JPS63501562A - Method for removing sulfur compounds contained in residual gas - Google Patents

Method for removing sulfur compounds contained in residual gas

Info

Publication number
JPS63501562A
JPS63501562A JP61505667A JP50566786A JPS63501562A JP S63501562 A JPS63501562 A JP S63501562A JP 61505667 A JP61505667 A JP 61505667A JP 50566786 A JP50566786 A JP 50566786A JP S63501562 A JPS63501562 A JP S63501562A
Authority
JP
Japan
Prior art keywords
catalyst
gas
sulfur
temperature
oxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61505667A
Other languages
Japanese (ja)
Other versions
JPH0832548B2 (en
Inventor
クバスニコフ、ジョルジュ
ヌガイレード,ジャン
フィリップ、アンドレ
Original Assignee
ソシエテ・ナシオナル・エルフ・アキテ−ヌ (プロデユクシオン)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR8515906A external-priority patent/FR2589082B1/en
Application filed by ソシエテ・ナシオナル・エルフ・アキテ−ヌ (プロデユクシオン) filed Critical ソシエテ・ナシオナル・エルフ・アキテ−ヌ (プロデユクシオン)
Publication of JPS63501562A publication Critical patent/JPS63501562A/en
Publication of JPH0832548B2 publication Critical patent/JPH0832548B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるため要約のデータは記録されません。 (57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 残留ガスに含まれる硫黄化合物を除 る方法本発明は、特にCLAUS式硫黄工 場から排出されるような残留ガスの中に含まれる硫黄化合物を除去するための方 法に係わる。この方法では前記硫黄化合物を硫黄の形態で回収する。[Detailed description of the invention] A method for removing sulfur compounds contained in residual gas The present invention is particularly applicable to the CLAUS sulfur process. A method for removing sulfur compounds contained in residual gas discharged from the field. Concerning the law. In this method, the sulfur compounds are recovered in the form of sulfur.

CLAUS法という名称で知られているH、S含有酸性ガスの部分的酸化処理に よって硫黄を製造するような硫黄工場から排出される残留ガスは約0.2〜2容 量%の硫黄化合物と蒸気状及び/又は胞状硫黄とを含む。これら硫黄化合物の大 部分はH2Sからなり、残りはSO,、CS2、COSからなる。For partial oxidation treatment of acidic gas containing H and S, known as the CLAUS method. Therefore, the residual gas emitted from a sulfur factory that manufactures sulfur is approximately 0.2 to 2 volumes. % of sulfur compounds and vaporous and/or cellular sulfur. The size of these sulfur compounds A portion consists of H2S, and the rest consists of SO, CS2, and COS.

このような残留ガスは通常、大気汚染に関する法律によって課せられた基準を遵 守しながら焼却後に大気中に排出できるように、硫黄化合物総含量を最大限に低 下させ、それと同時にこれらの硫黄化合物を硫黄工場で処理される酸性与するよ うな形態で回収すべく処理される。Such residual gases typically comply with standards imposed by air pollution laws. The total sulfur compound content is kept as low as possible so that it can be released into the atmosphere after incineration while protecting At the same time, these sulfur compounds are treated in sulfur factories to provide acidity. It will be processed for recovery in this form.

CLAUS式硫黄工場の残留ガスを処理するために本出願人によって開発された 公知の方法は、残留ガスを任官に160℃未満の温度に冷却した後でCLAUS 触媒に接触させてH2Sと802との反応により硫黄を形成し、硫黄を含んだC LAUS触媒を200℃〜500℃の温度の非酸化作用ガスで定期的に掃気して 該触媒に保持された硫黄を蒸発させ、それによって触媒を再生し、次いでこの再 生した触媒を残留ガスと新たに接触させるのに必要な温度まで冷却することから なる。前記触媒は発生した硫黄がこの触媒に保持されるように十分低い温度で機 能する。また、前記触媒冷却処理は160℃未満の温度の不活性ガスを用いて実 施し、この冷却ガスは少なくともその使用の最終段階の量水蒸気を含む。Developed by the applicant to treat residual gas from CLAUS sulfur plants The known method is to cool the residual gas to a temperature below 160° C. Sulfur is formed by the reaction of H2S and 802 in contact with a catalyst, and the sulfur-containing C The LAUS catalyst is periodically scavenged with non-oxidizing working gas at a temperature of 200°C to 500°C. The sulfur retained on the catalyst is evaporated, thereby regenerating the catalyst, and this regeneration is then performed. by cooling the fresh catalyst to the temperature necessary to bring it into new contact with the residual gas. Become. The catalyst is operated at a sufficiently low temperature so that the sulfur generated is retained in the catalyst. function. Further, the catalyst cooling treatment is carried out using an inert gas at a temperature of less than 160°C. The cooling gas contains at least the amount of water vapor at the end of its use.

硫黄化合物による大気汚染に関する法律によって課される基準は厳しくなる一方 であるため、これらの基準に対処すべく本出願人は前述の方法に改良を加えた。Standards imposed by laws regarding air pollution caused by sulfur compounds are becoming increasingly strict. Therefore, in order to address these criteria, the applicant has made improvements to the aforementioned method.

本発明はこの改良に係わるものである。この改良された方法は残留ガス中に存在 し且つ前述の公知方法では回収されなかった硫黄有機化合物を十分に回収せしめ ると共に、CLAUS触媒との接触によるH2SとS02との反応の硫黄収率を 向上させる。The present invention relates to this improvement. This improved method eliminates the presence of residual gas in In addition, the sulfur organic compounds not recovered by the above-mentioned known methods can be sufficiently recovered. and the sulfur yield of the reaction of H2S and S02 by contact with CLAUS catalyst. Improve.

その結果、残留ガスに含まれる硫黄化合物の回収率が全体的に向上し、それに付 随して大気中に排出される硫黄生成物の総濃度が更に低下することになる。As a result, the overall recovery rate of sulfur compounds contained in the residual gas is improved and the associated Consequently, the total concentration of sulfur products discharged into the atmosphere will be further reduced.

