JPS6349686B2 - - Google Patents

Info

Publication number
JPS6349686B2
JPS6349686B2 JP13064680A JP13064680A JPS6349686B2 JP S6349686 B2 JPS6349686 B2 JP S6349686B2 JP 13064680 A JP13064680 A JP 13064680A JP 13064680 A JP13064680 A JP 13064680A JP S6349686 B2 JPS6349686 B2 JP S6349686B2
Authority
JP
Japan
Prior art keywords
component
polymerization
magnesium
electron donor
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13064680A
Other languages
Japanese (ja)
Other versions
JPS5755903A (en
Inventor
Takashi Ueda
Norio Kashiwa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Petrochemical Industries Ltd
Original Assignee
Mitsui Petrochemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Petrochemical Industries Ltd filed Critical Mitsui Petrochemical Industries Ltd
Priority to JP13064680A priority Critical patent/JPS5755903A/en
Publication of JPS5755903A publication Critical patent/JPS5755903A/en
Publication of JPS6349686B2 publication Critical patent/JPS6349686B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、高活性触媒を用いたオレフイン類の
連続重合方法に関する。 電子供与体の付加したハロゲン化マグネシウ
ム、ケイ素やスズのハロゲン化合物及び遷移金属
化合物から導かれる触媒成分と周期律表第1ない
し第3族金属の有機金属化合物触媒成分とからな
る触媒を用いてオレフイン類を重合させる方法
は、本出願人によつてすでに提案されている(例
えば特公昭53−1796号や特公昭54−25517号な
ど)。これら提案では重合に先立つてマグネシウ
ム化合物に担持された遷移金属化合物が調製さ
れ、これと周期律表第1ないし第3族金属の有機
金属化合物と併用することによつてオレフインの
高活性重合が可能であつた。 本発明者らは、前記触媒系についてさらに検討
を加えたところ、連続重合において予備的な担持
反応を行わずに高活性重合を行い得る方法を見出
すに至つた。この新しい重合方法によれば、分子
量分布の狭い重合体(もしくは共重合体)を製造
することが可能であり、また組成分布が狭く、透
明性の優れた共重合体を製造することも可能であ
る。 したがつて本発明の目的は、従来マグネシウム
化合物を利用した高活性触媒に常用されている担
持反応を省略したオレフイン類の連続重合もしく
は共重合方法を提供することにある。本発明の他
の目的は、分子量分布の狭いポリオレフインを製
造することが可能なオレフインの高活性重合方法
を提供することにある。本発明のさらに他の目的
は、オレフイン類の共重合に適用した場合に、組
成分布が狭く、透明性良好な共重合体の製造が可
能なポリオレフインの製造方法を提供することに
ある。 本発明の上記目的およびさらに多くの他の目的
ならびに利点は以下の記載により一層明瞭となろ
う。 本発明によれば、 (A) 活性水素含有電子供与体の付加したハロゲン
