JPS6349788A - Manufacture of liquid crystal panel - Google Patents

Manufacture of liquid crystal panel

Info

Publication number
JPS6349788A
JPS6349788A JP19437386A JP19437386A JPS6349788A JP S6349788 A JPS6349788 A JP S6349788A JP 19437386 A JP19437386 A JP 19437386A JP 19437386 A JP19437386 A JP 19437386A JP S6349788 A JPS6349788 A JP S6349788A
Authority
JP
Japan
Prior art keywords
photosensitive resin
alignment film
positive photosensitive
liquid crystal
crystal panel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19437386A
Other languages
Japanese (ja)
Other versions
JP2604729B2 (en
Inventor
清弘 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61194373A priority Critical patent/JP2604729B2/en
Publication of JPS6349788A publication Critical patent/JPS6349788A/en
Application granted granted Critical
Publication of JP2604729B2 publication Critical patent/JP2604729B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、液晶表示装置、特に基板表面に深い凹凸を有
するマトリクス型の液晶パネルに適した液晶パネルの製
造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for manufacturing a liquid crystal display device, particularly a liquid crystal panel suitable for a matrix type liquid crystal panel having deep irregularities on the substrate surface.

従来の技術 周知のごとく、マトリクス型液晶表示装置は一対の基板
からなり、一方の基板として透光性絶縁基板、例えばガ
ラス板上に透明導電膜よりなる走査線パターンを形成し
、もう一方の基板上には同じ〈信号線パターンを形成し
、さらに短絡防止のだめの透明絶縁性の薄膜層を形成し
た後、所定の領域に配向膜全印刷等によって形成し、乾
燥した布で配向膜をこする言わゆるラビング等の配向処
理を施す。しかる後、一対の基板を対向させて間隙数μ
mの空間を形成し、前記空間に液晶を充填し、使用する
液晶の特性に応じて偏光板を貼付して液晶パネルが完成
する。
As is well known in the art, a matrix type liquid crystal display device consists of a pair of substrates, one of which is a transparent insulating substrate, such as a glass plate, on which a scanning line pattern is formed using a transparent conductive film, and the other substrate is After forming the same signal line pattern on top and further forming a transparent insulating thin film layer to prevent short circuits, an alignment film is formed in a predetermined area by full printing, etc., and the alignment film is rubbed with a dry cloth. Orientation treatment such as so-called rubbing is performed. After that, place the pair of substrates facing each other and set the gap number μ.
A liquid crystal panel is completed by forming a space of m, filling the space with liquid crystal, and attaching a polarizing plate depending on the characteristics of the liquid crystal used.

液晶パネルをカラー化するためには一方の基板上に染色
されたゼラチンの着色層を配置するのが一般的である。
In order to color a liquid crystal panel, it is common to arrange a colored layer of dyed gelatin on one substrate.

第5図は一対のガラス板1,2をシール材3で貼り合わ
せる直前の状態を示す斜視図で、先述したように一方の
ガラス板2の一生面上には透明導電膜よシなる走査線群
4が形成されておシ、もう一方のガラス板1の一生面上
には同じく信号線群6が形成されている。一対のガラス
板1,2は走査線4と信号線6とが概ね直交するように
貼り合わせられる。シール材3は液晶を閉じ込める空間
を形成すると同時に一対のガラス板1.2を接着する機
能を有する。シール材3に形成された切シ欠は部8は液
晶の注入時に液晶の通路を確保するために必要であるが
パネル化した後には図示はしないが封口剤によって埋め
られる。画像を表示する領域では液晶を配向させるため
に有機系の薄膜、例え族ポリイミド系CPIQ)の樹脂
が配向膜7として選択的に形成されている。
FIG. 5 is a perspective view showing the state immediately before the pair of glass plates 1 and 2 are pasted together with the sealing material 3. As mentioned earlier, there are scanning lines formed by a transparent conductive film on the whole surface of one of the glass plates 2. A group 4 is formed, and a signal line group 6 is similarly formed on the entire surface of the other glass plate 1. A pair of glass plates 1 and 2 are bonded together so that scanning lines 4 and signal lines 6 are approximately orthogonal to each other. The sealing material 3 has the function of forming a space to confine the liquid crystal and at the same time bonding the pair of glass plates 1.2. The notch 8 formed in the sealing material 3 is necessary to ensure a passage for the liquid crystal when the liquid crystal is injected, and is filled with a sealant (not shown) after the panel is formed. In the area where an image is displayed, an organic thin film, such as a polyimide-based CPIQ) resin, is selectively formed as an alignment film 7 in order to align the liquid crystal.

