JPS6350133B2 - - Google Patents

Info

Publication number
JPS6350133B2
JPS6350133B2 JP5613484A JP5613484A JPS6350133B2 JP S6350133 B2 JPS6350133 B2 JP S6350133B2 JP 5613484 A JP5613484 A JP 5613484A JP 5613484 A JP5613484 A JP 5613484A JP S6350133 B2 JPS6350133 B2 JP S6350133B2
Authority
JP
Japan
Prior art keywords
voltage
capacitor
transistor
power supply
workpiece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5613484A
Other languages
Japanese (ja)
Other versions
JPS60201825A (en
Inventor
Haruki Obara
Masaya Ito
Masafumi Tonomura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fanuc Corp
Original Assignee
Fanuc Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fanuc Corp filed Critical Fanuc Corp
Priority to JP5613484A priority Critical patent/JPS60201825A/en
Publication of JPS60201825A publication Critical patent/JPS60201825A/en
Publication of JPS6350133B2 publication Critical patent/JPS6350133B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H7/00Processes or apparatus applicable to both electrical discharge machining and electrochemical machining
    • B23H7/02Wire-cutting
    • B23H7/04Apparatus for supplying current to working gap; Electric circuits specially adapted therefor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、ワイヤ放電加工機における放電加工
電源に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an electrical discharge machining power supply in a wire electrical discharge machine.

従来技術 コンデンサに電流制限抵抗を通して充電した電
荷を放電させて放電加工を行うワイヤ放電加工機
において、荒加工を行つた後ワークの加工面の面
粗さを良くしたり、形状の修正等を行うために仕
上加工を行うが、この場合、面粗さをよくするに
は加工パワーを小さくすればするほどよくなる。
そのため、電流パルス幅を小さくするためにコン
デンサの容量を小さくしたり、コンデンサの充電
電圧を小さくする必要がある。しかし、回路中に
は浮遊容量があるため、コンデンサの容量を小さ
くするのは自ずから制限される。また、コンデン
サに蓄えられる電圧も、これを過小にすると放電
が生じにくくなるので、これも自ずから限界があ
る。
Conventional technology In a wire electrical discharge machine that performs electrical discharge machining by discharging the charge stored in a capacitor through a current limiting resistor, after rough machining, the machined surface of the workpiece is improved in surface roughness or the shape is corrected. In this case, the surface roughness can be improved by reducing the machining power.
Therefore, in order to reduce the current pulse width, it is necessary to reduce the capacitance of the capacitor or to reduce the charging voltage of the capacitor. However, since there is stray capacitance in the circuit, reducing the capacitance of the capacitor is naturally limited. Furthermore, if the voltage stored in the capacitor is set too low, discharge becomes difficult to occur, so there is a limit to this as well.

したがつて、最良の加工面粗さを得るように加
工するには、加工が不安定となる限界近くで加工
を行う必要があり、そのような領域で如何にして
加工を安定化させるかが重要である。実験による
と、コンデンサを充電させる直流電源の電圧を高
くし、電流制限抵抗を大きくすると加工面粗さが
良い状態で安定加工が得られることがわかつた。
Therefore, in order to obtain the best machined surface roughness, it is necessary to perform machining near the limit where machining becomes unstable, and the question is how to stabilize machining in such a region. is important. Experiments have shown that stable machining with good surface roughness can be achieved by increasing the voltage of the DC power supply that charges the capacitor and increasing the current limiting resistor.