本発明の目的は、特にCLAUS式硫黄工場からの残留ガスのごとき残留ガスの 中に含まれる硫黄化合物のより完璧な除去法であって、該化合物の硫黄の形での 回収分伴うものであり、残留ガスに由来しH2Sと502とを含む160℃未満 のガス流をCLAUS触媒に接触させてH2SとSO□との反応により硫黄を形 成せしめ、但しこの触媒は発生した硫黄が該触媒に保持されるように十分低い温 度で機能し、次いで硫黄化合物含量の極めて低い精製された残留ガスを排出し、 硫黄を保持したCLAUS触媒を200℃〜500 ’Cの温度の非酸化作用ガ スで定期的に掃気して該触媒に保持された硫黄を蒸発させ、このようにして触媒 を再生し、その後160℃未満の温度の不活性ガスを用いて、再生触媒をH,S 及びS02含有ガスと新たに接触させるのに必要な温度まで冷却することからな り、前記冷却ガスは少なくともその使用の最終段階の間は水蒸気を含んでいるの が好ましく 、CLAUS触媒に接触させられる前記ガスが、硫黄工場から排出 される残留ガスをそれに含まれる硫黄化合物をH,Sの形態に統一すべく水素化 と加水分解とを組合わせた処理にかけ、次いで前記処理により生じた気体排出物 を冷却してその水分を約10容量%未溝の値にし、この低水分気体排出物に調節 景の遊1lfi酸素含有ガスを加え、これを150℃より高い温度でH2S酸化 触媒と接触させて、H2Sの調整酸化を生起させ且つH2S及びSOをほぼ2: 1のモル比で含むと共に硫黄元素を含むガス流を発生させ、但し前記モル比は前 記低水分気体排出物に加える遊離酸素含有ガスの流量を連続的に調整することに よって調節し、次いで前記酸化反応の結果生じた前記ガス流を冷却して160° C未満の温度にし、その結果このガスに含まれる硫黄の大部分が凝縮によって分 離されるようにすることによって形成されることを特徴とする方法を提供するこ とにある。It is an object of the present invention to remove residual gases such as those from CLAUS sulfur plants. A more complete method for removing sulfur compounds contained in This is associated with the recovered amount, and is derived from residual gas and contains H2S and 502 below 160℃ The gas stream is contacted with a CLAUS catalyst to form sulfur by reaction with H2S and SO□. The catalyst is heated at a sufficiently low temperature so that the sulfur generated is retained in the catalyst. functioning at a temperature of 100% and then emitting purified residual gas with an extremely low content of sulfur compounds, The sulfur-retaining CLAUS catalyst was heated to a non-oxidizing gas at a temperature of 200°C to 500’C. The sulfur retained on the catalyst is evaporated by periodic scavenging with a and then convert the regenerated catalyst into H,S using an inert gas at a temperature below 160°C. and from cooling to the temperature required for new contact with the S02-containing gas. and the cooling gas contains water vapor at least during the final stages of its use. is preferred, and the gas to be brought into contact with the CLAUS catalyst is discharged from a sulfur plant. Hydrogenation of residual gas to unify the sulfur compounds contained in it into H and S forms and hydrolysis, and then the gaseous emissions resulting from said treatment. is cooled to a moisture content of approximately 10% by volume and adjusted to this low moisture gas output. Add 1lfi oxygen-containing gas and oxidize it with H2S at a temperature higher than 150℃. in contact with a catalyst to produce a controlled oxidation of H2S and to reduce H2S and SO to approximately 2: generating a gas stream containing elemental sulfur in a molar ratio of 1, with the proviso that said molar ratio is By continuously adjusting the flow rate of free oxygen-containing gas added to the low-moisture gaseous effluent. The gas stream resulting from the oxidation reaction is then cooled to 160°. temperature below C, so that most of the sulfur contained in this gas is separated by condensation. The present invention provides a method characterized in that: It's there.

残留ガスを水素化と加水分解とを組合わせた処理にかける操作は通常触媒の存在 下で実施されるが、この操作の間に、残留ガスに含まれるS02、CS2、CO Sのごとき硫黄化合物並びに蒸気状及び/又は胞状硫黄がH2Sに変換される。The operation of subjecting the residual gas to a combination of hydrogenation and hydrolysis usually requires the presence of a catalyst. During this operation, S02, CS2, CO contained in the residual gas Sulfur compounds such as S and vaporous and/or cellular sulfur are converted to H2S.

この変換はS02並びに蒸気状及び/又は胞状硫黄の場合には水素の作用で実施 され、CO3及びC82の場合には残留ガス中に存在する水蒸気の作用で加水分 解によって実施される。触媒の存在下での、水素化と加水分解とを組合わせた処 理は約140℃〜550℃に達し得る温度、好ましくは約200℃〜400℃の 温度で実施する。水素化反応に必要な水素は残留ガスに既に含まれているものを 使用してもよく、又は残留ガスが例えばCO及びH2Oを含む場合にはCO及び H2Oの反応によって水素化及び加水分解ゾーン内にその場で発生させてもよく 、又は外部の水素源から残留ガスに加えるようにしてもよい、残留ガスにH2及 びCOを供給する有利な方法の1つは、化学量論量以下で機能する燃料ガスバー ナーによって生じる燃焼ガスを前記残留ガスに添加することからなる。使用する 水素量は、水素化/加水分解処理にかけられる残留ガスに含まれ水素化し得るS Oxのごとき硫黄化合物もしくは生成物、蒸気状及び/又は胞状硫黄をほぼ完全 にH,Sに変換するのに十分なものにする必要がある。実際の操作では使用する 水素量を、残留ガス中に存在する水素化可能硫黄生成物のH2Sへの変換に必要 な化学量論量の1〜6倍にすることができる。This conversion is carried out under the action of S02 and, in the case of vaporous and/or cellular sulfur, hydrogen. In the case of CO3 and C82, hydrolysis occurs due to the action of water vapor present in the residual gas. Implemented by solution. A combined hydrogenation and hydrolysis process in the presence of a catalyst. The temperature can reach about 140°C to 550°C, preferably about 200°C to 400°C. Perform at temperature. The hydrogen necessary for the hydrogenation reaction is extracted from the hydrogen already contained in the residual gas. or if the residual gas contains e.g. CO and H2O. May be generated in situ in the hydrogenation and hydrolysis zone by reaction with H2O. H2 and hydrogen may be added to the residual gas from an external hydrogen source, or from an external hydrogen source. One advantageous method of supplying CO and CO is by using fuel gas bars that operate at substoichiometric levels. the combustion gas produced by the burner to the residual gas. use The amount of hydrogen is S contained in the residual gas subjected to hydrogenation/hydrolysis treatment and can be hydrogenated. Nearly complete removal of sulfur compounds or products such as Ox, vaporous and/or cellular sulfur It is necessary to make it sufficient to convert it into H and S. used in actual operation The amount of hydrogen required for the conversion of the hydrogenatable sulfur products present in the residual gas to H2S The amount can be increased from 1 to 6 times the stoichiometric amount.

残留ガスが化合?5 COS及びCS2の加水分解に必要とされる十分な量の水 蒸気を含んでいない場合には、水素化/加水分解組合わせ処理を実施する前に必 要量の水蒸気を残留ガスに加え得る。Residual gas combined? 5 Sufficient amount of water required for hydrolysis of COS and CS2 If it does not contain steam, the necessary The required amount of water vapor can be added to the residual gas.

水素化/加水分解処理に使用できる触媒としては、元素周期率表の第Va族、第 Ha族、及び第Vlll族の金属、例えばコバルト、モリブデン、クロム、バナ ジウム、トリウム、ニッケル、タングステン、ウラニウムのごとき金属の化合物 を含むものが挙げられる。前記化合物はシリカ、アルミナ、シリカ/アルミナタ イプの支持体上に配置しても、又は配置しなくてもよい。アルミナ上に配置され た酸化コバルト及び酸化モリブデンをベースとする水化脱硫触媒はこの水素化/ 加水分解処理に特に有効である。この水素化/加水分解処理では、気体反応媒質 と触媒との接触時間をかなり広範囲で変えることができる。この接触時間は普通 の圧力及び温度条件の下で有利には0.5〜8秒、より特定的には1〜5秒であ る。Catalysts that can be used for hydrogenation/hydrolysis include Group Va and Group Va of the Periodic Table of Elements. Metals of group Ha and group Vll, such as cobalt, molybdenum, chromium, and vana. Compounds of metals such as dium, thorium, nickel, tungsten, and uranium Examples include those containing. The above compounds include silica, alumina, silica/alumina It may or may not be placed on a support of the type. placed on alumina Hydrodesulfurization catalysts based on cobalt oxide and molybdenum oxide can Particularly effective in hydrolysis treatment. In this hydrogenation/hydrolysis process, the gaseous reaction medium The contact time with the catalyst can be varied within a fairly wide range. This contact time is normal advantageously 0.5 to 8 seconds, more particularly 1 to 5 seconds under pressure and temperature conditions of Ru.

