組成を有する。Furthermore, SlR3-G7, which is a preferred isoform of S-R8 protein according to the present invention, is It has the partial amino acid composition shown in the following table.

Asp : 8.45 Thr : A、66 Ser : 5.54 Glx : 13.00 G17 : 11.97 Ala : 11.93 Van : 8.02 Mθt:1.87 11eu : 5.69 Lθu: 9.20 Tyr : 2.77 Phe : 4.28 His : 2.5 3 本発明による5IR8蛋白質の新規イソ型は器官拒否、例えば腎、皮膚、心臓、 膵臓、骨髄、小腸および肺の移植等、の予防に使用される。Asp: 8.45 Thr: A, 66 Ser: 5.54 Glx: 13.00 G17: 11.97 Ala: 11.93 Van: 8.02 Mθt: 1.87 11eu: 5.69 Lθu: 9.20 Tyr: 2.77 Phe: 4.28 His: 2.5 3 The novel isoforms of 5IR8 protein according to the present invention can be used for organ rejection, such as kidney, skin, heart, It is used to prevent pancreatic, bone marrow, small intestine, and lung transplants.

5IR8蛋白質の個々のイソ型をそれ自体使用することも出来、或いはイソ型の 二つまたはそれ以上の混合物を利用することも出来る。混合物は短離したイン型 を混合することにより、或いはS工RI3蛋白のいくつかのイソ型が存在するが 非5IR8蛋白質は存在せず、従って組成が5IR8蛋白のイソ型の混合物であ るような所で精製を中止することにより得られる。Individual isoforms of the 5IR8 protein can be used as such, or Mixtures of two or more can also be used. The mixture is placed in a short distance or, although there are several isoforms of S-RI3 protein, There are no non-5IR8 proteins, so the composition is a mixture of 5IR8 protein isoforms. It can be obtained by stopping the purification at a point where the

本発明による新規イン型S工R8蛋白質は従来の医薬品非経口担体物質と併せて 器官拒否反応の予防に適した医薬品調製物を提供できる。The novel in-type S engineered R8 protein according to the present invention can be used in combination with conventional pharmaceutical parenteral carrier materials. Pharmaceutical preparations suitable for the prevention of organ rejection can be provided.

5IR8蛋白質の新規イソ型は静注、皮下性、筋注などの非経口投与または経口 投与される。化合物の投与量は用いる化合物および製剤などの多くの要因に依存 している。投与は現在器官拒否反応の予防に使用されている投与と平行して行な うことができる。The new isoform of 5IR8 protein can be administered parenterally such as intravenously, subcutaneously, intramuscularly, or orally. administered. Compound dosage depends on many factors, including the compound used and the formulation. are doing. Dosing should be done in parallel with current treatments used to prevent organ rejection. I can.

ざらに、不発明による新規イソ型S工R8蛋白質に対する抗体、特にモノクロー ナに抗体をそれ自体公知の方法により調製できる。これらの抗体は公知のように 診断または治療の目的および精製の目的で使用できる。In general, antibodies against the novel isoform S engineering R8 protein, especially monoclonal Alternatively, antibodies can be prepared by methods known per se. These antibodies are known as It can be used for diagnostic or therapeutic purposes and for purification purposes.

本発明は以下の例を基本に、次の図面および表と関連して考慮することによりよ り深く理解される。The invention is based on the following examples and may be better understood when considered in conjunction with the following drawings and tables: be deeply understood.

第1図はS IR8蛋白質の精製フローダイアダラムおよびイソ型の分離を示す 。Figure 1 shows the purification flow diagram of SIR8 protein and separation of isoforms. .

第2図は逆相HPLOによるSlR8−αおよびSlR9−βの分離を示す。セ ファデックスG−50カラムからの生物活性画分をリクロゾルブRP−18カラ ムにのせる。FIG. 2 shows the separation of SlR8-α and SlR9-β by reverse phase HPLO. Se The biologically active fraction from the Fadex G-50 column was transferred to the Licrosolv RP-18 column. Put it on the mu.

使用した流速は2 ml / min、4分毎の画分を集め、各画分の1%を生 物活性測定した。The flow rate used was 2 ml/min, fractions were collected every 4 minutes, and 1% of each fraction was collected. The biological activity was measured.

第3図はりクロゾルブRP−18を用いた逆相HPLCによるS工R−αのN與 を示す。最初のカラムで20%プロパツールで溶出したSlR3−αを逆相リク ロゾルプRP−18カラムにかける。流速けQ、5+++//m1n4分毎の画 分を集め、各画分の1%Is工R8工性8活性セイを行なう。Fig. 3 N-side of S engineering R-α by reversed-phase HPLC using Beam Chlosolv RP-18 shows. The SlR3-α eluted with 20% propatool on the first column was collected in a reverse phase column. Apply to Rosolp RP-18 column. Flow rate Q, 5+++//m1n images every 4 minutes The fractions were collected and each fraction was assayed for 1% IsR8 activity.

第4図はペイカーポンド(Bakerbond )ジンエニル逆相カラムによる SlR8−帽および5IR8−αnのクロマトゲランイーを示す。5IRS−α IおよびS工Rs−allを別々に、ペイカーポンドジフェニルカラムにかけ、 流速0、5 ml / min ; 2分毎の分画を行ない、各画分の1%を用 いてS工R8活性を測定した。A、 SlR8−αI t B’S工R6−α■ 。Aでは蛋白質1n−70ロバノール0から60%の原線勾配で溶出、Bではス テップ毎のn−プロパツール勾りヒで溶出した。Figure 4 is based on a Bakerbond zincenyl reverse phase column. Chromatograms of SlR8-cap and 5IR8-αn are shown. 5IRS-α I and S engineering Rs-all were applied separately to a Paykerpond diphenyl column; Flow rate 0, 5 ml/min; Perform fractionation every 2 minutes and use 1% of each fraction. The S-R8 activity was measured. A, SlR8-αI t B’S engineering R6-α■ . In A, protein 1n-70 lovanol was eluted with a linear gradient of 0 to 60%; in B, it was eluted with a linear gradient of 0 to 60%; It was eluted with a gradient of n-propertool for each step.

第5図は5IR8−βのリクロゾルブRP−18(A)およびペイカーポンドジ フェニル(B)逆相カラムによるクロマトグラフィーを示す。リクロゾルブRP −18で30%プロパツールにより溶出したSlR8−βを再度リクロゾルブR P−18を用い流速Q、5 ml / minでクロマトグラフィーを行なった 。生物活性画分を集めてペイカーポンドジフェニルカラムのクロマトグラフィー にかけた。いずれの場合も各面分の1%を生物活性分析した。Figure 5 shows 5IR8-β Ricrosolv RP-18 (A) and Paykarpondzi. Chromatography with a phenyl (B) reverse phase column is shown. RICLOSOLV RP -18, the SlR8-β eluted with 30% propatool was reconstituted with Lichrosolv R. Chromatography was performed using P-18 at a flow rate of Q, 5 ml/min. . Collect the bioactive fractions and chromatography on a payer pond diphenyl column. I put it on. In each case, 1% of each surface was analyzed for biological activity.