これは、加工中電極とワーク間のギヤツプは増
減しており、直流電源電圧が低いとギヤツプが大
きくなつたとき放電が生じにくく、一時放電が停
止すると、その後ギヤツプが小になつたとしても
放電はすぐには生じなく、放電が不安定になるも
のと考えられる。しかし、直流電源の電圧が高い
とギヤツプが大きくなつても放電が停止しにくい
ためギヤツプが増減しても放電は容易に生じ、安
定した放電が得られる。
This is because the gap between the electrode and the work increases or decreases during machining, and if the DC power supply voltage is low, it is difficult for discharge to occur when the gap becomes large, and if the discharge temporarily stops, even if the gap becomes smaller, the discharge will not occur. It is thought that this does not occur immediately and the discharge becomes unstable. However, if the voltage of the DC power source is high, it is difficult for the discharge to stop even if the gap becomes large, so even if the gap increases or decreases, the discharge easily occurs and stable discharge can be obtained.

すなわち、ワイヤ放電加工機においては、加工
液としてワイヤ電極とワーク間に水が存在し、こ
のため、電解電流として洩れ電流が電極とワーク
間に生じ、コンデンサは直流電源電圧まで充分充
電されることはない。そして、この洩れ電流は電
極とワークが近づけば大きくなり離れれば小さく
なるため直流電源の電圧を高くして電流制限抵抗
を大きくとると、電極とワークが離れたときは洩
れ電流は小さく、コンデンサの充電電圧は高くな
り、電極とワークが離れていても放電は生じやす
くなる。また、電極とワークが適当な値まで近付
けば洩れ電流は大きく、コンデンサの充電電圧は
低くなるから、良好な面粗さの加工を得ることが
できる。
In other words, in a wire electrical discharge machine, water exists as a machining fluid between the wire electrode and the workpiece, and as a result, a leakage current occurs between the electrode and the workpiece as an electrolytic current, and the capacitor is sufficiently charged to the DC power supply voltage. There isn't. This leakage current increases when the electrode and workpiece are close together and decreases when they are separated, so if the voltage of the DC power source is increased and the current limiting resistor is increased, the leakage current is small when the electrode and workpiece are apart, and the capacitor The charging voltage becomes higher, and discharge is more likely to occur even if the electrode and workpiece are far apart. Furthermore, if the electrode and workpiece are brought close to an appropriate value, the leakage current will be large and the charging voltage of the capacitor will be low, making it possible to obtain a good surface roughness.

上述した理由で、安定した加工を得るには直流
電圧は高く、充電制限抵抗は大きくし、ワークの
面粗さをよくするにはコンデンサの充電電圧は低
いほどよいこととなる。そこで、このような微小
面粗さを得る加工においては充電電圧を低くして
加工が安定,不安定の限界近くで行われることと
なるが、ワイヤ電極とワーク間の距離が加工中に
小さくなりすぎたり、あるいは凹部の加工のよう
にワイヤ電極とワーク間の対向面積が増すと上述
した理由で洩れ電流が大きくなり、コンデンサの
充電電圧が低下しすぎて放電しないこととなると
いう欠点があつた。
For the reasons mentioned above, in order to obtain stable machining, the DC voltage should be high and the charging limiting resistance should be large, and in order to improve the surface roughness of the workpiece, the charging voltage of the capacitor should be lower. Therefore, in machining to obtain such microsurface roughness, the charging voltage is lowered and the machining is performed near the limit of stability or instability, but the distance between the wire electrode and the workpiece becomes smaller during machining. If the opposing area between the wire electrode and the workpiece increases, such as when machining too much or a recess, the leakage current will increase for the reasons mentioned above, and the charging voltage of the capacitor will drop too much, resulting in no discharge. .