化マグネシウムをケイ素、いおう、リンのハロ
ゲン化物で処理することにより得られる固体状
成分、 (B) 該(A)成分中のマグネシウム1原子に対し、1/
2以下のチタン原子に相当する液状のTi化合物
成分、 及び (C) 有機アルミニウム化合物成分 を接触せしめることによつて得られる重合用触媒
の存在下にオレフイン類を連続的に重合もしくは
共重合することからなり、(B)成分は他の成分(A)及
び(C)とは別個に重合系に供給するか、又は(A)成分
の少なくとも一部、(B)成分の少なくとも一部及び
(C)成分の少なくとも一部は重合系に供給する前に
予備的に混合しておき、該予備的な混合は、(A)と
(C)の混合物に(B)を混合するか又は(A)、(B)及び(C)成
分を同時的に混合することを特徴とするオレフイ
ン類の連続重合もしくは共重合方法が提供され
る。 活性水素含有電子供与体の付加したハロゲン化
マグネシウムのハロゲン化マグネシウム成分は、
塩化マグネシウム、臭化マグネシウム、沃化マグ
ネシウム、弗化マグネシウムなどの成分の他に、
アルコキシル基やアリロキシル基などの官能基を
有するハロゲン化マグネシウム成分であつてもよ
い。好ましいのは前記したマグネシウムジハライ
ド、とくに好ましくは塩化マグネシウム成分であ
る。 活性水素含有電子供与体の付加したハロゲン化
マグネシウムは、活性水素含有電子供与体とハロ
ゲン化マグネシウムの接触によつて製造すること
ができる。ここにハロゲン化マグネシウムは市販
品をそのまま使用してもよいし、他のマグネシウ
ム化合物やマグネシウム金属を、後記するハロゲ
ン化剤でハロゲン化して製造して使用してもよ
い。 活性水素含有電子供与体としては、アルコー
ル、フエノール類、カルボン酸、カルボン酸アミ
ドのような含酸素電子供与体、アンモニア、第一
アミン、第二アミンのような含窒素電子供与体な
どを用いることができる。これらの代表例として
は、メタノール、エタノール、n―プロパノー
ル、iso―プロパノール、n―ブタノール、sec―
ブタノール、tert―ブタノール、n―ペンタノー
ル、n―ヘキサノール、シクロヘキサノール、n
―オクタノール、2―エチル―ヘキサノール、デ
カノール、ドデカノール、テトラデカノール、ヘ
キサデカノール、オクタデカノール、オレイルア
ルコール、ベンジルアルコール、クミルアルコー
ル、イソプロピルベンジルアルコール、n―ブチ
ルセロソルブ、1―ブトキシ―2―プロパノール
などの炭素数1ないし20のアルコール、フエノー
ル、クレゾール、キシレノール、エチルフエノー
ル、イソプロピルフエノール、オクチルフエノー
ル、ノニルフエノール、クミルフエノール、ナフ
トール、メトキシフエノールなどの炭素数6ない
し15のフエノール類、酢酸、ピロピオン酸、酪
酸、ラウリル酸、オレイン酸、ステアリン酸など
の炭素数2ないし20のカルボン酸、酢酸アミド、
プロピオン酸アミド、安息香酸アミドのような炭
素数2ないし15のカルボン酸アミド、メチルアミ
ン、エチルアミン、iso―プロピルアミン、n―
ブチルアミン、n―ヘキシルアミン、n―オクチ
ルアミン、n―デシルアミン、n―オクタデシル
アミン、シクロヘキシルアミン、アニリンのよう
な炭素数1ないし20の第一アミン、ジメチルアミ
ン、ジエチルアミン、メチルエチルアミン、ジn
―プロピルアミン、メチルn―ヘキシルアミン、
メチルn―デシルアミン、ジベンジルアミンのよ
うな炭素数2ないし40の第二アミンなどを代表例
として例示することができる。これらは2種以上
併用してもよい。 ハロゲン化マグネシウムに電子供与体を付加さ
せるには、一般には不活性溶媒の存在下又は不存
在下、ハロゲン化マグネシウムと電子供与体とを
0ないし200℃程度の温度で10分ないし48時間程
度接触させればよい。電子供与体の使用量は、ハ
ロゲン化マグネシウム1モルに対し、通常0.1な
いし30モル、好ましくは0.5ないし20モル、とく
に好ましくは0.5ないし10モルである。 不活性溶媒の存在下で反応を行う場合には、ハ
ロゲン化マグネシウムを不活性溶媒に懸濁させな
がら、電子供与体を作用させる。電子供与体の種
類および量、反応温度や反応時間、不活性溶媒の