残留ガスを水素化/加水分解組合わせ処理にかけた結果生じる気体排出物は任意 の公知技術、例えばより低温の流体との間接的熱交換及び/又は水の噴霧により 冷却して温度を十分低くし、その結果中に含まれる水の大部分が凝縮されて水含 量の低下した水分10容量%未溝の気体排出物が生じるようにする。Gaseous emissions resulting from subjecting the residual gas to a combined hydrogenation/hydrolysis treatment are optional. techniques known in the art, e.g. by indirect heat exchange with cooler fluids and/or water spraying. Cooling to bring the temperature low enough that most of the water contained in it condenses and becomes water-containing. A reduced moisture content of 10% by volume is allowed to form in the open gaseous discharge.

このようにして得た低水分気体排出物は次いで、H2Sの酸化を生起させる時に 必要な温度に適合した温度まで再加熱する。この加熱処理は特に、凝縮によって 水を分離するために冷却される高温気体排出物との間接的熱交換によって実施し 得る。次いでこの排出物に必要量の遊離酸素含有ガスを加える。この添加操作は 前記低水分気体排出物と150℃より高い温度で機能する酸化触媒との接触処理 の間、又は好ましくはこの接触処理の前に実施する。The low-moisture gaseous effluent thus obtained is then used to cause oxidation of H2S. Reheat to a temperature compatible with the required temperature. This heat treatment is particularly effective due to condensation. carried out by indirect heat exchange with the hot gaseous effluent which is cooled to separate the water. obtain. The required amount of free oxygen-containing gas is then added to this effluent. This addition operation contacting said low-moisture gaseous effluent with an oxidation catalyst operating at a temperature higher than 150°C; or preferably before this contacting treatment.

前記気体排出物に含まれるH2Sの酸化に使用される遊離酸素含有ガスは通常空 気であるが、純酸素、酸素含量の高い空気、又は窒素以外の不活性ガスと酸素と の種々の割合の混合物を使用することもできる。遊離酸素含有ガスは前述のごと <、H,S及びS02を約2:1のモル比に等しいH2S:S02モル比で含む と共に硫黄元素を成る程度含むガス流を形成すべく、)H2Sを部分的に酸化す るのに必要な最小量に相当する量の酸素が得られるように調整した量だけ使用さ れる。The free oxygen-containing gas used to oxidize the H2S contained in the gaseous effluent is usually However, pure oxygen, air with a high oxygen content, or inert gases other than nitrogen and oxygen It is also possible to use mixtures of in various proportions. Free oxygen-containing gases are as described above. <, containing H, S and S02 in a H2S:S02 molar ratio equal to a molar ratio of about 2:1 ) H2S is partially oxidized to form a gas stream containing to some extent the elemental sulfur. The amount of oxygen used is adjusted to provide the minimum amount of oxygen needed to It will be done.

遊離酸素含有ガスの量の調節は任意の公知方法、例えば酸化の結果生じるガス流 のH2S:SO□モル比の値を測定し、これらの測定の結果に基づいて計算した 必要量の大きさに応じて酸化に使用する遊離酸素含有ガスの流量を変化させ、そ れによってH2S:S02モル比を2:1の値に維持するような方法で実施する 。The amount of free oxygen-containing gas can be adjusted by any known method, e.g. by controlling the gas flow resulting from oxidation. The values of the H2S:SO□ molar ratio were measured and calculated based on the results of these measurements. The flow rate of the free oxygen-containing gas used for oxidation is changed depending on the required amount. This is carried out in such a way that the H2S:S02 molar ratio is maintained at a value of 2:1. .

気体反応媒質と酸化触媒との接触時間は、普通の圧力及び温度条件で0.5〜1 0秒にし得る。The contact time between the gaseous reaction medium and the oxidation catalyst is between 0.5 and 1 at normal pressure and temperature conditions. It can be set to 0 seconds.

酸化触媒はCLAUS化学量論量の酸素によるH2Sの酸化、即ち下記の反応式 %式% に従う酸化を促進し得る種々の触媒の中がら選択し得る。The oxidation catalyst is CLAUS oxidation of H2S with a stoichiometric amount of oxygen, i.e. the following reaction formula: %formula% One can choose among a variety of catalysts that can promote oxidation according to.

この反応は、硫黄元素の他にH2S及びSO□をほぼ2:1に等しいH,S:S 02モル比で含むガス流を発生させる。This reaction combines H2S and SO□ in addition to the sulfur element in a ratio of H,S:S approximately equal to 2:1. A gas stream containing 0.02 molar ratio is generated.

特に、本発明の方法で使用できる酸化触媒は、有利には下記のグループから選択 し得る。In particular, the oxidation catalyst that can be used in the process of the invention is advantageously selected from the group: It is possible.

1) Fe、Ni、Co、Cu、及びZnの中がら選択した金属の少なくとも1 種類の化合物とシリカ及び/又はアルミナからなる支持体とを組合わせた触媒。1) At least one metal selected from among Fe, Ni, Co, Cu, and Zn A catalyst comprising a combination of various compounds and a support made of silica and/or alumina.

1975年10月17日付仏国特許第7,531,769号(公開番号第2,3 27,960号)に開示。French Patent No. 7,531,769 dated October 17, 1975 (Publication No. 2, 3 No. 27,960).

II) 酸化チタンをベースとする触媒、特に酸化チタンとアルカリ土類金属の 硫酸塩、例えば硫酸カルシウムとを組み合わせたもの。1981年3月13日付 仏国特許第81.05029号(公開番号第2.501532号)に開示。II) Catalysts based on titanium oxide, especially titanium oxide and alkaline earth metals In combination with sulfates, e.g. calcium sulfate. Dated March 13, 1981 Disclosed in French Patent No. 81.05029 (Publication No. 2.501532).

III) Fe、 Cu、 Cd、 Zn、 Cr、 Mo、 ’A、Co、  Ni及びBiの中から選択した金属の少なくとも1種類の化合物、並びに場合に よってはPd、 PL、Ir及びRhのごとき貴金属の少なくとも1種類の化合 物をシリカ及び/又は酸化チタンからなる支持体と組合わせた触媒。前記支持体 は任意に少量のアルミナを含み得る。1981年8月19日付仏国特許第811 5900号(公開番号第2,511,663号)に開示。III) Fe, Cu, Cd, Zn, Cr, Mo, 'A, Co, at least one compound of a metal selected from Ni and Bi, and optionally Therefore, at least one compound of noble metals such as Pd, PL, Ir and Rh catalyst in combination with a support consisting of silica and/or titanium oxide. Said support may optionally contain small amounts of alumina. French Patent No. 811 dated August 19, 1981 Disclosed in No. 5900 (Publication No. 2,511,663).

IV) III)に挙げたグループから選択した金属の少なくとも1種類の化合 物と、特に少なくとも1種類の希土類酸化物夕景によって熱的に安定化された活 性化アルミナからなる支持体とを組合わせて形成した触媒。独国特許公開第3. 403,328号に開示。IV) At least one compound of metals selected from the group listed in III) materials and especially thermally stabilized by at least one rare earth oxide A catalyst formed in combination with a support made of modified alumina. German Patent Publication No. 3. Disclosed in No. 403,328.

酸化触媒は有利には、タイプ■の触媒とタイプII、 III又はIVの触媒と を続けて使用して福成し、利点として、酸化の結果生じるガス流がもはや酸素を 含まないようにし得る。The oxidation catalyst advantageously comprises a type II catalyst and a type II, III or IV catalyst. The advantage of continued use of Fuchsei is that the gas flow resulting from oxidation no longer contains oxygen. You can choose not to include it.

これは処理の後段階でCLAUS触媒の不活性化を回避するのに必要なことであ る。This is necessary to avoid deactivation of the CLAUS catalyst in later stages of processing. Ru.