第7図はカラー化された液晶パネルを走査線に平行に切
断した場合の断面図を示す。7は先述した配向膜であシ
、一対のガラス板1,2とシール材3で構成される空間
8には液晶が充填され、図示はしないがこの空間8の厚
みを所定の値に保つべく散布される絶縁性材料がスペー
サで、例えばガラスファイバとかプラスチックボールが
使用される。9は信号線6と走査線とが導電性異物など
によって短絡するのを防止したシ、液晶に直流電流が流
れて劣化するのを回避するための透明性絶縁薄膜、例え
ばシリカフィルムである。
FIG. 7 shows a cross-sectional view of a colored liquid crystal panel cut parallel to the scanning line. 7 is the above-mentioned alignment film, and a space 8 made up of a pair of glass plates 1 and 2 and a sealing material 3 is filled with liquid crystal, and although not shown, in order to maintain the thickness of this space 8 at a predetermined value. The insulating material to be sprayed is a spacer, for example, a glass fiber or a plastic ball. Reference numeral 9 denotes a transparent insulating thin film, such as a silica film, to prevent the signal line 6 and the scanning line from being short-circuited by conductive foreign matter, and to avoid deterioration caused by direct current flowing through the liquid crystal.

1oは例えばゼラチンなどの有機薄膜を染料で着色する
ととKよって形成された着色層で、所定の分光特性を有
するR、G、Bの三原色がカラーフィルタの光学設計に
よって配置される。着色層10の隣り合う間隙は光源光
に対して不透明な薄膜層11で埋めるとコントラスト比
の高い画像が得られ有利である。言わゆるブラッ、クマ
トリクス処理であるが、薄膜層11の不透明化はクロム
などの金属薄膜を用いてよく、またR、G、Bの着色層
を重ね合わせたシ、また新たに黒色層を設けてもよく、
設計にはかなりの自由度がある。
1o is a colored layer formed by K when an organic thin film such as gelatin is colored with a dye, and the three primary colors R, G, and B having predetermined spectral characteristics are arranged according to the optical design of the color filter. It is advantageous to fill the gaps between adjacent colored layers 10 with a thin film layer 11 that is opaque to the light source, since an image with a high contrast ratio can be obtained. This is the so-called black or coma matrix treatment, but the thin film layer 11 may be made opaque by using a metal thin film such as chromium. It's okay,
There is considerable freedom in design.

12は先述したように偏光板で液晶5KTN(ツイスト
ネマチック)系のものを用いる場合には上下2枚必要で
ある。走査線4や信号線6への電気信号の供給はシール
材3より外周部へ延長されたガラス板上で、導電薄膜を
被着された可撓性のフィルム端子を走査電極4′などに
圧接する手段(実装)によってなされる。
As mentioned earlier, 12 is a polarizing plate, and when a liquid crystal 5KTN (twisted nematic) type one is used, two plates, upper and lower, are required. Electric signals are supplied to the scanning line 4 and signal line 6 by pressing a flexible film terminal coated with a conductive thin film onto the scanning electrode 4' on a glass plate extending from the sealing material 3 to the outer periphery. It is done by means (implementation) of

近年、TPT(薄膜トランジスタ)やMIMなどの非線
形素子をアナログスイッチとして基板上に内蔵させた言
わゆるアクティブマトリクス基板では、走査線と信号線
を同一基板に配置することが可能で、このような場合に
はもう一方の基板は共通な透明導電膜が存在すればよい
In recent years, so-called active matrix substrates, in which nonlinear elements such as TPTs (thin film transistors) and MIMs are built into the substrate as analog switches, have made it possible to arrange scanning lines and signal lines on the same substrate. The other substrate only needs to have a common transparent conductive film.

第8図はアクティブマトリクス基板13と共通透明電極
14を有するカラーフィルタ16との組合せになるカラ
ー液晶パネルの画像部の要部断面図を示し、7は従来例
と同じく配向膜である。詳細は省略するがアクティブマ
トリクス基板13では走査線(図示せず)と信号線6と
の交点毎に透明導電膜よシなる絵素電極16とスイッチ
ング用TPT (図示せず)が形成されており、17.
18は透明絶縁性の例えばSio2や513N4である
FIG. 8 shows a sectional view of a main part of the image area of a color liquid crystal panel which is a combination of an active matrix substrate 13 and a color filter 16 having a common transparent electrode 14, and 7 is an alignment film as in the conventional example. Although details are omitted, on the active matrix substrate 13, a pixel electrode 16 made of a transparent conductive film and a switching TPT (not shown) are formed at each intersection of a scanning line (not shown) and a signal line 6. , 17.
18 is a transparent insulating material such as Sio2 or 513N4.