種類などによつても異なるが、ハロゲン化マグネ
シウムと電子供与体の付加物は、不活性溶媒に懸
濁した状態で得られる場合と、不活性溶媒に溶解
した状態で得られる場合があり、何れも本発明に
おいて使用できる。とくに本発明において、不活
性溶媒に溶解した状態で後記するハロゲン化剤を
反応させたものを用いると、分子量分布、共重合
体にあつてはさらに組成分布の一層狭い重合体を
得ることができるので好ましい。不活性溶媒に可
溶なハロゲン化マグネシウムと電子供与体の付加
物を製造する方法について述べる。 例えば電子供与体としてアルコールを用いる場
合について述べると、好ましくはハロゲン化マグ
ネシウム1モル当りアルコールを2.8以上、好適
には約3ないし約20モル、とくに好適には約3な
いし約10モルの範囲で用いられる。炭化水素とし
て脂肪族炭化水素および又は脂環族炭化水素を使
用する場合は、前記割合でアルコールを使用し、
そのうちとくに炭素数6以上のアルコールを、ハ
ロゲン化マグネシウム1モルに対し約1モル以
上、好適には約1.5モル以上用いればアルコール
の総使用量も僅かでハロゲン化マグネシウムの可
溶化が可能であり、かつ活性の大きい触媒成分と
なるので好ましい。この場合、例えば炭素数5以
下のアルコールのみを用いると、ハロゲン化マグ
ネシウム1モルに対し、約15モル以上のアルコー
ルが必要であり、触媒活性も上記系に及ばない。
一方、炭化水素として芳香族炭化水素を用いれ
ば、アルコールの種類にかかわらず、前記のよう
なアルコール使用量でハロゲン化マグネシウムの
可溶化は可能である。 ハロゲン化マグネシウムとアルコールとの接触
は、炭化水素媒体中で行うのが好ましく、通常約
65℃以上、好適には約80ないし300℃、一層好適
には約100ないし約200℃の温度で15分ないし5時
間程度、より好適には30分ないし2時間程度接触
させることにより行なわれる。 該付加物を不活性溶媒の不存在下で合成する方
法としては、ハロゲン化マグネシウムを電子供与
体中に懸濁又は溶解させ、不活性溶媒存在下の場
合と同様な条件で反応を行う方法を挙げることが
できる。また他の方法としては、ハロゲン化マグ
ネシウムと電子供与体を機械的粉砕条件下に接触
させる方法がある。 活性水素含有電子供与体の付加したハロゲン化
マグネシウムを後記するハロゲン化剤で処理する
に際しては、活性水素不含有の電子供与体が付加
したハロゲン化マグネシウムが共存していてもよ
く、また該処理に際し、活性水素不含有の電子供
与体が共存していてもよい。このような活性水素
不含有の電子供与体の例としては、ケトン、アル
デヒド、カルボン酸エステル、エーテル、カルボ
ン酸ハライド、カルボン酸N,N―ジアルキルア
ミド、リン酸エステルなどの含酸素電子供与体、
第三アミン、ニトリルのような含窒素電子供与体
などを例示することができる。 活性水素含有電子供与体の付加したハロゲン化
マグネシウムの処理に用いられるハロゲン化剤
は、周期律表第1ないし第3族金属の有機金属化
合物及び遷移金属化合物以外のもので、活性水素
含有電子供与体と反応しうるハロゲン化剤であ
る。具体的には、アルミニウム、ガリウムなどの
周期律表第3a族元素の非有機性ハロゲン化合物、
ケイ素、ゲルマニウム、スズ、鉛などの周期律表
第4a族元素のハロゲン化合物、窒素、リン、ヒ
素、アンチモン、ビスマスなどの周期律表表5a
族元素のハロゲン化合物、硫黄、セレンなどの周
期律表第6a族元素のハロゲン化合物、及びハロ
ゲンなどを挙げることができる。より具体的に
は、AlCl3、AlBr3、Al(OC2H5)Cl2、Al
(OC3H7)Cl2、Al(OC4H9)Cl2、Al(OCH32Cl、
GaCl3のような周期律表第3a族元素のハロゲン化
合物、SiCl4、CH3SiCl3、(CH32SiCl2、(CH3O)
SiCl3、(C2H5O)2SiCl2、(C2H5O)3SiCl、ハロポ
リシロキサン、GeCl4、(C2H5O)GeCl3、SnCl4
PbCl4などの周期律表第4a族元素のハロゲン化合
物、NOCl、PCl5、PCl3、POCl3、SbCl5、BiCl3
などの周期律表第5a族元素のハロゲン化合物、