CLAUS化学量論景テノH2Scl′)酸化反応は150℃〜1000℃の温 度で実施し得、酸化触媒は保持温度で十分な熱的安定性を示す触媒の中から選択 する。例えばタイプI)の触媒は約400℃まで使用可能であり、タイプTI) の触媒は約500℃まで、タイプIII)の触媒は約700℃まで、タイプIV )の触媒は約1000℃まで使用できる。CLAUS stoichiometric picture TenoH2Scl') The oxidation reaction takes place at a temperature of 150°C to 1000°C. The oxidation catalyst is selected from among catalysts that exhibit sufficient thermal stability at the holding temperature. do. For example, type I) catalysts can be used up to about 400°C, and type TI) catalysts up to about 500°C, type III) up to about 700°C, type IV ) can be used up to about 1000°C.

酸化処理の結果生じるガス流は蒸気状の硫黄を含むと共に、H2S及びSO□を 約2:1に等しいモル比で含む。このガス流は例えば硫黄凝縮器のごとき凝縮器 内での操作により冷却して温度を160℃未満の値にし、その結果中に含まれる 硫黄の大部分が凝縮によって分離されるようにし、次いでCLAUS触媒に接触 させる。この触媒はI(2Sと302との反応によって生じる硫黄がその上に堆 積されるのに十分な低い温度で機能する。この温度は有利には約120℃〜14 0℃である。The gas stream resulting from the oxidation process contains vaporous sulfur and also contains H2S and SO□. In a molar ratio equal to about 2:1. This gas stream is transferred to a condenser such as a sulfur condenser. cooling to a value below 160°C, so that the Allow most of the sulfur to be separated by condensation and then contact the CLAUS catalyst let This catalyst has a structure in which sulfur produced by the reaction between I(2S and 302) is deposited on it. Works at temperatures low enough to be deposited. This temperature is advantageously between about 120°C and 14°C. It is 0°C.

CLAUS触媒との接触の結果得られる精製残留ガスは通常、大気中に排出され る前に、まだ極めて少量台まれている可能性のある硫黄化合物を総てSO□に変 換させるべく、熱的焼却又は触jXtR却にかけられる。The refining residual gas that results from contact with the CLAUS catalyst is typically vented to the atmosphere. Convert any sulfur compounds that may still be present in very small amounts to SO□ before It is subjected to thermal incineration or catalytic incineration in order to convert it.

硫黄を含んだCLAtlS触媒は、該触媒に保持された硫黄を蒸発させるべく2 00℃〜500℃の温度の非酸化作用ガスで掃気することによって定期的に再生 し、再生された触媒は酸化の結果生じるガス流と新たに接触させるのに必要な温 度まで冷却する。この冷却は160℃未満の温度の不活性ガスを用いて行う、こ の冷却ガスは有利には、触媒冷却処理の少なくとも最終段階の量水蒸気を保持す る。The sulfur-containing CLAtlS catalyst is heated at 2 to evaporate the sulfur retained on the catalyst. Periodically regenerated by scavenging with non-oxidizing working gas at temperatures between 00°C and 500°C The regenerated catalyst is exposed to the necessary temperature for new contact with the gas stream resulting from oxidation. Cool to ℃. This cooling is carried out using an inert gas at a temperature below 160°C. The cooling gas advantageously retains at least the amount of water vapor in the final stage of the catalyst cooling process. Ru.

硫黄を含んだCLAUS触媒の再生に使用される掃気ガスはメタン、窒素、C0 2、もしくはこれらのガスの混合物であってよく、又は焼却すべき精製残留ガス の一部分もしくは処理すべき残留ガスの一部分であってもよい。この掃気ガスは H2、CO及び特にH2Sのごとき還元作用気体化合物を、少なくとも再生処理 の最終段階の間、即ち触媒上に堆積した硫黄の大部分が蒸発した後で、成る程度 、例えば0.5〜25容量%含み得る。The scavenging gases used to regenerate the sulfur-containing CLAUS catalyst are methane, nitrogen, and CO. 2, or a mixture of these gases, or a refining residual gas to be incinerated. or a portion of the residual gas to be treated. This scavenging gas Reducing gaseous compounds such as H2, CO and especially H2S are at least regenerated. during the final stage of the process, i.e. after most of the sulfur deposited on the catalyst has evaporated. , for example 0.5 to 25% by volume.

酸化処理の結果生じるガス流をCLAIJS触媒と接触させる操作は通常複数の 触媒変換ゾーンで実施される。これらのゾーンは少なくとも1つのゾーンが再生 /冷却段階で機能し、残りがCLAUS反応の段階で機能するように使用される 。Contacting the gas stream resulting from the oxidation process with the CLAIJS catalyst typically involves multiple steps. carried out in a catalytic conversion zone. These zones must be played by at least one zone. / functions in the cooling stage and the rest is used to function in the CLAUS reaction stage .

あるいは、1つ以上のゾーンをCLΔUS反応に使用し、少なくとも1つのゾー ンを再生段階に使用し、少なくとも1つのゾーンを冷却に使用して操作を行うこ ともできる。Alternatively, more than one zone is used for the CLΔUS reaction, and at least one operation with one zone used for the regeneration stage and at least one zone used for cooling. Can also be done.

CLAUS触媒はH2SとSO□との反応、即ち下記の反応2 H2S+5O2 −〉3/x SX+2120く− による硫黄形成を促進させ得る任意の触媒であってよい。CLAUS catalyst reacts between H2S and SO□, i.e. reaction 2 below: H2S+5O2 -〉3/x SX+2120ku- Any catalyst that can promote sulfur formation by.

例えば、前記CLA[IS触媒はボーキサイト、アルミナ、シリカ、天然もしく は合成ゼオライト、前述のタイプI)の触媒、又はこれらの物質の混合物もしく は組合わせで構成し得る。For example, the CLA[IS catalyst may be bauxite, alumina, silica, natural or is a synthetic zeolite, a catalyst of the type I) mentioned above, or a mixture of these substances or can be composed of combinations.

再生ガスは好ましくは加熱ゾーンから再生中のゾーンと冷却ゾーンとを順次通過 し、この冷却ゾーンで該ガスに含まれる硫黄の大部分が凝縮によって分離され、 その後加熱ゾーンに戻るように閉回路状に循環する。この再生ガスは勿論開回路 状に循環させてもよい。The regeneration gas preferably passes sequentially from the heating zone through the regeneration zone and the cooling zone. In this cooling zone, most of the sulfur contained in the gas is separated by condensation, It then circulates in a closed circuit back to the heating zone. This regeneration gas is of course open circuit. It may be circulated like this.

再生した触媒の冷却に使用されるガスは、硫黄を含んだ触媒の再生に使用される ガスと同じタイプ、即ちほぼ不活性のガスである。再生ガス及び冷却ガスの回路 は互いに独立していてよい。前述のごとき再生ガス回路は冷却ゾーンの出口と再 生中のゾーンの入/口とを加熱ゾーンを迂回して接続する分岐を有し得る。この ようにすると前記加熱ゾーンを通らずにすむため、再生ガスを冷却ガスとして使 用することが可能になる。The gas used to cool the regenerated catalyst is used to regenerate the sulfur-containing catalyst. It is the same type of gas, that is, it is a nearly inert gas. Regeneration gas and cooling gas circuit may be independent of each other. A regeneration gas circuit as described above connects the cooling zone outlet and the regeneration gas circuit. It may have a branch connecting the inlet/inlet of the live zone bypassing the heating zone. this This allows the regeneration gas to be used as a cooling gas without passing through the heating zone. It becomes possible to use

前述のごとく、冷却ガスは再生触媒冷却処理の少なくとも最終段階の間、より特 定的には冷却中の再生触媒の温度が約250℃より低くなった時に水蒸気を含み 得る。但し、この再生ガスは再生触媒冷却処理の最初から水蒸気を含み得る。冷 却ガスが含み得る水蒸気の量はかなり大幅に変化し得、例えば1〜50容量%で あり得る。As previously mentioned, the cooling gas is more specific during at least the final stages of the regenerated catalyst cooling process. Quantitatively, when the temperature of the regenerated catalyst during cooling becomes lower than about 250℃, it will contain water vapor. obtain. However, this regeneration gas may contain water vapor from the beginning of the regeneration catalyst cooling process. cold The amount of water vapor that the cooling gas may contain can vary quite widely, e.g. from 1 to 50% by volume. could be.