第6図はSlR6−αおよびSlR8−βの工EFによる分解を示す。SlR8 −αI、S工R8−α■およびSlR8−βの集めた生物活性画分を別々に粒状 ケ“ルによる工EFにかけた。ゲルは脱イオン水で溶出した。各画分のPHを測 定した後、1μlの試料でS工RS活性をアッセイした。FIG. 6 shows the decomposition of SlR6-α and SlR8-β by EF. SlR8 The collected bioactive fractions of -αI, S-R8-α■ and SlR8-β were granulated separately. The gel was eluted with deionized water. The pH of each fraction was measured. After determination, 1 μl samples were assayed for S-RS activity.

第7図はS 工RSイソ型の分子ふるいクロマトグラフィーを示す。逆相HPL C!およびIEFで精製したSlR8を高速分子ふるいクロマトグラフィーにか げる。各画分につき5IR8活性を測定する。矢印は蛋白質標準マーカーの溶出 時間を示す:マウスエgG(16o、ooo);BSA C66,000) ; 卵アルブミン(45,0DD);トリプシノーゲン(24,000) ;および リゾチーム(1、!i、000 )。Figure 7 shows molecular sieve chromatography of the S-RS isoform. Reverse phase HPL C! And IEF-purified SlR8 was subjected to high performance molecular sieve chromatography. Geru. Measure 5IR8 activity for each fraction. Arrow indicates elution of protein standard marker Indicates time: Mouse Egg (16o, ooo); BSA C66,000); Egg albumin (45,0DD); trypsinogen (24,000); and Lysozyme (1,!i,000).

第8図は125工で放射標識した5IR8−β7 (II) 5DS−PAGE を示す。Aは還元状態下の5DS−PAGEの後の125ニーS工R8−β7の オートラジオダラムである。最も顕著なバンドはm、w、〜a、o o oを有 す。m、w。Figure 8 shows 5DS-PAGE of 5IR8-β7 (II) radiolabeled at 125 days. shows. A of 125 neeS engineering R8-β7 after 5DS-PAGE under reducing conditions. Autoradio Durham. The most prominent bands have m, w, ~a, o o o vinegar. m, w.

〜30.(:l 00、〜2 A、D D O1〜12.OD Dおよび〜s、 o n oを示すバンドをグルがら電気溶出し、5 Q mM EDTAと混合 してから5DS−PAGEにかげてオートラジオグラフィーを行なう。Bはオー トラジオダラムである:1列目、8,000 m、W、の物質;2列目、12. 000 m、vy、バンド;6タリ目、24,000 m、w、バンド;4列目 、s o、o o o m、w、バンド。全てのバンドがこへではm、w、 s 、o o oの一本のバンドで移動している。~30. (:l 00, ~2 A, D D O1 ~ 12. OD D and ~s, Electroelute the band showing o no o and mix it with 5Q mM EDTA. After that, autoradiography is performed under 5DS-PAGE. B is O Tradiodarum: 1st row, material at 8,000 m, W; 2nd row, 12. 000 m, vy, band; 6th column, 24,000 m, w, band; 4th row , s o, o o o m, w, band. All the bands here are m, w, s , o o o o o moving in one band.

第1表は5IR8−C7のアミノ醒組成を示す。Table 1 shows the amino acid composition of 5IR8-C7.

第2表は5IR8の種々のイン聾の精製のまとめを表わす。Table 2 presents a summary of various indeaf purifications of 5IR8.

第3表は5IR8−C7、SlR8−C6、s xRs−C5およびSlR8− β7の部分アミノ酸組成を表わす。Table 3 shows 5IR8-C7, SlR8-C6, sxRs-C5 and SlR8- The partial amino acid composition of β7 is shown.

S lR5−αおよびS lR8−βの分離と精製S工R8の短離のため、69 6、D2.6ハイブリドーマ細胞(1〜2×106/ml)を血清無添加RPM 工1640培地中で3日間培養し、E3IR8含有上澄液を採取了る。Separation and purification of S lR5-α and S lR8-β For short separation of S R8, 69 6. D2.6 hybridoma cells (1-2 x 106/ml) in serum-free RPM After culturing in 1640 medium for 3 days, the E3IR8-containing supernatant was collected.

ハイプリドーマ細胞株396、D2.6は報告のとおり(T、 M、 Aune ら、” Purification and partialcharacte rization of the lymphokine 5oluble工m mune response 5uppreseor“、J、 Immunol  、 131巻、2848頁(1983年〕)構築し、性状解析されている。本 細胞株け10%ウマ血清(GよりC0LaboratoriθB、ニューヨーク 州グランドアイランド)含有のRPM工1640補強培地で維持されていた。The hybridoma cell line 396, D2.6 was as reported (T, M, Aune et al., “Purification and partial character. rization of the lymphokine 5olable engineering mune response 5uppreseor", J, Immunol , Vol. 131, p. 2848 (1983)) and its properties have been analyzed. Book Cell line 10% horse serum (C0 Laboratory θB, New York) were maintained in RPM Engineering 1640-enriched medium containing (Grand Island, State).

S工R8活性を検出するために使用したバイオアッセイは報告のとおりである(  T、 M、 AuneおよびW。The bioassay used to detect S-R8 activity is as reported ( T, M, Aune and W.

Pierce、1984年、’ Mechanism of SlR8acti onat the ce:L’1ular and biochebical  1evel ’、E。Pierce, 1984, 'Mechanism of SlR8acti onat the ce: L’1ular and biochemical 1evel', E.

Pi ck編集のLymphokine 9巻中、ニューヨーク、Academ ic Press出版、257頁)。使用した測定は主に羊赤血球に対する試験 管内ゾラーク形成細胞応答であり、こNでS工R8oxはアッセイの24時間前 に添加するとIBMまたは工gG抗体形成細胞の出現を阻害す、る( T、 M 、 AuneおよびC,W、Pierce、1981年、’ Mechanis m of action of macrophage−derivedsup presor factor produced by 5oluble im muneresponse 5uppreBsor−treate4 macr ophages ’、J。Lymphokine, Volume 9, edited by Pic, New York, Academ ic Press Publishing, p. 257). The measurements used were mainly tests on sheep red blood cells. This is an intratubular zolag-forming cell response, in which S-R8ox was detected 24 hours before the assay. It inhibits the appearance of IBM or engineered gG antibody-forming cells when added to (T, M , Aune and C.W., Pierce, 1981,' Mechanis m of action of macrophage-derived sup presor factor produced by 5olable im muneresponse 5uppreBsor-treat4macr ophages’, J.