アクティブマトリクス基板13では多くの薄膜を選択的
に被着形成して素子を形成するために基板表面の凹凸が
激しく、最大段差が1μmを越えることは珍しくない。
In the active matrix substrate 13, many thin films are selectively deposited to form elements, so the surface of the substrate is extremely uneven, and it is not uncommon for the maximum step difference to exceed 1 μm.

とくに信号線6.にAn f用いるとその傾向が強く、
第8図も他は省略してA1層6の段差が強調しである。
Especially signal line 6. This tendency is stronger when An f is used for
In FIG. 8, the other parts are omitted and the step difference in the A1 layer 6 is emphasized.

また第8図において着色層10の厚みがR,G。Further, in FIG. 8, the thicknesses of the colored layer 10 are R and G.

Bで異なって形成されている理由は液晶中を通過する光
の波長による光路差を補正しコントラスト比を大きくす
るだめの設計的手段で、その厚みの差は専ら液晶8の透
電異方性Δnによって決まり0.4〜0.8μm であ
ることが先行例によって示されている(特開昭60−1
69823号)。
The reason why they are formed differently in B is that it is a design measure to correct the optical path difference due to the wavelength of light passing through the liquid crystal and increase the contrast ratio, and the difference in thickness is solely due to the transmission anisotropy of the liquid crystal 8. Previous examples have shown that it is determined by Δn and is 0.4 to 0.8 μm (Japanese Patent Application Laid-open No. 60-1
No. 69823).

発明が解決しようとする問題点 以上のように液晶セルを構成する基板表面に深い段差を
有する液晶パネルにおいては、配向膜7の塗布厚を均一
にすることと配向処理におけるラビング状態を均質に保
つことが困難で、配向むら。
Problems to be Solved by the Invention As mentioned above, in a liquid crystal panel having a deep step on the surface of a substrate constituting a liquid crystal cell, it is necessary to make the coating thickness of the alignment film 7 uniform and to keep the rubbing state uniform in the alignment treatment. It is difficult to do so, resulting in uneven orientation.

フリッカなどの現象が発生し品く、かえって画質の低下
を招く問題点を有していた。
Phenomena such as flicker occur and the quality of the image is poor, and the problem is that the image quality deteriorates.

配向膜は一般的にはポリイミド系樹脂をSOO〜200
OAと極めて薄く塗布することで構成される。
The alignment film is generally made of polyimide resin with a film thickness of SOO~200
It consists of OA and a very thin coat.

また配向膜7は第5図からも明らかなようにシール材3
よりも内側に位置しなければならない。これは配向膜ア
がシール材3にまたがってしまうと配向膜7を通過して
液晶日中に外気中の水分が浸入して液晶を劣化させるか
らである。したがって配向膜を選択的に塗布する手段と
して通常はオフセット印刷技術を用いている。オフセッ
ト印刷では第9図に示すようにシリンジ20より配向膜
材料のポリイミド系樹脂溶液21全滴下し、アニロ  
゛ツク22とドクタロール23で所定の膜厚に引き伸ば
して24とし内さらに主ロール26上のゴム版26に樹
脂液24を転写した後、搬送ステージ27を主ロール2
6に押し当てる機構により搬送ステージ27上の基板2
8にゴム版26上の樹脂液24が塗布される。
Furthermore, as is clear from FIG. 5, the alignment film 7 is
must be located inside. This is because if the alignment film A straddles the sealing material 3, moisture from the outside air will pass through the alignment film 7 and enter during the liquid crystal display day, thereby degrading the liquid crystal. Therefore, offset printing technology is usually used as a means for selectively applying an alignment film. In offset printing, as shown in Fig. 9, the entire polyimide resin solution 21 of the alignment film material is dropped from the syringe 20, and
After stretching the resin liquid 24 to a predetermined thickness using the doctor roll 22 and the doctor roll 23 and transferring the resin liquid 24 to the rubber plate 26 on the main roll 26, the transport stage 27 is transferred to the main roll 2.
6, the substrate 2 on the transfer stage 27 is
8, the resin liquid 24 on the rubber plate 26 is applied.