そこで、このような欠点を解消するには、ワイ
ヤ電極とワークの距離が増減してもコンデンサの
充電電圧が増減しないように制御する必要があ
り、例えば、コンデンサの充電電圧が変化しない
ように制御することが有効と考えられる。しかし
ながら、実験によればこのような制御では放電が
不安定となることが分かつた。これは、ワイヤ電
極とワークの距離が大きい場合に充電電圧が一定
では一時的に放電が停止し易いためと考えられ
る。すなわち、ワイヤ電極とワークの距離が小さ
い場合はコンデンサの充電電圧が低下しないよう
に制御する必要があるが、逆に大きい場合はコン
デンサの充電電圧が増加し得るように制御しない
と加工が不安定になると考えられる。
Therefore, in order to eliminate this drawback, it is necessary to control the charging voltage of the capacitor so that it does not change even if the distance between the wire electrode and the workpiece increases or decreases. For example, it is necessary to control the charging voltage of the capacitor so that it does not change. It is considered effective to do so. However, experiments have shown that such control makes the discharge unstable. This is thought to be because when the distance between the wire electrode and the workpiece is large, discharging tends to stop temporarily if the charging voltage is constant. In other words, if the distance between the wire electrode and the workpiece is small, it is necessary to control the capacitor's charging voltage so that it does not drop, but if it is large, the capacitor's charging voltage must be controlled to increase, otherwise machining will become unstable. It is thought that it will become.

発明の目的 本発明は、上記従来技術の欠点を改善し、仕上
加工における面粗さをよくすると共に、安定加工
が得られる仕上加工用のワイヤ放電加工電源を提
供することを目的としている。
OBJECTS OF THE INVENTION It is an object of the present invention to provide a wire electrical discharge machining power source for finishing which improves the drawbacks of the prior art described above, improves surface roughness in finishing, and provides stable machining.

発明の構成 本発明は、直流電源から電流制限抵抗及びオン
オフするスイツチンク素子を介してコンデンサを
充電し、該コンデンサの充電電圧をワイヤ電極と
ワーク間に印加し放電を行うワイヤ放電加工機の
放電加工電源において、上記電流制限抵抗及びス
イツチング素子と並列に抵抗を介してトランジス
タを接続し、上記スイツチング素子が導通時にお
ける上記コンデンサの充電電圧と上記直流電源の
電圧との電圧差を検出する検出回路と、該検出回
路の出力を上記スイツチング素子導通時に上記ト
ランジスタのベースにに入力し、該トランジスタ
を介して上記電圧差に応じた電流を上記コンデン
サに流すように構成したワイヤ放電加工電源であ
る。
Composition of the Invention The present invention is an electric discharge machine for a wire electric discharge machine that charges a capacitor from a DC power supply via a current limiting resistor and a switching element that turns on and off, and applies the charging voltage of the capacitor between a wire electrode and a workpiece to cause discharge. In the power supply, a detection circuit connects a transistor in parallel with the current limiting resistor and the switching element via a resistor, and detects a voltage difference between the charging voltage of the capacitor and the voltage of the DC power supply when the switching element is conductive. , a wire electrical discharge machining power supply configured to input the output of the detection circuit to the base of the transistor when the switching element is conductive, and to flow a current corresponding to the voltage difference to the capacitor via the transistor.