工mmuno1.127巻、668頁; T、M、 Aune、およびC,W、  Pierce 、 1981年、1工dentification ancL initial charact8rization of a non−sp ecificsuppressOr factor produced by  5oluble immuneresponse 8uppressor−tu atl noacrophages ’、J。Engineering mmuno 1.127, page 668; T, M, Aune, and C, W, Pierce, 1981, 1st dentification ancL initial character8rization of a non-sp ecificsuppressOr factor produced by  5olable immune response 8uppressor-tu atl noacrophages', J.

Immuno:L、 127 S、1828頁; T、 M、 hunθおよび 0、 W、 Pierce、1981年、’ 0OnVerSiOn ofso luble immune response 5uppressor to  macrophage−derivecL 5uppressor facto r by peroxide “、 ProcMath Acad、 Sci、  U、S、A、 78巻、5099頁);二番目のアッセイはS工R8oxによ る肥満細胞腫細胞株P814の24時間培養における分裂の阻害である( T、  M、 Aune、 1984年、’ Modification ofCel lular protein 5ulfhydrul groups by a ctivatedsoluble immune response 5upp ressor“、J。Immuno: L, 127 S, 1828 pages; T, M, hunθ and 0, W, Pierce, 1981,'0OnVerSiOn ofso Luble Immune Response 5uppressor to macrophage-derivecL 5uppressor facto r by peroxide “, ProcMath Acad, Sci, U, S, A, vol. 78, p. 5099); the second assay was performed using S engineering R8ox. inhibition of division in 24-hour culture of mast cell tumor cell line P814 (T M, Aune, 1984, 'Modification ofCel lular protein 5ulfhydrul groups by a activated soluble immune response 5upp resor”, J.

工mmuno1133巻、899頁)。いずれの場合にも5IR8含有画分を希 釈測定し、5IR8の抑制能を抑制本位(SU )として表わす。SUは50% 抑制を示す希釈の逆数で計算する( T、 M、 AuneおよびO,W、 P ierce。(Engineering mmuno volume 1133, page 899). In either case, dilute the 5IR8-containing fraction. The inhibitory ability of 5IR8 is expressed as the inhibitory value (SU). SU is 50% Calculated by the reciprocal of the dilution showing inhibition (T, M, Aune and O, W, P ierce.

1984年、’ Modification of ce’1lular pr oteinsulfhydrul groups b7 activatea  5oluble immuneresponse 5uppreasor “、 J、工mmuno1.133巻、899頁)。SlR8の存在を確証するために 生物活注画分につき、S工R8oX活性を阻害するようジチトスライドールまた はβ−メルカゾトエタノール存在下で再測定する( T、 M、 Auneおよ びC,W、 Pierce、1981年、’ Mechanism of ac tion Of macrophage −aerivea 5uppress or factor produced b7 solubleimmune  response 5uppressor−treatea macropha ges/′、J、工mmuno1.127巻、368頁; T、 M、 Aun eおよびc、 w、 Pierce、1981年、’ 工dentificat ionand 1nitial character 1zation of  a non−spθC1ficsuppreesor factor prod ucecl by 5oluble immuneresponse 5upp rassor−treatea macrophages ’、J。1984, 'Modification of ce'1 lular pr oteinsulfhydrul groups b7 activatea 5olable immune response 5uppreasor “, J, Eng. mmuno 1.133, p. 899). To confirm the existence of SlR8 For the biologically active fraction, dicytolidele or is remeasured in the presence of β-mercazotoethanol (T, M, Aune and Pierce, C.W., 1981, 'Mechanism of ac tion Of macrophage - aerivea 5uppress or factor produced b7 soluble immunity response 5uppressor-treatea macropha ges/', J, Engineering mmuno 1.127, page 368; T, M, Aun e and c, w, Pierce, 1981,’ dentificat ionand 1nitial character 1zation of a non-spθC1ficsuppreesor factor prod ucecl by 5olable immune response 5upp rassor-treata macrophages', J.

Immunol、 127巻、1828頁; T、 M、 AuneおよびC, W、Pierce、1981年) ’ Conversion 0f801ub le immunerθ8ponse8uppre8EIOr to macr opha−gaderived 5uppressor factor by  peroxide ’。Immunol, volume 127, page 1828; T, M, Aune and C, W, Pierce, 1981)' Conversion 0f801ub le immunerθ8ponse8uppre8EIOr to macr opha-gaderived 5uppressor factor by peroxide.

Proc、 Natl、Acad、 Sci、 USA、 78巻、5099頁 )。Proc, Natl, Acad, Sci, USA, Volume 78, Page 5099 ).

B、高速液体クロマトグラフィー(HPLO)SlR9−αおよびSlR8−β の分離および精製は本質的:Cは第1図にまとめであるように行なった。B, high performance liquid chromatography (HPLO) SlR9-α and SlR8-β The separation and purification of C was performed essentially as summarized in FIG.

ハイブリドーマ393、D2.6細胞の無血清培養上澄液16リツトルを限外濾 過により濃縮し、1Mピリジン、0.5 M酢酸−pH5,5に再けん濁してセ ファデックスG−50のクロマトグラフィーにかける。生物活性画分を集め、リ クロソルブRP−3またはRP−18のカラム(孔径60A;25〜40μmビ ーズ;カラムサイズ;9X250龍)、1Mピリジン10.5M酢酸緩衝液、P H5,5、にかける。SlR8けn−ノロパノールの段階勾配を用いて溶出し、 SlR8−αおよび5IR8−βに分離される。αおよびβ型への分離は第2図 に示す。SlR8−αを含有する画分を集めてリクロゾルブRP−18(孔径1 00A、10μmビーズ:カラムサイズ:4.2x250mm)カラムで上述と 同じ緩衝液および液体有機相を用いて再クロマトグラフィーにかける。第3図に 示すとおり、生物活性は20%のn−プロパツール溶出の終りから30%n−プ ロパツールの最初の辺りにや〜広いピークで溶出される。Ultrafilter 16 liters of serum-free culture supernatant of hybridoma 393, D2.6 cells. Concentrate by filtration and resuspend in 1M pyridine, 0.5M acetic acid - pH 5.5. Chromatograph on Fadex G-50. Collect and recycle the bioactive fractions. Closolve RP-3 or RP-18 column (pore size 60A; 25-40 μm Column size: 9X250), 1M pyridine 10.5M acetate buffer, P Apply to H5.5. Elute with a stepwise gradient of SlR8-n-nolopanol, It is separated into SlR8-α and 5IR8-β. Figure 2 shows the separation into α and β types. Shown below. The fractions containing SlR8-α were collected and treated with Licrosolv RP-18 (pore size 1 00A, 10 μm beads: Column size: 4.2 x 250 mm) column as described above. Rechromatograph using the same buffer and liquid organic phase. In Figure 3 As shown, bioactivity increases from the end of the 20% n-propatur elution to the 30% n-propanol elution. It is eluted as a rather broad peak around the beginning of Ropatool.