以上記述してきた本発明の方法をより詳細に説明すべく、以下に非限定的実施例 を挙げる。In order to explain the method of the present invention described above in more detail, non-limiting examples are provided below. List.

丸1匣 60.4容量%のH2Sと、36.3容量%のCO2と、3.2容量%の水と、 0.1容量%の炭化水素とを含む酸性ガスの部分的酸化を行う硫黄工場から排出 される残留ガスを処理した。1 round box 60.4% by volume of H2S, 36.3% by volume of CO2, 3.2% by volume of water, Emitted from a sulfur plant that performs partial oxidation of acid gases containing 0.1% by volume of hydrocarbons. The remaining gas was treated.

処理した残留ガスはモル%で表して下記の組成を有していた。The treated residual gas had the following composition expressed in mole %.

H2S : 0.80 SO□ : 0.40 S+(蒸気) : 0.08 CO□ : 16.65 1(20: 29.80 CO: 0.52 COS : 0.02 cs2: o、os この処理は下記の部材からなる装置を使用して行った。H2S: 0.80 SO□: 0.40 S+ (steam): 0.08 CO□: 16.65 1 (20: 29.80 CO: 0.52 COS: 0.02 cs2: o, os This treatment was carried out using an apparatus consisting of the following members.

−空気により燃料ガスを燃焼させるバーナーであって、処理すべき残留ガスを導 入する入口と出口とを有し、化学量論量以下で機能するバーナー、 一水素化及び加水分解触媒の固定ベッドにより互いに分離された入i口及び出口 を有し、その入口が管を介して前記バーナーの出口に接続される水素化及び加水 分解反応器、−間接的熱交換器の第1交換回路と、低圧蒸気発生熱交換器と、空 気冷却器(a&ror&frig&rant)と、底に液体用出口を備え上部に ガス用出口を備える水噴霧カラムとを直列に含む冷却アセンブリであって、前記 第1交換回路の入口が管を介して前記水素化及び加水分解反応器の出口に接続さ れるようなアセンブリ、 −82Sを硫黄に酸化する触媒の固定ベッドにより互いに分離された入口及び出 口を有する触媒酸化反応器であって、その人1口が前記冷却アセンブリの熱交換 器の第2交換回路を介して入口管により前記水噴霧カラムの上部の出口に接続さ れ、一方出口の先には管が延びてこの管の上に硫黄凝縮器が配置され、前記入口 管が熱交換器の下流に配置された空気注入口と可変流I弁とを備え、この弁が該 酸化反応器の出口のモル比H,S:SO2を調節する調整器によって制御される ような触媒酸化反応器、 一互いに並列に配置され且つ各々がCLAtlS触媒の固定ベッドにより互いに 分離された入口及び出口を有するような2つの触媒変換器からなる触焦変換列。- A burner that burns fuel gas with air, which guides the residual gas to be treated. a burner having a substoichiometric inlet and an outlet; Inlet and outlet separated from each other by a fixed bed of monohydrogenation and hydrolysis catalysts hydrogenation and hydration, the inlet of which is connected to the outlet of said burner through a pipe a cracking reactor, - a first exchange circuit of an indirect heat exchanger, a low pressure steam generation heat exchanger and an air Air cooler (a&ror&frig&rant) and an outlet for liquid at the bottom and an outlet at the top. A cooling assembly comprising in series a water spray column with an outlet for a gas, said The inlet of the first exchange circuit is connected to the outlet of the hydrogenation and hydrolysis reactor via a pipe. assembly, - Inlet and outlet separated from each other by a fixed bed of catalyst that oxidizes 82S to sulfur. a catalytic oxidation reactor having an opening, one opening for heat exchange of the cooling assembly; connected to the upper outlet of said water spray column by an inlet pipe through a second exchange circuit of the vessel. On the other hand, a pipe extends beyond the outlet, and a sulfur condenser is disposed on this pipe, and a sulfur condenser is arranged on the pipe. The tube includes an air inlet located downstream of the heat exchanger and a variable flow I valve, the valve being Controlled by a regulator that adjusts the molar ratio H,S:SO2 at the outlet of the oxidation reactor catalytic oxidation reactor, such as one placed in parallel with each other and each with a fixed bed of CLAtlS catalysts. A catalytic converter train consisting of two catalytic converters with separate inlets and outlets.

これら2つの変換器はクロックによりスイッチされる弁を介して、一方が反応段 階、即ち入口が前記触媒酸化反応器に接続された硫黄凝縮器の出口に接続され且 つ出口が焼却器の入口に接続される状態におかれ、他方が再生/冷却段階におか れる、即ち先ず再生回路内に配置され次いで冷却回路内に配置されるという具合 に交互に作動する。尚、前記再生回路には非酸化作用掃気ガスを前記変換器を介 して加熱器から硫黄凝縮器まで流し、再び加熱器に戻すように循環させる手段を 含み、前記冷却回路はその回路に配置された変換器を介して低温不活性ガスを循 環させるべく配置される。These two converters are connected via clock-switched valves, one to the reaction stage. the inlet is connected to the outlet of a sulfur condenser connected to the catalytic oxidation reactor; One outlet is connected to the incinerator inlet and the other is placed in the regeneration/cooling stage. i.e. first placed in the regeneration circuit and then placed in the cooling circuit. It operates alternately. Note that non-oxidizing scavenging gas is supplied to the regeneration circuit via the converter. Provide means for circulating the sulfur from the heater to the sulfur condenser and back to the heater. and the cooling circuit circulates a low temperature inert gas through a converter disposed in the circuit. arranged to form a ring.

水素化と加水分解とを組合わせた処理で使用する触媒は、酸化コバルトと酸化モ リブデンとを含浸したアルミナからなる直径約5mmの玉で構成した。この玉は 比表面積が250m 2 / gであり、触媒の重量に対して1.75%のコバ ルトと8%のモリブデンとを含んでいた。The catalysts used in the combined hydrogenation and hydrolysis process are cobalt oxide and molybdenum oxide. The ball was made of alumina impregnated with liveden and had a diameter of about 5 mm. This ball is The specific surface area is 250 m2/g, and the surface area is 1.75% based on the weight of the catalyst. It contained rut and 8% molybdenum.

H2Sを硫黄に酸化するための触媒は10重量%の硫酸カルシウムで安定化した 酸化チタンからなる直径4Iの押出し体の層と、硫酸鉄を含浸した活性化アルミ ナからなる直径4〜6mmの玉の層とを重ねたもので構成した(触媒中の鉄含量 は5重量%)。The catalyst for the oxidation of H2S to sulfur was stabilized with 10 wt% calcium sulfate. A layer of 4I diameter extrudates made of titanium oxide and activated aluminum impregnated with iron sulfate. (The iron content in the catalyst (5% by weight).