このようにオフセット印刷では多くの転写が抑圧の調整
によってなされる。とくに最終転写では厚さO*1mI
n程度のゴム版が使用されるが、ゴム版全面にわたって
均一な転写圧を期待すること自体が無理であり、また基
板表面に1μm近い段差があればなおさら塗布厚の均一
性は得られず、精々±20チ程度の厚み精度しか得られ
ない状況にある。
In this way, in offset printing, many transfers are performed by adjusting suppression. Especially in the final transfer, the thickness is O*1 mI.
A rubber plate with a diameter of about The situation is such that the thickness accuracy is only about ±20 inches at best.

本発明はかかる点に鑑みなされたもので、厚み精度の高
い配向膜塗布方法によって良好な画質の液晶パネル全得
ることのできる製造方法を提供することを目的とする。
The present invention has been made in view of the above, and an object of the present invention is to provide a method of manufacturing a liquid crystal panel with good image quality using an alignment film coating method with high thickness accuracy.

間厘点を解決するための手段 本発明における、配向膜の選択的塗布方法としては、配
向膜の全面塗布と、感光性樹脂を用いた選択的感光性樹
脂パターンの形成、感光性樹脂パターンをマスクとする
配向膜の選択的除去および感光性樹脂パターンの除去に
よって達成される。
Means for Solving the Interference Point In the present invention, the method for selectively applying an alignment film includes coating the entire surface of the alignment film, forming a selective photosensitive resin pattern using a photosensitive resin, and forming a photosensitive resin pattern using a photosensitive resin. This is achieved by selectively removing the alignment film used as a mask and removing the photosensitive resin pattern.

作  用 本発明は上記した構成により、まず配向膜の全面塗布が
なされ、塗布厚の±6チ以下の高い精度が保証される。
Effects According to the present invention, with the above-described configuration, first, the alignment film is coated on the entire surface, and a high accuracy of ±6 inches or less of the coating thickness is guaranteed.

ついでポジ型感光性樹脂(レジスト)のパターン出しが
ボストベーク処理を伴なわず罠実行される。引き続きレ
ジストパターンをマスクとして配向膜の02プラズマを
用いた灰化がなされる。同時にレジストも灰化されるが
、レジストの厚みを配向膜の塗布厚の5倍以上、約1μ
m以上に選べばレジストは膜減りするだけで配向膜の消
失する恐れは皆無である。そして最後にレジストの除去
がなされて配向膜の選択的塗布が終了する。
Next, patterning of the positive photosensitive resin (resist) is carried out without any post-baking process. Subsequently, the alignment film is ashed using 02 plasma using the resist pattern as a mask. At the same time, the resist is also ashed, but the thickness of the resist is at least 5 times the coating thickness of the alignment film, approximately 1 μm.
If it is selected to be greater than or equal to m, the resist will only be thinned and there will be no risk of the alignment film disappearing. Finally, the resist is removed and selective coating of the alignment film is completed.

なおポジ型レジストはボストベーク処理が実施°されて
いないと、アセトンやエチルセルソルブなどの有機溶材
による溶解除去が簡便であり、またレジストパターンへ
の全面露光と再現像によっても溶解除去は可能である。
Note that if a positive resist is not subjected to a post-bake process, it is easy to dissolve and remove it using an organic solvent such as acetone or ethyl cellosolve, and it is also possible to dissolve and remove it by exposing the entire resist pattern to light and reproducing the image. .

実施例 第1図は本発明の第1の実施例における配向膜の形成方
法のプロセスフロー及び基板の進行に応じた状態を示す
斜視図である。まず基板1に回転塗布によってポリイミ
ド薄膜3oを全面に塗布する。つぎにキュアと称する熱
処理によってポリイミド樹脂中の溶材を揮発させると同
時てイミド樹脂のポリ(重合)化を進行させる。熱処理
温度は材質によって異なり1500〜450’Cと多様
で基板の構成てよって材質の選定が行なわれる。
Embodiment FIG. 1 is a perspective view showing a process flow of a method for forming an alignment film in a first embodiment of the present invention and states according to the progress of a substrate. First, a polyimide thin film 3o is applied to the entire surface of the substrate 1 by spin coating. Next, a heat treatment called curing is performed to volatilize the solvent in the polyimide resin and at the same time advance poly(polymerization) of the imide resin. The heat treatment temperature varies depending on the material and varies from 1500 to 450'C, and the material is selected depending on the configuration of the substrate.