次に生物活性画分を20%の後期に溶出したか30%のはじめに溶出したかに基 づいてS 工R8−αIおよびSlR8−α■に分画した。SlR8−αIおよ びSlR8−α■を態別に、ベーカーボンドの広い孔のジフェニルカラム(J、  T、 Bakθr1ニューシャーシー州フィリッノスバーグ)に1Mピリジン / 0.5 M酢酸緩衝液、PH5,5を用いてかげ、n−プロパツールの直線 勾配(第4A図)またはステップ毎の勾配プログラム(第4B図)を用いて溶出 する。SlR6−αIおよびS工RS−α■の両者とも蛋白質のピークの領域に 溶出した。生物活性のピークを5DS−PAiで分析した結果、一本より多い蛋 白質のバンドが存在することがわかった。このため、調製用等電点電気泳動(I EF)により生物活性と他の混在物とを分離することにした。The biologically active fraction was then analyzed based on either the 20% late eluting or the 30% early eluting. Then, it was fractionated into S engineering R8-αI and SlR8-α■. SlR8-αI and A wide pore diphenyl column (J, 1M pyridine in T, Bakθr1 (Philinosburg, New Chassis) / Shadow using 0.5 M acetate buffer, PH5.5, straight line of n-propatool Elute using a gradient (Figure 4A) or a step-by-step gradient program (Figure 4B) do. Both SlR6-αI and S-RS-α■ were found in the protein peak region. It eluted. As a result of analyzing the biological activity peak with 5DS-PAi, more than one protein was detected. A band of white matter was found to be present. For this reason, preparative isoelectric focusing (I EF) to separate biological activity from other contaminants.

SlR3−βも逆相HPLCにより精製し、濃縮した(第1図参照)。最初のS lR8−αとの分離の後、SlR8−βをリクロゾルブRP−18のクロマトグ ラフィーにかけ、続いてペイカージフェニルカラムのクロマトグラフィーを行な った。第5A図に示すように、生物活性S工R8−βは30%n−プロパツール で溶出し、二つの蛋白質ピークを含んでいた。この物質をジフェニルカラムでク ロマトグラフィーにかげ、30%n−プロパツール溶出の生物活性は大きい蛋白 ピークと一致した(第5B図)。前のクロマトグラフィーでSlR8−βは二つ のピークの間に溶出したので、ジフェニルカラムによりこれらの成分と分離して いないのではないかと考えた。SlR9−αの場合と同様に、SlR8−βもさ らに調製用の工EFにより精製することにした。SlR3-β was also purified and concentrated by reverse phase HPLC (see Figure 1). first S After separation from lR8-α, SlR8-β was chromatographed on Licrosolv RP-18. chromatography on a paycar diphenyl column. It was. As shown in Figure 5A, the bioactive S-engine R8-β was 30% It eluted at , and contained two protein peaks. Filter this material on a diphenyl column. Contrary to chromatography, the biological activity of 30% n-propanol elution is significant for proteins. It coincided with the peak (Figure 5B). In the previous chromatography, there were two SlR8-β Since it eluted between the peaks of I thought maybe he wasn't there. As in the case of SlR9-α, SlR8-β also Furthermore, it was decided to purify the product using preparative EF.

SlR8’i )IPLCで精製することにより5IR8の明かに異なるいくつ かの型が同定された:S工R8−αI、SlR8−α■およびS lR9−β。SlR8'i) Purification by IPLC reveals clearly different numbers of 5IR8. The following types were identified: S-R8-αI, SlR8-α■ and SlR9-β.

5DS−PAGRの結果、これらの生物活性の型も純粋でないことがわかった。5DS-PAGR results showed that these bioactive forms were also not pure.

純度を増加し、他の生化学的パラメータC等電点)を決定するため調表用工EF  f:用い、SlR8−α■、SlR8−α■およびSlR8−βを個々に、粒 状デルの等電点電気泳動をLKBマルチフォア系(LKB、スウェーデン、ゾロ マ)を用いてかけた。使用した両性電解質のPH範囲は6から9である。蛋白質 はデルから脱イオン水により回収する:各分画につきpH’に測定し、5IR8 活性の存在を確認した。結果を第6図に示す。5)R8−αはおよそpH6,o に単一ピークとして表われ、以後5IR8−α6と呼ぶ。Tablet preparation to increase purity and determine other biochemical parameters (isoelectric point) f: Using SlR8-α■, SlR8-α■ and SlR8-β individually, The isoelectric focusing of the delta was performed using the LKB multiphore system (LKB, Sweden, Zoro). (ma) was used. The pH range of the ampholyte used is 6 to 9. protein is recovered with deionized water from the del: pH' for each fraction and 5IR8. The presence of activity was confirmed. The results are shown in Figure 6. 5) R8-α is approximately pH 6,o It appears as a single peak in , and is hereinafter referred to as 5IR8-α6.

SlR8−α■はおよそpl(7およびpH5に二つのピークとして東まり、そ れぞれSlR8−α7およびSlR8−α5と呼ぶ。SlR8-α■ appears as two peaks at approximately pl (7 and pH 5); They are called SlR8-α7 and SlR8-α5, respectively.

SlR8−βはP)(7付近に単一ピークに集まり、SlR8−α7S工R8− α7のアミノ酸分析を0.54μpの天然S lR5−α7のサンプル・につき フルオレスカミンアミノ酸分析計を用いて行なった。アミノ酸分析は第1表にま とめた。SlR8-β gathers in a single peak near P) (7), and SlR8-α7S engineering R8- Amino acid analysis of α7 was performed on 0.54μp of natural SIR5-α7 sample. The analysis was carried out using a fluorescamine amino acid analyzer. Amino acid analysis is shown in Table 1. I stopped it.

第 1 表 アミノ酸 モルパーセント Glx 1 3−00 4f2回の分析の平均値 るSlR8のイソ型のm、 w、の決定S工R8のイン型をさらに分析するため 、各&FS工RB−αおよヒS工R8−β7をスペルコシルLCニー18−DB  、/75 ム(A−6X 150 tnm ; 5upelco工nc、、ペ ンシルバニア州ベルフオンテ)を用いたクロマトグラフィーにより脱塩し、蛋白 質をn−プロパツールで溶出した。Table 1 Amino acid mole percent Glx 1 3-00 4f Average value of two analyzes Determination of m, w, isoforms of SlR8 to further analyze the in-type of SlR8 , each &FS engineering RB-α and Hi S engineering R8-β7 with Supercosyl LC knee 18-DB , /75 mm (A-6X 150 tnm; 5upelco engineering nc, pe The protein was desalted by chromatography using The quality was eluted with n-propatool.

SlR8−aイソ型は20%の、SlR8−β7は30%のn−プロパツールで 溶出した。SlR8-a isoform has 20% and SlR8-β7 has 30% n-propatrotool. It eluted.

最終精製(両性電解質の除去)およびS lR8の分子量決定は縦につないだB lo−511−Tsk−125−T8に一250カラム(大々7.5X300m m、Bio Rad Laboratories 。Final purification (removal of ampholytes) and molecular weight determination of SIR8 were carried out in tandem B Lo-511-Tsk-125-T8 with 1250 columns (approximately 7.5 x 300 m m, Bio Rad Laboratories.