実施例 第1図は、本発明の一実施例を示す回路図で、
1は直流電源、C1は充放電を行うコンデンサ、
Pはワイヤ電極、Wはワーク、T1はスイツチン
グ素子でオンオフするトランジスタ、R1はトラ
ンジスタT1を介してコンデンサC1への充電を
制限する電流制限抵抗、T2は後述するプレアン
プでA級増幅器を構成するようにされたトランジ
スタである。R2もトランジスタT2を介してコ
ンデンサC1への充電を制限する電流制限抵抗、
R3,R4は回路図のa点の電圧、すなわちトラ
ンジスタT1、抵抗R1間の電圧を分圧する抵
抗、2はアナログスイツチ、C2はコンデンサ、
3は基準電圧V1とコンデンサC2に充電された
充電電圧を比較して出力する差動増幅器、Dはダ
イオード、5はトランジスタT2をA級増幅器と
して動作させるプリアンプで、6はトランジスタ
T1をオンオフさせるためのプリアンプ、4は発
振器で、アナログスイツチ2、プリアンプ5,6
を動作させる。上記プリアンプ5の出力はトラン
ジスタT2のベースG2に入力され、プリアンプ
6の出力はトランジスタT1のベースG1に入力
されている。
Embodiment FIG. 1 is a circuit diagram showing an embodiment of the present invention.
1 is a DC power supply, C1 is a capacitor for charging and discharging,
P is a wire electrode, W is a workpiece, T1 is a switching element that turns on and off a transistor, R1 is a current limiting resistor that limits charging to capacitor C1 via transistor T1, and T2 is a preamplifier to be described later, which constitutes a class A amplifier. It is a transistor made into R2 is also a current limiting resistor that limits charging to capacitor C1 via transistor T2;
R3 and R4 are resistors that divide the voltage at point a in the circuit diagram, that is, the voltage between transistor T1 and resistor R1, 2 is an analog switch, C2 is a capacitor,
3 is a differential amplifier that compares the reference voltage V1 with the charging voltage charged in the capacitor C2 and outputs the result, D is a diode, 5 is a preamplifier that operates the transistor T2 as a class A amplifier, and 6 is used to turn on and off the transistor T1. Preamplifier 4 is an oscillator, analog switch 2, preamplifiers 5 and 6
make it work. The output of the preamplifier 5 is input to the base G2 of the transistor T2, and the output of the preamplifier 6 is input to the base G1 of the transistor T1.

次に、この実施例の動作について述べる。 Next, the operation of this embodiment will be described.

発振器4から出力されるパルスにより、アナロ
グスイツチ2はオンし、プリアンプ5,6は動作
する。その結果、プリアンプ6から出される一定
電圧の出力によりC級で動作するトランジスタT
1は導通し、電流制限抵抗R1を介してコンデン
サC1は充電され、Yの充電電圧によりワークW
と電極P間に放電が生じ、放電加工が行われるこ
ととなる。一方、トランジスタT1が発振器4か
ら出力されるパルスにより導通したとき、アナロ
グスイツチ2はオンするため、コンデンサC2に
は図中a点の電圧を抵抗R3,R4で分圧した電
圧が印加されることとなる。すなわち、直流電源
1の電圧をV0、コンデンサC1の充電電圧をVc
とすると、V0−Vcの電圧が点aに発生すること
となるから、コンデンサC2には直流電源電圧
V0とコンデンサC1の充電電圧の差に応じた電
圧が印加され充電されることとなる。
The analog switch 2 is turned on by the pulse output from the oscillator 4, and the preamplifiers 5 and 6 are operated. As a result, the transistor T operates in class C due to the constant voltage output from the preamplifier 6.
1 conducts, the capacitor C1 is charged via the current limiting resistor R1, and the workpiece W is charged by the charging voltage of Y.
Electric discharge occurs between the electrode P and the electrode P, and electric discharge machining is performed. On the other hand, when the transistor T1 is turned on by the pulse output from the oscillator 4, the analog switch 2 is turned on, so a voltage obtained by dividing the voltage at point a in the figure by resistors R3 and R4 is applied to the capacitor C2. becomes. That is, the voltage of DC power supply 1 is V 0 , and the charging voltage of capacitor C1 is Vc
Then, a voltage of V 0 −Vc will be generated at point a, so the DC power supply voltage will be applied to capacitor C2.
A voltage corresponding to the difference between V 0 and the charging voltage of the capacitor C1 is applied to charge the capacitor C1.