CLAUS触媒は比表面積260m”/g、直径4〜61のアルミナからなる玉 で構成した。CLAUS catalyst is made of alumina beads with a specific surface area of 260 m”/g and a diameter of 4 to 61 mm. It was composed of

233にモル/時の流量でバーナー内に注入した残留ガスはこのバーナー内で約 350℃の温度になり、この温度で水素化/加水分解反応器内に流入した。この 反応器ではS02、S、C82及びCO5のH2Sへの変換が実質的に完全に実 施され、この反応器から排出される気体排出物は約380℃の温度を有し且つ硫 黄含有化合物として実質的にH7SLか含んでいなかった。この気体排出物は冷 却アセンブリの熱交換器と蒸気発生交換器と空気冷却器とを通して約80℃まで 冷却され、この温度で前記アセンブリの水噴霧カラム内に流入した。The residual gas injected into the burner at a flow rate of 233 mol/h is approximately A temperature of 350° C. was reached and at this temperature it entered the hydrogenation/hydrolysis reactor. this In the reactor, virtually complete conversion of S02, S, C82 and CO5 to H2S takes place. The gaseous effluent discharged from this reactor has a temperature of about 380°C and contains no sulfur. It contained substantially no H7SL as a yellow-containing compound. This gaseous exhaust cools through the heat exchanger of the cooling assembly, the steam generation exchanger, and the air cooler to approximately 80°C. It was cooled and at this temperature entered the water spray column of the assembly.

前記カラムの上部からは約4.6容量%の水蒸気を含む約35℃の冷却された気 体排出物が流出した。Cooled air at about 35°C containing about 4.6% water vapor by volume flows from the top of the column. Body excreta leaked out.

この冷却された排出物は冷却アセンブリの熱交換器で再加熱され、次いでそのた めに設けた口部を介して空気が7.61にモル/時で加えられた。得られた混合 物は200℃の温度で触媒酸化反応器内に侵入した。酸化反応器内を通過するガ スと安定化した酸化チタンの層及び硫酸鉄含浸アルミナ層との接触時間は夫々約 3秒及び1.5秒であった。酸化反応器内での112Sの変換率は約72%であ り、この反応器がち流出するガス流は約295℃の温度を有し且っ1)2s及び so2をほぼ2:1に等しいH2S : SO,モル比で含むと共に、成る程度 の量の硫黄元素も含んでいた。This cooled effluent is reheated in the heat exchanger of the cooling assembly and then Air was added at 7.61 moles/hour through a port provided for the purpose. the resulting mixture The material entered the catalytic oxidation reactor at a temperature of 200°C. Gas passing through the oxidation reactor The contact time of the base with the stabilized titanium oxide layer and the iron sulfate impregnated alumina layer is approximately They were 3 seconds and 1.5 seconds. The conversion rate of 112S in the oxidation reactor is about 72%. The gas stream exiting the reactor has a temperature of about 295°C and 1) 2s and Contains SO2 at a molar ratio of H2S:SO approximately equal to 2:1, and the extent to which It also contained an amount of elemental sulfur.

前記ガス流は酸化反応器に接続された硫黄凝縮器内で130℃に冷却され、この ガス流に含まれる硫黄の大部分がTi縮によって分離された。このガス流は次い でCLAIIS反応段階で機能する触媒変換器に注入された。前記変換器の出口 からは、約135℃の温度を有し且つ全体で800容Rp、p、m。The gas stream is cooled to 130°C in a sulfur condenser connected to the oxidation reactor; Most of the sulfur contained in the gas stream was separated by Ti condensation. This gas flow is was injected into the catalytic converter functioning in the CLAIIS reaction stage. Outlet of said converter from a temperature of about 135°C and a total of 800 volumes Rp,p,m.

に等しい硫黄生成物を含む精製された残留ガスが排出された。A purified residual gas was discharged containing sulfur products equal to .

再生段階と冷却段階とに順次おかれる前記変換器の中に収容された硫黄を含む触 媒の再生に使用する掃気ガスは精製された残留ガスの一部分で構成し、再生回路 の再加熱器で300〜350℃にした後260ONm’/時の流量で再生段階の 変換器に導入した。再生段階の変換器から排出された硫黄含有掃気ガスは次いで 再生回路の硫黄凝縮器内に流入し、該ガスに含まれる硫黄の大部分が凝縮により 分離されるようにそこで約130℃に冷却され、その後再加熱器に戻って再生に 再使用された。再生段階の変換器から排出される掃気ガスが硫黄を実質的に含ま ないようになった時点で、処理すべき残留ガスを排出する硫黄ユニットで処理さ れた酸性ガスの一部分をこの掃気ガスに注入して掃気ガスのH2S濃度を約10 容量%にし、H2S含有ガスによる触媒の掃気処理を該触媒の再活性化に十分な 時間にわたって実施した。The sulfur-containing catalyst contained in the converter is sequentially placed in a regeneration stage and a cooling stage. The scavenging gas used to regenerate the medium is made up of a portion of the purified residual gas, and is used in the regeneration circuit. After heating to 300-350℃ in a reheater, the regeneration stage was carried out at a flow rate of 260ONm'/hour. introduced into the converter. The sulfur-containing scavenging gas discharged from the converter in the regeneration stage is then Flows into the sulfur condenser of the regeneration circuit, and most of the sulfur contained in the gas is condensed. There it is cooled to about 130°C so that it can be separated and then returned to the reheater for regeneration. Reused. The scavenging gas discharged from the converter during the regeneration stage contains substantially sulfur. Once the residual gas is no longer present, it is treated in a sulfur unit that discharges the residual gas to be treated. A portion of the acid gas was injected into this scavenging gas to reduce the H2S concentration of the scavenging gas to about 10 % by volume, and the scavenging treatment of the catalyst with H2S-containing gas is sufficient to reactivate the catalyst. It was carried out over a period of time.

次いで、再生触媒を収容する変換器に約130℃のガス流を通すことによって該 触媒を約130°Cに冷却した。この冷却ガスは適切な温度に冷却した精製残留 ガスの一部分で構成し、これを2100Nm’/時の流量で冷却回路に流した。The regenerated catalyst is then removed by passing a gas stream at about 130°C through a converter containing the regenerated catalyst. The catalyst was cooled to about 130°C. This cooling gas is the purified residue that has been cooled to the appropriate temperature. A portion of the gas was passed through the cooling circuit at a flow rate of 2100 Nm'/hr.

この冷却ガスの水分は約5容量%であった。The water content of this cooling gas was approximately 5% by volume.

触媒変換器は精製段階、即ち反応段階で30時間、再生/冷却段階で30時間、 但しこのうち10時間は冷却用、という状態で交互に作動した。The catalytic converter is operated for 30 hours during the purification stage, i.e. the reaction stage, and 30 hours during the regeneration/cooling stage. However, for 10 hours of this time, it was operated alternately for cooling.

H2Sの存在下で実施した再生の最終段階の時間は2時間であった。The duration of the final stage of regeneration, carried out in the presence of H2S, was 2 hours.

排出される残留ガスをこのような残留ガス処理法で処理する硫黄工場は数箇月で 99.70%の合計硫黄収率を示した。A sulfur factory that uses this residual gas treatment method to treat residual gas emissions can It showed a total sulfur yield of 99.70%.