カリフォルニア州すッチモンド)を用いて行なった。(Suchmond, California).

カラムはマウスIf!;G (160,000m、w、 )、ウシ血清アルブミ ン466.000m、w、)、卵アルブミン(45,000m、W、 )、トリ フ’//−)y”ン(24,ODOm、W、 )およびリゾチーム(14,00 0m、w、)の混合物で調整した。結果は第7図に示す。5IR8の全てのイソ 型は分子量およそ11.0001に示した。Column is mouse If! ;G (160,000m, w, ), bovine serum albumin (466,000 m, w,), egg albumin (45,000 m, w,), chicken F’//-)y” (24, ODOm, W, ) and lysozyme (14,00 It was prepared with a mixture of 0 m, w, ). The results are shown in Figure 7. All iso of 5IR8 The mold exhibited a molecular weight of approximately 11.0001.

SlR8−αおよびSlR8−βの両方がHPLOでm、w、 〜11.00D ’e示したという知見は以前の報告(T、 M。Both SlR8-α and SlR8-β m,w, ~11.00D in HPLO The finding that 'e was shown was previously reported (T, M.

Auneら、J、工mmun01.161巻、2848頁(1983年〕)と異 なり、該報告ではHPLCで精製したSlR8(恐らくSlR8−α)1げ5D S−PAGEでi4.oo。Unlike Aune et al., J. Eng. vol. 01.161, p. 2848 (1983). In this report, HPLC-purified SlR8 (probably SlR8-α) 1ge5D i4. on S-PAGE. oo.

または21.000 In、W、の分子種として存在することが明かにされてい る。以前の報告以来、精製S工R8を銀染色5DS−PAGEゲルで検出する試 みを何回も行なったが一致しなかった。m、w、の問題を調べ、銀染色での不一 致を避けるために、SlR8−βを以下に示すようにして125工を用いて法度 化した。SlR3−β7の放射法度化のためにおよそ100 n9の5IR8− β7 k HpLc後凍結乾燥して調袈用工EFからの両性電解質を除去する。Or 21.000 It has been revealed that it exists as a molecular species of In, W, Ru. Since the previous report, an attempt to detect purified S-R8 on a silver-stained 5DS-PAGE gel has been carried out. I tried this many times, but it didn't match. Investigate the problem of m, w, and the discrepancy in silver staining. In order to avoid It became. Approximately 100 n9 5IR8- After β7k HpLc, freeze-dry to remove the amphoteric electrolyte from the preparation EF.

サンプルを10μlの0.05%SDS含有のりん酸緩衝塩溶液に再けん渇する 。次にサンプルを10μlのHa125工(1,2mC!i)と混合し、天産ヒ ース(Pierce (1!hemical Co、、イリノイ州ロックフォー ド)を添加し、混合物を室温で10分間インキュベートする。10分後にサンプ ルをバイオデルp−6のカラムにのせ、放射標識S lR8−βをりん酸緩衝塩 溶液で遊離沃素と分離する。Re-quench the sample in 10 μl of phosphate buffered saline containing 0.05% SDS. . The sample was then mixed with 10 μl of Ha125 (1,2 mC!i) and Pierce (1! Chemical Co., Rockford, Illinois) ) and incubate the mixture for 10 minutes at room temperature. Sump after 10 minutes Place the sample on a Biodel p-6 column and add the radiolabeled S1R8-β to a phosphate buffered salt. Separate free iodine in solution.

m、w、およびポリペプチドの組成を分析するために1251−標識したSlR 8−β7 f Laemmliの方法(ty、 K。1251-labeled SlR to analyze m, w, and polypeptide composition. 8-β7 f Laemmli's method (ty, K.

Laemmli −1970年、’ Cleavage of 5tructu ralproteins during assembly of the h ead ofbacteriophage T 4 (バクテリオファージT4 の頭部集合過程での構造蛋白質の切断)″、Nature、227巻;680頁 )に従い、15%ポリアクリルアミドデルを用いて5DS−PAGEにかけた。Laemmli - 1970, 'Cleavage of 5tructu ralproteins during assembly of the h ead ofbacteriophage T4 ``cleavage of structural proteins during head assembly process'', Nature, vol. 227; p. 680 ) and subjected to 5DS-PAGE using 15% polyacrylamide gel.

電気泳動侵ゲルを50%メタノール15%酢酸中で固定する。湿ゲルをセロファ ンに包み、X線フィルム(X −Omat XAR−5、KOdak 、ニュー ヨーク州ローチェスター)にのせてオートラジオグラフィーにかける(第8図) 。第8A図に示す結果より、大部分の蛋白質はm、w、〜8000に移動してい るが、還元状態下で20000〜35000の間のm、w、にバンドが観察され る。SlR8は鉄依存蛋白質で(T、 M、 AuneおよびC,W、 Pie rce、1984年、’ Mechanism of SlR8action  at the cellular andbiochemica’l 1eve l“、E、 Pick編集のLymphokines、第9巷、ニューヨーク、 Academic Press、257頁)あり、EDTAによりその生物活性 が失なわれることが知られている;S工Ri9は鉄が関与した凝集体を形成して いるのではないかと考えられ、従って高m、w、のSlR8はS 工R8−βを EDTA処理することにより除去できるかも知れない。そこで各バンドを電気溶 出し、50μMのEDTAと混ぜて4°C−晩装置した。次にサンプルを凍結乾 燥し、試料緩衝液にけん濁し、前と同様に5DS−PAGEにかけた。第8B図 に示す通りにこの処理により高m、w、のS 工R8は完全に消失し、従って凝 集は鉄−8IR8−β7複合体形成のためと示唆される。Electrophoretic invasion gels are fixed in 50% methanol 15% acetic acid. cellophane wet gel Wrap it in a bag and place it on X-ray film (X-Omat Rochester, York) and subjected to autoradiography (Figure 8). . From the results shown in Figure 8A, most of the proteins move to m, w, ~8000. However, under reducing conditions, bands were observed between m and w between 20,000 and 35,000. Ru. SlR8 is an iron-dependent protein (T, M, Aune and C, W, Pie rce, 1984, 'Mechanism of SlR8action at the cellular and biochemica'l 1eve Lymphokines, edited by E. Pick, 9th Lane, New York. Academic Press, p. 257), and its biological activity was determined by EDTA. is known to be lost; S-Ri9 forms iron-related aggregates. Therefore, the high m, w, SlR8 is similar to the S engineering R8-β. It may be possible to remove it by treatment with EDTA. Therefore, each band is electrolytically melted. The mixture was mixed with 50 μM EDTA and incubated at 4°C overnight. Then lyophilize the sample It was dried, suspended in sample buffer, and subjected to 5DS-PAGE as before. Figure 8B As shown in , this treatment completely eliminates the S-work R8 of high m, w, and therefore the This is suggested to be due to the formation of the iron-8IR8-β7 complex.