このコンデンサC2の充電で生じた充電電圧は
差動増幅器3に入力され、基準電圧V1と比較さ
れ、その差に応じた出力がダイオードDを介して
プリアンプ5に入力される。そのため、プリアン
プ5の出力は、直流電源電圧V0とコンデンサC
1の充電電圧Vcの差に応じた電圧が発生し、こ
の出力がトランジスタT2のベースG2に入力さ
れ、該トランジスタT2を導通させると共にA級
増幅器として機能させる。このトランジスタT2
及び抵抗R2を介して流れる電流は直流電源電圧
V0とコンデンサC1の充電電圧Vcの差に比例し
て流れ、この電流によりコンデンサC1を充電す
ることとなり、充電電圧は一定に保持されること
となる。
The charging voltage generated by charging the capacitor C2 is input to the differential amplifier 3 and compared with the reference voltage V1 , and an output corresponding to the difference is input to the preamplifier 5 via the diode D. Therefore, the output of preamplifier 5 is DC power supply voltage V 0 and capacitor C
A voltage corresponding to the difference between the two charging voltages Vc is generated, and this output is input to the base G2 of the transistor T2, making the transistor T2 conductive and functioning as a class A amplifier. This transistor T2
and the current flowing through resistor R2 is the DC power supply voltage.
The current flows in proportion to the difference between V 0 and the charging voltage Vc of the capacitor C1, and this current charges the capacitor C1, so that the charging voltage is held constant.

以上が、本実施例の動作であるが、ワークの面
粗さをよくし、かつ、安定した加工が得られる理
由について、さらに詳述すると、第2図イにパル
ス発振器4からの出力パルスを示し、同ロに、第
1図においてトランジスタT2等が設けられてな
く、単にトランジスタT1によつてコンデンサC
1が充電される場合を想定した時のa点の電圧、
すなわち、トランジスタT1と抵抗R1間の電圧
を示しており、同ハは、第1図で示す回路の本発
明の実施例におけるa点の電圧を示したものであ
る。
The above is the operation of this embodiment. To explain in more detail the reason why the surface roughness of the workpiece is improved and stable machining is obtained, the output pulse from the pulse oscillator 4 is shown in Fig. 2A. Similarly, in FIG. 1, the transistor T2 etc. are not provided, and the capacitor C is simply connected by the transistor T1.
The voltage at point a when assuming that 1 is charged,
That is, it shows the voltage between the transistor T1 and the resistor R1, and C shows the voltage at point a in the embodiment of the present invention of the circuit shown in FIG.