国際調査1111牛 )、NNEX To THE INTEE+ATICNAL 5EARCHRE PORτ 0NINTERNATIONAL APPL工CATZON No、  ?CT/YRa610O36S (sA i4917)International Survey 1111 Cattle ), NNEX To THE INTEE+ATICNAL 5EARCHRE PORτ 0 NINTERNATIONAL APPLICATION CATZON No. ? CT/YRa610O36S (sA i4917)

Claims (17)

【特許請求の範囲】[Claims] 1.特にCLAUS式硫黄工場からの残留ガスのごとき残留ガスに含まれる硫黄 化合物を硫黄の形態で回収しながら除去する方法であって、残留ガスに由来しH 2S及びSO2を含む160℃未満の温度のガス流をCLAUS触媒に接触させ てH2SとSO2との反応により硫黄を形成せしめ、但し前記触媒は生成された 硫黄がこの触媒上に保持されるように十分低い温度で機能し、次いで硫黄化合物 を極めて少量しか含まない精製残留ガスを排出し、硫黄を保持するCLAUS触 媒を200℃〜500℃の温度の非酸化作用ガスで定期的に掃気して該触媒上に 保持された硫黄を蒸発させ、このようにして触媒を再生し、その後160℃未満 の温度の不活性ガスを用いて、この再生触媒をH2S及びSO2含有ガスと新た に接触させるのに必要な温度まで冷却することからなり、CLAUS触媒と接触 するガスが、硫黄工場から排出される残留ガスをそれに含まれる硫黄化合物をH 2Sの形態に統一すべく水素化と加水分解とを組合わせた処理にかけ、次いでこ の処理の結果生じる気体排出物を冷却してその水分含量を約10容量%未満の値 にし、この低水分気体排出物に遊離酸素含有ガスを調節量加え、これを150℃ より高い温度でH2S酸化触媒と接触させて、H2Sを調整的に酸化させH2S 及びSO2をほぼ2:1に等しいH2S:SO2モル比で含むと共に硫黄元素も 或る程度含むガス流を発生させ、但し前記モル比は前記低水分気体排出物に加え る遊離酸素含有ガスの流量を連続的に調整することによって調節し、最後に前記 酸化処理の結果生じたガス流を冷却してその温度を160℃未満にし、その結果 このガス流に含まれる硫黄の大部分が凝縮によって分離されるようにすることに よって形成されることを特徴とする方法。1. Sulfur in residual gases, especially those from CLAUS sulfur plants. This is a method for removing compounds while recovering them in the form of sulfur, in which H derived from residual gas is removed. A gas stream containing 2S and SO2 at a temperature below 160° C. is contacted with the CLAUS catalyst. sulfur is formed by the reaction of H2S and SO2, provided that the catalyst is It works at a temperature low enough so that the sulfur is retained on this catalyst, and then the sulfur compounds The CLAUS catalyst discharges refined residual gas containing extremely small amounts of sulfur and retains sulfur. The medium is periodically scavenged with a non-oxidizing working gas at a temperature of 200°C to 500°C onto the catalyst. The retained sulfur is evaporated, thus regenerating the catalyst, and then below 160°C. This regenerated catalyst is reconstituted with a H2S and SO2 containing gas using an inert gas at a temperature of The process consists of cooling to the temperature necessary to bring the catalyst into contact with the CLAUS catalyst. The residual gas discharged from the sulfur factory is converted into H It is subjected to a combination of hydrogenation and hydrolysis in order to unify it into the 2S form, and then this by cooling the gaseous effluent resulting from the treatment of the gas to reduce its moisture content to a value of less than about 10% by volume. A controlled amount of free oxygen-containing gas is added to this low moisture gaseous effluent and it is heated to 150°C. Contact with H2S oxidation catalyst at higher temperature to controllably oxidize H2S and SO2 in a H2S:SO2 molar ratio approximately equal to 2:1, and also contains elemental sulfur. generating a gas stream containing a certain amount, provided that said molar ratio is in addition to said low moisture gaseous exhaust; by continuously adjusting the flow rate of free oxygen-containing gas, and finally Cooling the gas stream resulting from the oxidation treatment to a temperature below 160°C; to ensure that most of the sulfur contained in this gas stream is separated by condensation. A method characterized in that the method is formed by: 2.水素化と加水分解とを組み合わせた処理を約140℃〜550℃の温度、好 ましくは約200℃〜400℃の温度で実施することを特徴とする請求の範囲1 に記載の方法。2. The combined hydrogenation and hydrolysis treatment is carried out at a temperature of about 140°C to 550°C, preferably Claim 1, characterized in that the method is carried out at a temperature of preferably about 200°C to 400°C. The method described in. 3.H2S酸化触媒がFe、Ni、Co、Cu及びZnの中から選択した金属の 少なくとも1種類の化合物とアルミナ及び/又はシリカからなる支持体との組合 わせによって得られることを特徴とする請求の範囲1又は2に記載の方法。3. The H2S oxidation catalyst is made of a metal selected from Fe, Ni, Co, Cu and Zn. Combination of at least one compound and a support made of alumina and/or silica The method according to claim 1 or 2, characterized in that it is obtained by combing. 4.H2S酸化触媒が酸化チタンをベースとし、特に酸化チタンとアルカリ土類 金属硫酸塩、例えば硫酸カルシウムとの組合わせによって形成されることを特徴 とする請求の範囲1又は2に記載の方法。4. H2S oxidation catalyst is based on titanium oxide, especially titanium oxide and alkaline earth characterized by being formed in combination with metal sulfates, e.g. calcium sulfate The method according to claim 1 or 2. 5.H2S酸化触媒がFe、Cu、Cd、Zn、Cr、Mo、W、Co、Ni及 びBiの中から選択した金属の少なくとも1種類の化合物と、場合によってはP d、Pt、Ir及びRhのごとき貴金属の少なくとも1種類の化合物と、シリカ 及び/又は酸化チタンからなる支持体との組合わせからなり、前記支持体が任意 に少量のアルミナを含み得ることを特徴とする請求の範囲1又は2に記載の方法 。5. H2S oxidation catalyst is Fe, Cu, Cd, Zn, Cr, Mo, W, Co, Ni and at least one compound of metal selected from Bi and Bi, and optionally P. d, a compound of at least one noble metal such as Pt, Ir and Rh, and silica. and/or a combination with a support made of titanium oxide, and the support is optional. 3. The method according to claim 1 or 2, characterized in that the method may contain a small amount of alumina. . 6.H2S酸化触媒がFe、Cu、Cd、Zn、Cr、Mo、W、Co、Ni及 びBiの中から選択した金属の少なくとも1種類の化合物と、場合によってはP d、Pt、Ir及びRhのごとき貴金属の少なくとも1種類の化合物と、特に少 なくとも1種類の希土類酸化物少量によって熱的に安定化された活性アルミナか らなる支持体との組合わせによって形成されることを特徴とする請求の範囲1又 は2に記載の方法。6. H2S oxidation catalyst is Fe, Cu, Cd, Zn, Cr, Mo, W, Co, Ni and at least one compound of metal selected from Bi and Bi, and optionally P. d, Pt, Ir and Rh, and especially a small amount. Activated alumina thermally stabilized by a small amount of at least one rare earth oxide Claim 1 characterized in that it is formed by a combination with a support consisting of is the method described in 2. 7.H2S酸化触媒が請求の範囲4から6のいずれかに記載の触媒の層と、これ に続く請求の範囲3に記載の触媒の層とで構成されることを特徴とする請求の範 囲1又は2に記載の方法。7. The H2S oxidation catalyst is a layer of the catalyst according to any one of claims 4 to 6, and and a layer of the catalyst according to claim 3 following the claim 3. The method described in Box 1 or 2. 8.酸化触媒との接触によるH2S酸化の温度が約150℃〜400℃であるこ とを特徴とする請求の範囲3又は7に記載の方法。8. The temperature of H2S oxidation by contact with the oxidation catalyst is approximately 150°C to 400°C. The method according to claim 3 or 7, characterized in that: 9.酸化触媒との接触によるH2S酸化の温度が約150℃〜500℃であるこ とを特徴とする請求の範囲4に記載の方法。9. The temperature of H2S oxidation by contact with the oxidation catalyst is approximately 150°C to 500°C. The method according to claim 4, characterized in that: 10.酸化触媒との接触によるH2S酸化の温度が約150℃〜700℃である ことを特徴とする請求の範囲5に記載の方法。10. The temperature of H2S oxidation by contact with an oxidation catalyst is about 150°C to 700°C. The method according to claim 5, characterized in that: 11.酸化触媒との接触によるH2S酸化の温度が約150℃〜1000℃であ ることを特徴とする請求の範囲6に記載の方法。11. The temperature of H2S oxidation by contact with an oxidation catalyst is about 150°C to 1000°C. The method according to claim 6, characterized in that: 12.CLAUS触媒が約120℃〜140℃の温度で機能することを特徴とす る請求の範囲1から11のいずれかに記載の方法。12. CLAUS catalysts are characterized in that they function at temperatures of approximately 120°C to 140°C. 12. The method according to any one of claims 1 to 11. 13.再生に使用される掃気ガスがH2、CO及びH2Sの中から選択した還元 作用化合物を再生の少なくとも最終段階の間、即ち触媒上に堆積した硫黄の大部 分が蒸発した後で含むことを特徴とする請求の範囲1から12のいずれかに記載 の方法。13. The scavenging gas used for regeneration is a reducing gas selected from H2, CO and H2S. The active compound is removed during at least the final stage of regeneration, i.e. most of the sulfur deposited on the catalyst. According to any one of claims 1 to 12, the content is contained after the component has evaporated. the method of. 14.再生に使用される掃気ガスに含まれる還元作用化合物の濃度が0.5〜2 5容量%であることを特徴とする請求の範囲13に記載の方法。14. The concentration of reducing compounds contained in the scavenging gas used for regeneration is 0.5 to 2. 14. A method according to claim 13, characterized in that it is 5% by volume. 15.再生したCLAUS触媒を冷却するガスが少なくとも触媒冷却処理の最終 段階の間水蒸気を含むことを特徴とする請求の範囲1から14のいずれかに記載 の方法。15. The gas that cools the regenerated CLAUS catalyst is used at least at the end of the catalyst cooling process. Claims 1 to 14, characterized in that water vapor is included during the step. the method of. 16.冷却ガスに含まれる水蒸気の量が1〜50容量%であることを特徴とする 請求の範囲15に記載の方法。16. The amount of water vapor contained in the cooling gas is 1 to 50% by volume. The method according to claim 15. 17.CLAUS触媒がアルミナ、ボーキサイト、シリカ、天然もしくは合成ゼ オライト、Fe、Ni、Co、Cu及びZnの中から選択した金属の少なくとも 1種類の化合物とアルミナ及び/又はシリカからなる支持体との組合わせで構成 される触媒、又はこれら物質の混合物からなることを特徴とする請求の範囲1か ら16のいずれかに記載の方法。17. CLAUS catalysts include alumina, bauxite, silica, natural or synthetic enzymes. At least a metal selected from olite, Fe, Ni, Co, Cu and Zn. Composed of a combination of one type of compound and a support made of alumina and/or silica or a mixture of these substances. 16. The method according to any one of et al.
JP61505667A 1985-10-25 1986-10-24 Method for removing sulfur compounds contained in residual gas Expired - Lifetime JPH0832548B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR85/15906 1985-10-25
FR8515906A FR2589082B1 (en) 1985-10-25 1985-10-25 PROCESS FOR REMOVAL OF SULFUR COMPOUNDS CONTAINED IN A WASTE GAS, PARTICULARLY FROM A CLAUS SULFUR FACTORY, WITH RECOVERY OF SUCH SULFUR COMPOUNDS
PCT/FR1986/000365 WO1987002653A1 (en) 1985-10-25 1986-10-24 Process for removing sulfur compounds contained in a residual gas