続いて全面にポジ型レジスト31(例えばシラプレー社
AZ−1400)を塗布してプリペークを行なう。その
塗布厚は配向膜の厚みの5倍以上、約1μm以上あれば
十分である。選択的露光のためにはフォトマスクが必要
であるが、配向膜の所定位置精度は低いのでマスク合せ
は止めビンと押し当て板の組み合わせ程度のマスク合せ
機械で十分である。
Subsequently, a positive type resist 31 (for example, Silapray AZ-1400) is applied to the entire surface and prepainting is performed. It is sufficient that the coating thickness be at least 5 times the thickness of the alignment film, or about 1 μm or more. A photomask is required for selective exposure, but since the precision of the predetermined position of the alignment film is low, a mask alignment machine consisting of a combination of a stopper and a pressing plate is sufficient for mask alignment.

紫外線照射による露光の後、現像的えばシラプレー社M
IF−304現像液による)と純水てよるリンスでポリ
イミド膜3o上にはパターン化されたポジレジスト31
′が得られる。その後o2プラズマ中で基板温度が10
0°Cを越えない処理を行なうと露出しているポリイミ
ド膜は灰化されて基板1の表面があられれる。ボストベ
ーク処理を受けていないポジ型レジストは有機溶材、例
えばアセトンやエチルセルソルブなどで簡単に溶かし去
ることができるので、ポリイミドの配向膜30′に化学
的な変質を与えずにレジスト除去は可能である。
After exposure to ultraviolet rays, development is done using Silplay M.
A patterned positive resist 31 is formed on the polyimide film 3o by rinsing with IF-304 developer and pure water.
′ is obtained. After that, the substrate temperature in O2 plasma is 10
If the treatment is carried out at a temperature not exceeding 0°C, the exposed polyimide film will be ashed and the surface of the substrate 1 will be roughened. Since a positive resist that has not undergone post-baking can be easily dissolved away using an organic solvent such as acetone or ethyl cellosolve, it is possible to remove the resist without chemically altering the polyimide alignment film 30'. be.

そして、最後に今までの工程で配向膜30′が受けたで
あろう水分を揮発させる意味あいでキュアを追加するこ
とによって配向膜の選択的塗布が終了する。
Finally, curing is added to volatilize the moisture that the alignment film 30' may have received in the previous steps, thereby completing the selective application of the alignment film.

以上のように本実施例によれば配向膜を回転塗布によっ
て塗布することにより基板表面に深い段差が存在してい
ても塗布厚のばらつきの極めて少ないものが得られ、配
向むらやフリッカ等の画質低下につながる現象が著しく
減少する。
As described above, according to this example, by applying the alignment film by spin coating, even if there are deep steps on the substrate surface, a coating with very little variation in coating thickness can be obtained, and image quality such as uneven alignment and flicker can be obtained. Phenomena that lead to decline are significantly reduced.

第2図〜第4図は本発明の第2〜第4の実施例における
配向膜の塗布方法のプロセスフローを示し、多面付けさ
れた基板の処理方法に関するものである。
2 to 4 show process flows of alignment film coating methods in second to fourth embodiments of the present invention, and relate to a method for processing a multi-sided substrate.

第1の実施例と同じように配向膜の塗布厚の精度は保証
されておシ、しかも切断時に配向膜はポジ型レジストで
保護されているので切断〈ずや切断液で破損したり汚染
されることがないという副次的な効果も大きい。とくに
第3.第4の実施例では切断時に基板は配向膜とポジ型
レジストで二重に保護されるので配向膜が配置される領
域外すなわち電極端子部まで保護され、副次的な効果は
より大きなものとなる。
As in the first embodiment, the accuracy of the coating thickness of the alignment film is guaranteed, and since the alignment film is protected by a positive resist during cutting, it will not be damaged or contaminated by cutting liquid during cutting. The side effect of not having to worry about anything is also great. Especially the third one. In the fourth embodiment, since the substrate is double protected by the alignment film and the positive resist during cutting, the area outside where the alignment film is placed, that is, even the electrode terminal area, is protected, and the secondary effect is even greater. Become.

第5図て示さ几た第5の実施例は第1〜第4の実施例に
おけるレジスト除去工程をアセトンや工チルセルソルブ
などの有機溶材を用いて実施するのでなく、ポジ型レジ
ストを再び紫外線で露光し、現像液で除去するものであ
る。この実施例においては配向膜も含めて基板上に存在
する有機材質への化学的損傷が少ないので、とくにカラ
ーフィルタへの配向膜の塗布に適していることが分る。
In the fifth embodiment shown in FIG. 5, the resist removal process in the first to fourth embodiments is not carried out using an organic solvent such as acetone or ethylene cellulose, but the positive resist is exposed again to ultraviolet rays. It is then removed using a developer. In this example, since there is little chemical damage to the organic materials present on the substrate, including the alignment film, it can be seen that it is particularly suitable for applying an alignment film to a color filter.