今、基準電圧V1は加工が不安定になる限界値
より少し高い値に設定されている。そして、トラ
ンジスタT2等が設けられていない場合を想定す
ると、発振器4の出力によりトランジスタT1が
導通し、コンデンサC1は充電され、ワークWと
電極P間に洩れ電流が少なければ、コンデンサC
1は直流電源1の電圧V0に近くまで充電され、
第2図ロのに示すようにa点の電圧はほとんど
OVになる。そして、その後、ワークWと電極P
間に放電が生じ放電加工が行われるが、しかし、
ワークWと電極Pの対向面積が増すこと等により
洩れ電流が増加するとコンデンサC1の充電電圧
Vcは直流電源1の電圧V0まで上昇せず、差が出
ると第2図ロの,に示すようにa点の電圧も
上昇する。そして、基準電圧V1は安定加工を得
るための限界に近い電圧であるからコンデンサC
1の充電電圧Vcが低下し、直流電源1の電圧V0
との差が大きくなり、第2図ロのの場合には放
電が生じなくなる。そこで、本発明には、この洩
れ電流によるコンデンサC1の充電電圧低下を補
償するトランジスタT2等の回路が設けられてい
る。それは、上記トランジスタT1を導通させる
発振器4のパルスによりオンするアナログスイツ
チ2により上記a点の電圧をコンデンサC2に印
加し充電させ、この充電電圧を差動増幅器3によ
り基準電圧V1との差をダイオードDを介してプ
リアンプ5に入力し、その出力をA級で動作する
トランジスタT2のベースG2に印加したから、
直流電源V0とコンデンサC1の充電電圧Vcの差
に応じてトランジスタT2を介してコンデンサC
1を充電し、第3図ハに示すように基準電圧V1
まで充電することとなる。すなわち、ワークWと
電極P間の洩れ電流によるコンデンサC1の充電
電圧Vcの低下はA級で動作するトランジスタT
2を通る電流によつて補償されることとなり、充
電電圧Vcは基準電圧V1より常に高い一定電圧に
保持されることとなる。また、逆にワークWと電
極が離れれば、充電電圧Vcは基準電圧V1よりも
高い直流電源電圧V0に近い値まで充電されるこ
ととなるから、これにより放電は安定し、安定し
た加工で、かつ面粗さが微小になつた加工を得る
ことができる。
Now, the reference voltage V 1 is set to a value slightly higher than the limit value at which machining becomes unstable. Assuming that the transistor T2 etc. are not provided, the transistor T1 is made conductive by the output of the oscillator 4, the capacitor C1 is charged, and if the leakage current between the workpiece W and the electrode P is small, the capacitor C
1 is charged to near the voltage V 0 of DC power supply 1,
As shown in Figure 2 (b), the voltage at point a is almost
Become an OV. Then, after that, the workpiece W and the electrode P
Electric discharge occurs during the process, and electrical discharge machining is performed, but,
When the leakage current increases due to an increase in the opposing area between the workpiece W and the electrode P, the charging voltage of the capacitor C1 increases.
Vc does not rise to the voltage V0 of the DC power supply 1, and when a difference occurs, the voltage at point a also rises, as shown in Figure 2B. Since the reference voltage V 1 is close to the limit voltage for obtaining stable machining, the capacitor C
The charging voltage Vc of DC power supply 1 decreases, and the voltage V 0 of DC power supply 1 decreases.
The difference between the two becomes large, and in the case of (b) in FIG. 2, no discharge occurs. Therefore, in the present invention, a circuit such as a transistor T2 is provided to compensate for the drop in charging voltage of the capacitor C1 due to this leakage current. The analog switch 2, which is turned on by the pulse of the oscillator 4 that makes the transistor T1 conductive, applies the voltage at the point a to the capacitor C2 to charge it, and the difference between this charged voltage and the reference voltage V1 is calculated by the differential amplifier 3. Since it is input to the preamplifier 5 via the diode D, and its output is applied to the base G2 of the transistor T2 operating in class A,
Depending on the difference between the DC power supply V 0 and the charging voltage Vc of the capacitor C1, the capacitor C is charged via the transistor T2.
1, and the reference voltage V 1 is charged as shown in Figure 3 C.
It will be charged up to. That is, the decrease in the charging voltage Vc of the capacitor C1 due to the leakage current between the workpiece W and the electrode P is caused by the decrease in the charging voltage Vc of the capacitor C1 due to the leakage current between the work W and the electrode
2, and the charging voltage Vc is kept at a constant voltage that is always higher than the reference voltage V1 . Conversely, if the workpiece W and the electrode are separated, the charging voltage Vc will be charged to a value close to the DC power supply voltage V0 , which is higher than the reference voltage V1 , so the discharge will be stabilized and stable machining will be possible. It is possible to obtain processing with very small surface roughness.

発明の効果 以上述べたように、ワークと電極間の洩れ電流
によるコンデンサの充電電圧の低下を、その低下
の度合いに応じて自動的に補償する回路を設けた
から、コンデンサの充電電圧は一定電圧に保持さ
れ、そのため、直流電源電圧を下げて安定加工が
できる限界値に近い電圧をもつて加工が行えるか
ら、ワークの加工面は微小面粗さとなり、かつ安
定した加工が行えるものである。
Effects of the Invention As described above, since a circuit is provided that automatically compensates for the drop in the charging voltage of the capacitor due to the leakage current between the workpiece and the electrode according to the degree of the drop, the charging voltage of the capacitor remains constant. Therefore, machining can be performed with a voltage close to the limit value that allows stable machining by lowering the DC power supply voltage, so the machined surface of the workpiece has minute surface roughness and stable machining can be performed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例の回路図、第2図
は、動作説明図である。 2……アナログスイツチ、5,6……プリアン
プ、T1,T2……トランジスタ、P……電極、
W……ワーク。
FIG. 1 is a circuit diagram of an embodiment of the present invention, and FIG. 2 is an operation explanatory diagram. 2... Analog switch, 5, 6... Preamplifier, T1, T2... Transistor, P... Electrode,
W...Work.