SlR8の各種イン型の精製のまとめを第2表に示す。A summary of the purification of various in forms of SlR8 is shown in Table 2.

第2表 精製の表 粗S、N、27.0xIQ’ 1.4x108200 1セファデックスG−5 07,0x105N、D、 −8工R8α N、D、6.7X1012−8工R Sαl RP−18N、D、 枢1010 −8工R8α5 工EF N、D、  3xIClユ1 − −8IR8α6エEF N、D、 1xlO1O−−8 工R8α7IEF N、D、 2X1010−’5HjSa5スペルコシル < 1.0 2.8x1012 >2.8x1012 >1.4XlO”5IR8a 6.z、ペルコシpv <I Jl 1.8X1012>1.3x1012>9 .0x101O8工R8α7スペルコシル <1.0 2.8x1011>2. 8x1011>1.4x109S工R8a5 ’rSx <i 、0 1x10 11 >1.0Xi011 >5XiO”S工R8(!6TSK <1.0 1 xID”>1.DXloll >5X10”S工R8Iα7TSK <1.0  1x1011>1.0xlO11>5xlO”S工R8β N、D、 7.7X IClユ〇 −8工R8βRP−18N、D、 4X101O−−8IR8β  シフ:r−ニル 783 4xlO” 5.1XIO’ 2.6X10”5IR 8β7エEF N、D、 2x10” −−8工R8β7スペルコシル く1. 0 2×1010 〉2.0×1010 〉1.0×108S工R8/7TSK  <1.0 7x1011 >7.0x1011 >3.5x10’1、 粗調 製物の蛋白質はローリ−法(12)により測定した。Table 2: Refining table Rough S, N, 27.0xIQ' 1.4x108200 1 Sephadex G-5 07,0x105N, D, -8 engineering R8α N, D, 6.7X1012-8 engineering R Sαl RP-18N, D, Kashino 1010-8 Engineering R8α5 Engineering EF N, D, 3xICl Yu1 - -8IR8α6EF N, D, 1xlO1O--8 Engineering R8α7IEF N, D, 2X1010-'5HjSa5 Supercosil < 1.0 2.8x1012>2.8x1012>1.4XlO”5IR8a 6. z, Percosi pv <I Jl 1.8X1012>1.3x1012>9 .. 0x101O8 Engineering R8α7 Supercosyl <1.0 2.8x1011>2. 8x1011>1.4x109S engineering R8a5 'rSx <i, 0 1x10 11 >1.0Xi011 >5XiO”S Engineering R8(!6TSK <1.0 1 xID">1.DXloll>5X10"S engineering R8Iα7TSK <1.0 1x1011>1.0xlO11>5xlO"S engineering R8β N, D, 7.7X ICl Yu〇-8 Engineering R8βRP-18N, D, 4X101O--8IR8β Schiff: r-Nil 783 4xlO” 5.1XIO’ 2.6X10”5IR 8β7E EF N, D, 2x10”--8E R8β7 Supercosyl 1. 0 2×1010〉2.0×1010〉1.0×108S work R8/7TSK <1.0 7x1011>7.0x1011>3.5x10'1, rough adjustment The protein of the product was measured by the Lowry method (12).

HPLCからの試料についての蛋白質分析はフルオレスカミンを用いて行なった (1D)。Protein analysis on samples from HPLC was performed using fluorescamine. (1D).

2、最初の容量は16リツトル 例 5 マウスS工RSヲ例1〜4に記載したようにfIl製した。2. The initial capacity is 16 liters Example 5 Mouse samples were prepared as described in Examples 1-4.

楕W=品を6’MHC6を用いて加水分解し、フルオレスカミン検出法を用いた 従来の方法に従って部分アミノ酸分析にかげた。atelnら、1976年、A rch。Oval W = product was hydrolyzed using 6'MHC6 and fluorescamine detection method was used Partial amino acid analysis was performed according to conventional methods. ateln et al., 1976, A. rch.

Biochem、 Biophys、、 155巻;203−212頁参照のこ と。蛋白のアミノ酸組成のモルパーセントに第3表に示す。See Biochem, Biophys, Volume 155; Pages 203-212. and. Table 3 shows the amino acid composition of the protein in mole percent.

第3表 S工R8の部分アミノ酸分析 5IR8−a7+ S工R8−a6” S工R8−α5” S工R8−β7十A SX 8.1 11.6 12.3 10.0Thr A、6 6.8 5.6  3.7Ser 5.5 8.0 6.3 14.8GIX 12.5 12. 6 17.2 13.8aly 12.0 1C1,79,6’I 7.dAl a 9.6 2.5 7.5 5.5Val 7.0 3.9 6−7 8.6 Leu s、i 9.5 9.0 5.9Tyr 2.7 5.0 2.3 3 .8Phe 4.3 n、d 3.6 3. IHls 2.4 3.0 1. 8 2.2L7E! 4.8 6.5 8.5 3.7Arg 4.7 1.2  2.9 3.3例 6 マウスニー細胞ハイブリドーマ393.D2.6より得られたS工R9−α7蛋 白質の部分アミン末端配列を以下の方法により決定した。Table 3 Partial amino acid analysis of S engineering R8 5IR8-a7+ S-work R8-a6” S-work R8-α5” S-work R8-β70A SX 8.1 11.6 12.3 10.0Thr A, 6 6.8 5.6 3.7Ser 5.5 8.0 6.3 14.8GIX 12.5 12. 6 17.2 13.8aly 12.0 1C1,79,6'I 7. dAl a 9.6 2.5 7.5 5.5 Val 7.0 3.9 6-7 8.6 Leu s, i 9.5 9.0 5.9Tyr 2.7 5.0 2.3 3 .. 8Phe 4.3 n, d 3.6 3. IHLs 2.4 3.0 1. 8 2.2L7E! 4.8 6.5 8.5 3.7Arg 4.7 1.2 2.9 3.3 Case 6 Mouse knee cell hybridoma 393. S engineering R9-α7 protein obtained from D2.6 The partial amine terminal sequence of white matter was determined by the following method.

例1−4の精製操作に従因、S工R8−α7蛋白質をDFAE−クロマトグラフ イー、逆相高速クロマトグラフィーおよび等電点電気泳動により単離した。10 0pモルのS工R8−a7 f Applied Systems社の気相シー クエンサーおよび自動プログラムを用いて自動配列分析にかけた。PTHアミノ 酸分析によりアミン末端より21個のアミノ酸が同定された。部分アミン末端配 列を以下に示す。According to the purification procedure of Example 1-4, S engineering R8-α7 protein was DFAE-chromatographed. E, isolated by reversed-phase high performance chromatography and isoelectric focusing. 10 0 pmol S engineering R8-a7 f Applied Systems vapor phase sea It was subjected to automated sequence analysis using a sequencer and an automated program. PTH amino Acid analysis identified 21 amino acids from the amine end. Partial amine terminal The columns are shown below.