発明の効果 以上述べたように本発明によれば、基板表面に深い段差
が存在しても配向膜の塗布精度を高くできて、配向むら
やフリッカの抑制に著しい効果が得られる。また切断時
に基板表面の損傷や汚染を防ぐことも同時になされ、そ
の実用的効果は大きい。
Effects of the Invention As described above, according to the present invention, even if there are deep steps on the substrate surface, the coating precision of the alignment film can be increased, and a remarkable effect can be obtained in suppressing alignment unevenness and flicker. Furthermore, damage and contamination of the substrate surface during cutting can be prevented at the same time, which has a great practical effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明における第1の実施例の液晶バ示す斜視
図、第2図、第3図、第4図は本発明のリクス型液晶パ
ネルの分解斜視図および要部断面図、第8図は深い凹凸
を有する基板で構成される液晶パネルの要部断面図、第
9図はオフセット印刷による配向膜の塗布方法の概念図
である。 1.13.27・・・・・・基板、2,16・・・・・
・カラーフィルタ、3・・・・・・シール、4・・・・
・・1Jil、5・・・・・・信号線、7・・・・・・
配向膜、8・・・・・・液晶、10・・・・・・着色層
、11・・・・・・ブラックマトリクス、12・・・・
・・偏光板、14・・・・・・共通透明電極、21・・
・・・・ポリイミド(PIQ)系樹脂液、26・・・・
・・ゴム版。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名1、
13−・−]【不足 3l−−−yレタυジ1ト 第 2 図 第3図 第 4 図 第5図 第5図
FIG. 1 is a perspective view showing a liquid crystal panel according to a first embodiment of the present invention, FIGS. The figure is a cross-sectional view of a main part of a liquid crystal panel composed of a substrate having deep irregularities, and FIG. 9 is a conceptual diagram of a method of applying an alignment film by offset printing. 1.13.27... Board, 2,16...
・Color filter, 3...Seal, 4...
...1Jil, 5...signal line, 7...
Alignment film, 8...Liquid crystal, 10...Colored layer, 11...Black matrix, 12...
...Polarizing plate, 14... Common transparent electrode, 21...
...Polyimide (PIQ) resin liquid, 26...
...Rubber version. Name of agent: Patent attorney Toshio Nakao and 1 other person1,
13-・-] [Insufficient 3l---y Letter υ Digit 1st Figure 2 Figure 3 Figure 4 Figure 5 Figure 5

Claims (8)