Claims (1)

【特許請求の範囲】[Claims] 1 直流電源から電流制限抵抗及びオンオフする
スイツチンク素子を介してコンデンサを充電し、
該コンデンサの充電電圧をワイヤ電極とワーク間
に印加し放電を行うワイヤ放電加工機の放電加工
電源において、上記電流制限抵抗及びスイツチン
グ素子と並列に抵抗を介してトランジスタを接続
し、上記スイツチング素子が導通時における上記
コンデンサの充電電圧と上記直流電源の電圧との
電圧差を検出する検出回路と、該検出回路の出力
を上記スイツチング素子導通時に上記トランジス
タのベースに入力し、該トランジスタを介して上
記電圧差に応じた電流を上記コンデンサに流すよ
うにしたワイヤ放電加工電源。
1. Charge a capacitor from a DC power source via a current limiting resistor and a switching element that turns on and off.
In an electrical discharge machining power supply for a wire electrical discharge machine that applies a charging voltage of the capacitor between a wire electrode and a workpiece to generate electrical discharge, a transistor is connected through a resistor in parallel with the current limiting resistor and the switching element, and the switching element is a detection circuit that detects the voltage difference between the charging voltage of the capacitor and the voltage of the DC power supply when the switching element is conductive; and an output of the detection circuit is input to the base of the transistor when the switching element is conductive; A wire electrical discharge machining power supply that allows current to flow through the capacitors according to the voltage difference.
JP5613484A 1984-03-26 1984-03-26 Power source for wire electric discharge machining Granted JPS60201825A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5613484A JPS60201825A (en) 1984-03-26 1984-03-26 Power source for wire electric discharge machining

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5613484A JPS60201825A (en) 1984-03-26 1984-03-26 Power source for wire electric discharge machining

Publications (2)

Publication Number Publication Date
JPS60201825A JPS60201825A (en) 1985-10-12
JPS6350133B2 true JPS6350133B2 (en) 1988-10-06

Family

ID=13018600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5613484A Granted JPS60201825A (en) 1984-03-26 1984-03-26 Power source for wire electric discharge machining

Country Status (1)

Country Link
JP (1) JPS60201825A (en)

Also Published As

Publication number Publication date
JPS60201825A (en) 1985-10-12

Similar Documents

Publication Publication Date Title
US4678884A (en) Wire discharge machining power source
US4614854A (en) Wire EDM control circuit for rough and finished machining
EP0032023B1 (en) A power source for an electric discharge machine
JPS6350133B2 (en)
EP0276314B1 (en) Discharge machining controller
US4719327A (en) Electrical discharge machining power supply
JPS61260923A (en) Power source for electric discharge machining
JPS60201824A (en) Power source for wire electric discharge machining
JPH059209B2 (en)
JPH0351533B2 (en)
JP2005165379A (en) Constant voltage power supply circuit
JPS6014650B2 (en) Power supply device for electrical discharge machining
KR950004763B1 (en) Electrical discharge machine
JPH0351064Y2 (en)
JP4375861B2 (en) DC stabilized power supply control circuit
US4891486A (en) Device for feed control of electrode-tool in spark erosion machines
JP3557913B2 (en) Electric discharge machine
JPH0230422A (en) Electric discharge machining device
JP2613909B2 (en) Power supply circuit for electric discharge machining
JPS6234722A (en) Electric power unit for electric discharge machining
JPS6361128B2 (en)
JPH046281B2 (en)
JPH0442122B2 (en)
JPH03228521A (en) Electric discharge machining method
JPS6253289B2 (en)