Publications (2)

Publication Number Publication Date
JPS63501562A true JPS63501562A (en) 1988-06-16
JPH0832548B2 JPH0832548B2 (en) 1996-03-29

Family

ID=26224791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61505667A Expired - Lifetime JPH0832548B2 (en) 1985-10-25 1986-10-24 Method for removing sulfur compounds contained in residual gas

Country Status (1)

Country Link
JP (1) JPH0832548B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52114593A (en) * 1976-03-24 1977-09-26 Babcock Hitachi Kk Treatment of tail gas from claus process sulfur recovery unit
JPS57175710A (en) * 1981-03-02 1982-10-28 Standard Oil Co Improved claus desulfurizing method
JPS59182205A (en) * 1983-01-31 1984-10-17 ソシエテ・ナシオナル・エルフ・アキテ−ヌ(プロダクシオン) Catalytic process for manufacture of sulfur from h2s-containing gas
JPS6036309A (en) * 1983-07-04 1985-02-25 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ Oxidation for simple sulfur of hydrogen sulfide and/or sulfur dioxide

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52114593A (en) * 1976-03-24 1977-09-26 Babcock Hitachi Kk Treatment of tail gas from claus process sulfur recovery unit
JPS57175710A (en) * 1981-03-02 1982-10-28 Standard Oil Co Improved claus desulfurizing method
JPS59182205A (en) * 1983-01-31 1984-10-17 ソシエテ・ナシオナル・エルフ・アキテ−ヌ(プロダクシオン) Catalytic process for manufacture of sulfur from h2s-containing gas
JPS6036309A (en) * 1983-07-04 1985-02-25 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ Oxidation for simple sulfur of hydrogen sulfide and/or sulfur dioxide

Also Published As

Publication number Publication date
JPH0832548B2 (en) 1996-03-29

Similar Documents

Publication Publication Date Title
JP3471801B2 (en) Method for removing sulfur compounds present in residual gas of the Claus type sulfur factory residual gas type and recovering the compounds in sulfur form
US4507275A (en) Process for producing and recovering elemental sulfur from acid gas
JP4293642B2 (en) Method and catalyst for directly oxidizing H 2 under gas S contained in gas to sulfur
GB1571923A (en) Catalytic conversion of h2s and so2 to elemental sulphur
JPS5836906A (en) Catalytic manufacture of sulfur from h2s- containing gas
US4315904A (en) Process for removing hydrogen sulphide and sulphur dioxide from claus tail gases
RU2114685C1 (en) Method of removing hydrogen sulfide
JP3519740B2 (en) Method and catalyst for oxidizing H2S present at low concentration in gas to sulfur by contact route
US4180554A (en) Method for removal of sulfur deposited on a Claus catalyst
RU2107024C1 (en) Method and catalyst for directly oxidizing hydrogen sulfide into sulfur
JP3869856B2 (en) H ▲ Bottom 2 ▼ Method for oxidizing S to sulfur
EP0073074B1 (en) Process for reducing the total sulphur content of a high co2-content feed gas
US4462977A (en) Recovery of elemental sulfur from sour gas
US5132098A (en) Process for removing sulphur compounds contained in a residual gas
JPS6317488B2 (en)
JPS60220123A (en) Removal of sulfur compound from exhaust gas
JPH0735248B2 (en) Method for removing sulfur compounds contained in residual gas
SU1248531A3 (en) Method of producing sulfur
US5185140A (en) Process for removing sulphur compounds from a residual gas
JP4473348B2 (en) Method of removing sulfur compound H (lower 2), SO (lower 2), COS and / or CS (lower 2) contained in sulfur plant waste gas and recovering the compound in the form of sulfur
US5023069A (en) Process for removing sulfur moieties from Claus tail-gas
US4842843A (en) Removal of water vapor diluent after regeneration of metal oxide absorbent to reduce recycle stream
RU2070538C1 (en) Method for production of elemental sulfur
JPS63501562A (en) Method for removing sulfur compounds contained in residual gas
US4071607A (en) Process for producing sulfur

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term