【特許請求の範囲】[Claims] (1)液晶パネルを構成する基板上に配向膜を塗布する
工程と、前記配向膜を硬化させる工程と、前記配向膜上
にポジ型感光性樹脂を塗布する工程と、前記ポジ型感光
性樹脂をプリペークする工程と、選択的露光および現像
によって前記ポジ型感光性樹脂をパターン化する工程と
、前記パターン化されたポジ型感光性樹脂をマスクとし
てO_2プラズマ処理によって前記配向膜を選択的に灰
化する工程と、有機溶材によって前記パターン化された
ポジ型感光性樹脂を除去して配向膜を所定の領域に形成
する工程とを有することを特徴とする液晶パネルの製造
方法。
(1) A step of applying an alignment film onto a substrate constituting a liquid crystal panel, a step of curing the alignment film, a step of applying a positive photosensitive resin onto the alignment film, and a step of applying the positive photosensitive resin to the alignment film. a step of prepaking the positive photosensitive resin, a step of patterning the positive photosensitive resin by selective exposure and development, and selectively ashing the alignment film by O_2 plasma treatment using the patterned positive photosensitive resin as a mask. 1. A method for manufacturing a liquid crystal panel, comprising: a step of removing the patterned positive photosensitive resin using an organic solvent to form an alignment film in a predetermined region.
(2)パターン化されたポジ型感光性樹脂の除去を全面
露光と再現像によってなすことを特徴とする特許請求の
範囲第1項記載の液晶パネルの製造方法。
(2) The method for manufacturing a liquid crystal panel according to claim 1, characterized in that the patterned positive photosensitive resin is removed by full-surface exposure and reproduction.
(3)液晶パネルを構成する基板が多面付けされた基板
上に配向膜を塗布する工程と、前記配向膜を硬化させる
工程と、前記配向膜上にポジ型感光性樹脂を塗布する工
程と、前記ポジ型感光性樹脂をプリペークする工程と、
選択的露光および現像によって前記ポジ型感光性樹脂を
パターン化する工程と、前記パターン化されたポジ型感
光性樹脂をマスクとしてO_2プラズマ処理によって前
記配向膜を選択的に灰化する工程と、前記多面付けされ
た基板を切断する工程と、有機溶材によって前記パター
ン化されたポジ型感光性樹脂を除去して所定の領域に配
向膜を形成する工程とを有することを特徴とする液晶パ
ネルの製造方法。
(3) a step of applying an alignment film on a substrate on which multiple substrates constituting a liquid crystal panel are attached, a step of curing the alignment film, and a step of applying a positive photosensitive resin on the alignment film; a step of prepaking the positive photosensitive resin;
a step of patterning the positive photosensitive resin by selective exposure and development; a step of selectively ashing the alignment film by O_2 plasma treatment using the patterned positive photosensitive resin as a mask; Manufacturing a liquid crystal panel comprising the steps of: cutting a multi-sided substrate; and removing the patterned positive photosensitive resin with an organic solvent to form an alignment film in a predetermined region. Method.
(4)パターン化されたポジ型感光性樹脂の除去を全面
露光と再現像によってなすことを特徴とする特許請求の
範囲第3項記載の液晶パネルの製造方法。
(4) The method for manufacturing a liquid crystal panel according to claim 3, characterized in that the patterned positive photosensitive resin is removed by full-surface exposure and reproduction.
(5)液晶パネルを構成する基板が多面付けされた基板
上に配向膜を塗布する工程と、前記配向膜を硬化させる
工程と、前記配向膜上にポジ型感光性樹脂を塗布する工
程と、前記ポジ型感光性樹脂をプリペークする工程と、
前記多面付けされた基板を切断する工程と、選択的露光
および現像によって前記ポジ型感光性樹脂をパターン化
する工程と、前記パターン化されたポジ型感光性樹脂を
マスクとしてO_2プラズマ処理によって前記配向膜を
選択的に灰化する工程と、有機溶材によって前記パター
ン化されたポジ型感光性樹脂を除去し所定の領域に配向
膜を形成する工程とを有することを特徴とする液晶パネ
ルの製造方法。
(5) a step of applying an alignment film on a substrate on which multiple substrates constituting a liquid crystal panel are attached, a step of curing the alignment film, and a step of applying a positive photosensitive resin on the alignment film; a step of prepaking the positive photosensitive resin;
A step of cutting the multi-sided substrate, a step of patterning the positive photosensitive resin by selective exposure and development, and a step of performing the orientation by O_2 plasma treatment using the patterned positive photosensitive resin as a mask. A method for manufacturing a liquid crystal panel, comprising the steps of selectively ashing the film, and removing the patterned positive photosensitive resin with an organic solvent to form an alignment film in a predetermined region. .
(6)パターン化されたポジ型感光性樹脂の除去を全面
露光と再現像によってなすことを特徴とする特許請求の
範囲第5項記載の液晶パネルの製造方法。
(6) The method for manufacturing a liquid crystal panel according to claim 5, characterized in that the patterned positive photosensitive resin is removed by full-surface exposure and reproduction.
(7)液晶パネルを構成する基板が多面付けされた基板
上に配向膜を塗布する工程と、前記配向膜を硬化させる
工程と、前記配向膜上にポジ型感光性樹脂を塗布する工
程と、前記ポジ型感光性樹脂をプリペークする工程と、
前記ポジ型感光性樹脂を選択的に露光する工程と、前記
多面付けされた基板を切断する工程と、現像によって前
記ポジ型感光性樹脂をパターン化する工程と、前記パタ
ーン化されたポジ型感光性樹脂をマスクとしてO_2プ
ラズマによって前記配向膜を選択的に灰化する工程と、
有機溶材によって前記パターン化されたポジ型感光性樹
脂を除去し所定の領域に配向膜を形成する工程とを有す
ることを特徴とする液晶パネルの製造方法。
(7) a step of applying an alignment film on a substrate on which multiple substrates constituting a liquid crystal panel are attached, a step of curing the alignment film, and a step of applying a positive photosensitive resin on the alignment film; a step of prepaking the positive photosensitive resin;
a step of selectively exposing the positive photosensitive resin; a step of cutting the multi-faceted substrate; a step of patterning the positive photosensitive resin by development; and a step of patterning the positive photosensitive resin using the patterned positive photosensitive resin. selectively ashing the alignment film with O_2 plasma using a synthetic resin as a mask;
A method for manufacturing a liquid crystal panel, comprising the step of removing the patterned positive photosensitive resin using an organic solvent and forming an alignment film in a predetermined region.
(8)パターン化されたポジ型感光性樹脂の除去を全面
露光と再現像によってなすことを特徴とする特許請求の
範囲第7項記載の液晶パネルの製造方法。
(8) The method for manufacturing a liquid crystal panel according to claim 7, characterized in that the patterned positive photosensitive resin is removed by full-surface exposure and reproduction.
JP61194373A 1986-08-20 1986-08-20 Liquid crystal panel manufacturing method Expired - Lifetime JP2604729B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61194373A JP2604729B2 (en) 1986-08-20 1986-08-20 Liquid crystal panel manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61194373A JP2604729B2 (en) 1986-08-20 1986-08-20 Liquid crystal panel manufacturing method