Met Thr Glu Glu Asp Gln Gln Ser Ser  Gln Pro Lys13 1、ii 15 16 17 18 19 20  21Thr Thr工le Asp Asp Ala Gly Asp 5e rFIGIIRE 1 ↓ tフ?デy72G−50 ↓ リクOツルア RP−8)IPLc 20Z フ00ノψノール 1 30z フロQノψノール↓ ↓ 5IR5−a 5IRS −B FIGLIRE 2 i物シ3t+i (S 単 イfL )E王]n−フロ0ノψノール 5ら一一 −− F!GtI;Iε3 生物シ占イ・王 (S 卓戸イiL )口n−フ0〇へOノール 5ら一一一− FIGLIRε4 FiGLi;IE 5 映藺(令) FIGuRE 6 FIGIIREア ■ L ? 国際調査報告 lmemma″al Ao61′callas N6■、、九s8610222 61ms+nalIInsl^””””” Pc〒/rJs86102226Met Thr Glu Glu Asp Gln Gln Ser Ser Gln Pro Lys13 1, ii 15 16 17 18 19 20 21Thr Thr Engineering Asp Asp Ala Gly Asp 5e rFIGIIRE 1 ↓ Tfu? Day72G-50 ↓ Riku O Tsurua RP-8) IPLc 20Z F00 no ψ nor 1 30z Flo Q no ψ nor ↓ ↓ 5IR5-a 5IRS-B FIGLIRE 2 i thing shi 3t + i (S single i fL) E king] n-flo 0 no ψ nor 5 et al. --- F! GtI;Iε3 Biological Divination I・King (S Takudo IiL) Mouth n-fu 0〇 to O Nor 5 et al 111- FIGLIRε4 FiGLi;IE 5 Eirei (rei) FIGuRE 6 FIGIIREA ■ L? international search report lmemma″al Ao61′callas N6■,, 9s8610222 61ms+nalIInsl^”””””Pc〒/rJs86102226

Claims (9)

【特許請求の範囲】[Claims] 1.分子ふるいクロマトグラフィーでおよそ11000のm.w.を有し、SR BCに対する試験管内抗体形成細胞応答によるアッセイでμgの蛋白質当りおよ そ1.0×1011−7.0×1011SUの比活性を有する可溶性免疫応答抑 制蛋白質のイソ型。1. Approximately 11,000 m.p. by molecular sieve chromatography. w. and SR Assays by in vitro antibody-forming cell responses to BC A soluble immune response inhibitor with a specific activity of 1.0 x 1011-7.0 x 1011 SU. isoforms of antiproteins. 2.以下の性状を有するSIRS−α5である請求の範囲第1項の可溶性免疫応 答抑制蛋白質のイソ型。 (a)SRBCに対する試験管内抗体形成細胞応答によるアッセイでμgの蛋白 質当り1.0×1011SU以上の比活性、 (b)粒状ゲルの調製用等電点電気泳動でおよそpH5.0に単一物質として泳 動し、 (c)次の表に含まれる部分アミノ酸組成を有する。 Asx 12.3 Thr 5.6 Ser 6.3 Glx 17.2 Gly 9.6 Ala 7.5 Val 6.7 Met 1.3 Ile 5.3 Leu 9.0 Tyr 2.5 Phe 3.6 His 1.8 Lys 8.5 Arg 2.92. The soluble immune response according to claim 1, which is SIRS-α5 having the following properties: Answer inhibitory protein isoforms. (a) μg of protein as assayed by in vitro antibody-forming cellular responses to SRBC. Specific activity of 1.0 x 1011 SU or more per substance, (b) Migrating as a single substance at approximately pH 5.0 in isoelectric focusing for the preparation of granular gels. move, (c) have a partial amino acid composition contained in the following table. Asx 12.3 Thr 5.6 Ser 6.3 Glx 17.2 Gly 9.6 Ala 7.5 Val 6.7 Met 1.3 Ile 5.3 Leu 9.0 Tyr 2.5 Phe 3.6 His 1.8 Lys 8.5 Arg 2.9 3.以下の性状を有するSIRS−α6である請求の範囲第1項の可溶性免疫応 答抑制蛋白質のイソ型。 (a)SRBCに対する試験管内抗体形成細胞応答によるアッセイでμgの蛋白 質当り1.0×1011SU以上の比活性、 (b)粒状ゲルの調製用等電点電気泳動でおよそpH6.0に単一物質として泳 動し、 (c)次の表に含まれる部分アミノ酸組成を有する。 Asx 11.6 Thr 6.8 Ser 8.0 Glx 12.6 Gly 10.7 Ala 2.5 Val 5.9 Met 1.0 Ile 3.2 Leu 9.5 Tyr 5.0 His 3.0 Lys 6.5 Arg 1.23. The soluble immune response according to claim 1, which is SIRS-α6 having the following properties: Answer inhibitory protein isoforms. (a) μg of protein as assayed by in vitro antibody-forming cellular responses to SRBC. Specific activity of 1.0 x 1011 SU or more per substance, (b) Migrating as a single substance at approximately pH 6.0 in isoelectric focusing for the preparation of granular gels. move, (c) have a partial amino acid composition contained in the following table. Asx 11.6 Thr 6.8 Ser 8.0 Glx 12.6 Gly 10.7 Ala 2.5 Val 5.9 Met 1.0 Ile 3.2 Leu 9.5 Tyr 5.0 His 3.0 Lys 6.5 Arg 1.2 4.以下の性状を有するSIRS−α7である請求の範囲第1項の可溶性免疫応 答抑制蛋白質のイソ型。 (a)SRBCに対する試験管内抗体形成細胞応答によるアッセイでμgの蛋白 質当り1.0×1011SU以上の比活性、 (b)粒状ゲルの調製用等電点電気泳動でおよそpH6.0に単一物質として泳 動し、 (c)次の表に含まれる部分アミノ酸組成を有する。 Asp  8.45 Thr  4.66 Ser  5.51 Glx  13.00 Gly  11.97 Ala  11.95 Val  8.02 Met  1.87 Ileu 5.69 Leu  9.20 Tyr  2.77 Phe  4.28 His  2.33 Lys  4.72 Arg  5.644. The soluble immune response according to claim 1, which is SIRS-α7 having the following properties: Answer inhibitory protein isoforms. (a) μg of protein as assayed by in vitro antibody-forming cellular responses to SRBC. Specific activity of 1.0 x 1011 SU or more per substance, (b) Migrating as a single substance at approximately pH 6.0 in isoelectric focusing for the preparation of granular gels. move, (c) have a partial amino acid composition contained in the following table. Asp 8.45 Thr 4.66 Ser  5.51 Glx 13.00 Gly 11.97 Ala 11.95 Val 8.02 Met 1.87 Ileu 5.69 Leu 9.20 Tyr 2.77 Phe 4.28 His 2.33 Lys 4.72 Arg 5.64 5.以下の性状を有するSIRS−α7である請求の範囲第1項の可溶性免疫応 答抑制蛋白質のイソ型。 (a)SRBCに対する試験管内抗体形成細胞応答によるアッセイでμgの蛋白 質当り1.0×1011SU以上の比活性、 (b)粒状グルの調製用等電点電気泳動でおよそpH7.0に単一物質として泳 動し、 (c)次の表に含まれる部分アミノ酸組成を有し、Asx 8.1 Thr 4.6 Ser 5.5 Glx 12.5 Gly 12.0 Ala 9.6 Val 7.0 Met 1.8 Ile 5.0 Leu 8.1 Tyr 2.7 Phe 4.3 His 2.4 Lys 4.8 Arg 4.7 (d)アミノ末端配列が、 【配列があります】である。5. The soluble immune response according to claim 1, which is SIRS-α7 having the following properties: Answer inhibitory protein isoforms. (a) μg of protein as assayed by in vitro antibody-forming cellular responses to SRBC. Specific activity of 1.0 x 1011 SU or more per substance, (b) In isoelectric focusing for the preparation of granular glue, it is migrated as a single substance at approximately pH 7.0. move, (c) Has a partial amino acid composition included in the following table, Asx 8.1 Thr 4.6 Ser 5.5 Glx 12.5 Gly 12.0 Ala 9.6 Val 7.0 Met 1.8 Ile 5.0 Leu 8.1 Tyr 2.7 Phe 4.3 His 2.4 Lys 4.8 Arg 4.7 (d) The amino terminal sequence is [There is an array]. 6.以下の性状を有するSIRS−β7である請求の範囲第1項の可溶性免疫応 答抑制蛋白質のイソ型。 (a)SRBCに対する試験管内抗体形成細胞応答によるアッセイでμgの蛋白 質当り7.0×1011SU以上の比活性、 (b)粒状ゲルの調製用等電点電気泳動でおよそpH7.0に単一物質として泳 動し、 (c)次の表に含まれる部分アミノ酸組成を有す。 Asx 10.0 Thr 3.7 Ser 14.8 Glx 13.8 Gly 17.4 Ala 5.5 Val 8.6 Met 0.9 Ile 3.3 Leu 5.9 Tyr 3.8 Phe 3.1 His 2.2 Lys 3.7 Arg 3.36. The soluble immune response according to claim 1, which is SIRS-β7 having the following properties: Answer inhibitory protein isoforms. (a) μg of protein as assayed by in vitro antibody-forming cellular responses to SRBC. Specific activity of 7.0 x 1011 SU or more per quality, (b) Migrating as a single substance at approximately pH 7.0 in isoelectric focusing for the preparation of granular gels. move, (c) have a partial amino acid composition contained in the following table. Asx 10.0 Thr 3.7 Ser 14.8 Glx 13.8 Gly 17.4 Ala 5.5 Val 8.6 Met 0.9 Ile 3.3 Leu 5.9 Tyr 3.8 Phe 3.1 His 2.2 Lys 3.7 Arg 3.3 7.器官拒否反応の予防のための非経口投与に適し、請求の範囲第1項の可溶性 免疫応答抑制蛋白質の少たくとも一つのイソ型の有効量および従来の医薬品非経 口担体物質から成る医薬品調製物。7. Soluble according to claim 1, suitable for parenteral administration for the prevention of organ rejection An effective amount of at least one isoform of an immune response suppressing protein and a conventional drug A pharmaceutical preparation consisting of an oral carrier substance. 8.請求の範囲第1項の可溶性免疫応答抑制物質のイソ型に対して形成した抗体 。8. Antibodies formed against the isoform of the soluble immune response suppressing substance according to claim 1 . 9.モノクローナル抗体である請求の範囲第8項の抗体。9. The antibody according to claim 8, which is a monoclonal antibody.
JP50607086A 1985-10-22 1986-10-21 Isoforms of soluble immune response suppressants Pending JPS63501572A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US78999785A 1985-10-22 1985-10-22
US789997 1985-10-22