Publications (2)

Publication Number Publication Date
JPS6349788A true JPS6349788A (en) 1988-03-02
JP2604729B2 JP2604729B2 (en) 1997-04-30

Family

ID=16323513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61194373A Expired - Lifetime JP2604729B2 (en) 1986-08-20 1986-08-20 Liquid crystal panel manufacturing method

Country Status (1)

Country Link
JP (1) JP2604729B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5128788A (en) * 1989-09-29 1992-07-07 Kabushiki Kaisha Toshiba Liquid-crystal orientating film, method of manufacturing the film, and liquid-crystal element having the film
JPH05323325A (en) * 1992-05-20 1993-12-07 Canon Inc Production of liquid crystal device
US7244627B2 (en) 2003-08-25 2007-07-17 Lg.Philips Lcd Co., Ltd. Method for fabricating liquid crystal display device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4936354A (en) * 1972-08-07 1974-04-04
JPS503358A (en) * 1973-05-11 1975-01-14
JPS52129540A (en) * 1976-04-23 1977-10-31 Dainippon Printing Co Ltd Method of removing organic orienting agent

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4936354A (en) * 1972-08-07 1974-04-04
JPS503358A (en) * 1973-05-11 1975-01-14
JPS52129540A (en) * 1976-04-23 1977-10-31 Dainippon Printing Co Ltd Method of removing organic orienting agent

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5128788A (en) * 1989-09-29 1992-07-07 Kabushiki Kaisha Toshiba Liquid-crystal orientating film, method of manufacturing the film, and liquid-crystal element having the film
JPH05323325A (en) * 1992-05-20 1993-12-07 Canon Inc Production of liquid crystal device
US7244627B2 (en) 2003-08-25 2007-07-17 Lg.Philips Lcd Co., Ltd. Method for fabricating liquid crystal display device

Also Published As

Publication number Publication date
JP2604729B2 (en) 1997-04-30

Similar Documents

Publication Publication Date Title
JPH1010582A (en) Liquid crystal display device and its manufacture
KR20020014989A (en) Active matrix substrate, display device, and image sensing device
US4634227A (en) Optical modulating device having projection on substrate for registration
JPH11109373A (en) Liquid crystal display element
US7532299B2 (en) Method of fabricating a liquid crystal display device having column spacers and overcoat layer formed by double exposure
JPH10142628A (en) Active matrix substrate and manufacture thereof
JPS6349788A (en) Manufacture of liquid crystal panel
KR20010007184A (en) Active matrix liquid crystal display device and manufacturing method thereof
JP3683785B2 (en) Liquid crystal display device and manufacturing method thereof
US6900867B2 (en) Method of manufacturing a color filter substrate for in-plane switching mode liquid crystal display device
JP2000162643A (en) Liquid crystal display device and its manufacture
JP3481510B2 (en) Active matrix type liquid crystal display
JP2518207B2 (en) Method for forming color filter
KR20020013307A (en) color filter panel for liquid crystal display and manufacturing method thereof
JP2003167262A (en) Liquid crystal display device
JPH1073827A (en) Liquid crystal display device
US7843532B2 (en) Liquid crystal display panel with color filters and method of fabricating the same
JPH01187531A (en) Liquid crystal display device
JP2004077700A (en) Liquid crystal display device
JPH05216048A (en) Liquid crystal electrooptical device and production thereof
JPH01188830A (en) Liquid crystal display device
JPH05307181A (en) Production of liquid crystal display device
KR100806805B1 (en) Apparatus for forming an alignment layer and method of manufacturing LCD using the same
KR100437596B1 (en) Method for manufacturing color filter substrate
KR960009378Y1 (en) Color filter base plate for liquid crystal display

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term