Publications (1)

Publication Number Publication Date
JPS63501572A true JPS63501572A (en) 1988-06-16

Family

ID=25149340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50607086A Pending JPS63501572A (en) 1985-10-22 1986-10-21 Isoforms of soluble immune response suppressants

Country Status (3)

Country Link
EP (1) EP0245432A4 (en)
JP (1) JPS63501572A (en)
WO (1) WO1987002677A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005123107A2 (en) * 2004-06-09 2005-12-29 Research Development Foundation Immune response suppressor and treatment of multiple sclerosis

Also Published As

Publication number Publication date
EP0245432A4 (en) 1988-08-10
EP0245432A1 (en) 1987-11-19
WO1987002677A1 (en) 1987-05-07

Similar Documents

Publication Publication Date Title
Aggarwal et al. Human tumor necrosis factor. Production, purification, and characterization.
Whitehead et al. Identification of novel members of the serum amyloid A protein superfamily as constitutive apolipoproteins of high density lipoprotein.
Gimbrone Jr et al. Endothelial interleukin-8: a novel inhibitor of leukocyte-endothelial interactions
US7319091B2 (en) Human derived monocyte attracting purified protein product useful in a method of treating infection and neoplasms in a human body, and the cloning of full length cDNA thereof
Liang et al. Characterization of human interleukin 2 derived from Escherichia coli
Tschesche et al. Inhibition of degranulation of polymorphonuclear leukocytes by angiogenin and its tryptic fragment.
BG60256B1 (en) RECOMBINANT METHOD FOR LYMPHOTOXIN
FR2514783A1 (en) HUMAN IMMUNE INTERFERON
JP2001029093A (en) Interleukin-1 inhibitor
US4765903A (en) Purification of monomeric interferon
JPH07108916B2 (en) Inhibin and its purification method
US6869924B1 (en) Human derived monocyte attracting purified protein product useful in a method of treating infection and neoplasms in a human body, and the cloning of full length cDNA thereof
JPH0694476B2 (en) Mutual separation of proteins
AggarwalS et al. Human tumor necrosis factor
Rajas et al. A membrane-bound form of glutamate dehydrogenase possesses an ATP-dependent high-affinity microtubule-binding activity
JPS63501572A (en) Isoforms of soluble immune response suppressants
JPH11508572A (en) Purification of dalvaheptide antibiotics by isoelectric focusing.
JPH02209896A (en) Reduced, non-glycosylated recombinant human il2, method for obtaining it, and its use as drug
JPS6034917A (en) Human il-2 and its preparation
Webb et al. Differences in the binding of transforming growth factor β 1 to the acute-phase reactant and constitutively synthesized α-macroglobulins of rat
CA1329307C (en) Purification of monomeric interferon
EP0368711A1 (en) Method for the isolation of glycosylated interleukin-2, and glycosylated interleukin-2
EP0303538B1 (en) Protein with a vascular activity, derived from monocytes and its analogues, process for its extraction and their uses as therapeutic agents and for the preparation of antibodies
Jiang et al. Sarcolectin: complete purification for molecular cloning
WO1991012334A1 (en) Inhibitor of cytokine activity and applications thereof