SOCl2、SO2Cl2、SeOCl2などの周期律表第6a族
元素のハロゲン化合物、塩素、臭素、沃素などの
ハロゲンなどを例示することができる。 活性水素含有電子供与体の付加したハロゲン化
マグネシウムを前記ハロゲン化剤で処理するに
は、不活性溶媒に溶解もしくは懸濁された該ハロ
ゲン化マグネシウムにハロゲン化剤を添加、接触
させる方法を採用するのが好ましい。ハロゲン化
剤の使用量は、処理系に存在する活性水素含有電
子供与体(ハロゲン化マグネシウムに付加したも
の及びフリーで存在するものがあればその分も含
む)1モルに対し、ハロゲン原子換算で、通常1
原子以上、好ましくは1.5ないし15原子となるよ
うな割合とするのが好ましい。処理温度は、ハロ
ゲン化剤の種類によつて異なるが好ましくは0な
いし200℃、とくに好ましくは20ないし120℃であ
る。 該処理によつて、ハロゲン化マグネシウムに付
加した活性水素含有電子供与体の一部又は全部が
脱離され、非常に非晶化されたハロゲン化マグネ
シウム又はその類似構造を有するハロゲン化マグ
ネシウムの錯化合物として固体状で得られる。か
くして得られる固体状成分が触媒成分(A)として用
いられるのであるが、とくに好ましいものは、未
反応のアルコールがマグネシウムに対し、0.2な
いし1.0モル付加した塩化マグネシウム類似の錯
化合物で、(110)面のX線回折における半価幅が
1.0〜2.3の範囲にあるものである。 通常は、上記処理固体状成分と単離し、不活性
溶媒で洗浄したものが使用されるが、所望に応じ
該固体状成分の懸濁液として得られた処理混合物
をそのままオレフインの重合に供することもでき
る。 液状の遷移金属化合物成分(B)としては、チタン
化合物又はバナジウム化合物成分が好ましく、と
くにチタン化合物が好適である。例えばTi(OR)
oX4-o(Rは炭化水素基、Xはハロゲン、0≦n≦
4)で表わされるチタン化合物、例えばTiCl4
TiBr4、TiI4、Ti(OCH3)Cl3、Ti(OC2H5)Cl3
Ti(OC6H5)Cl3、Ti(OC2H52Cl2、Ti
(OC3H72Cl2、Ti(OC2H53Cl、Ti(OC6H53Cl、
Ti(OC2H54、Ti(OC3H74、Ti(OC4H94、Ti
(OC6H134、Ti(OC6H114、Ti(OC8H174、Ti
〔OCH2(C2H5)CHC4H94、Ti(OC9H194、Ti
〔OC6H3(CH324、Ti(OCH32(OC4H92、Ti
(OC3H73(OC4H9)、Ti(OC2H52(OC4H92、Ti
(OC2H4Cl)4、Ti(OC2H4OCH34などを例示する
ことができる。 チタン化合物の他の例は、低原子価のものであ
り、その結晶系を問わない。具体的には、四塩化
チタンをチタン金属で還元したTiCl3・T型、ア
ルミニウム金属で還元したTiCl3・A型、水素で
還元したTiCl3・H型、(C2H53Al、
(C2H52AlCl、(C2H51.5AlCl1.5のような有機ア
ルミニウム化合物で還元したTiCl3のような三ハ
ロゲン化チタン、Ti(OCH33、Ti(OC2H53、Ti
(OnC4H93、Ti(OCH3)Cl2・2CH3OH、Ti
(OCH32Cl・CH3OHのようなアルコキシチタン
()化合物、TiCl3を水素還元して得られる
TiCl2などを例示することができる。 上記三塩化チタンや二塩化チタンのように通常
固体の遷移金属化合物は液状となるような処理を
施してから用いられる。 該処理は、例えばアルコール、エーテル、エス
テル、アミン、ケトンのような電子供与体を、好
ましくは遷移金属化合物1モルに対して約1ない
し約24モル、一層好ましくは約3ないし約15モル
接触させればよい。遷移金属化合物は一部分しか
溶解されない場合もあるが、その場合には可溶化
された部分のみを分離して使用するのが好まし
い。 またバナジウム化合物としては、 VO(OR)nX3-n(R、Xは前と同じ定義、0≦
m≦3)あるいはVX4で表わされる化合物が一
般的であり、例えばVOCl3、VO(OC2H5)Cl2
VO(OC2H53、VO(OC2H51.5Cl1.5、VO
(OC4H93、VO〔OCH2(CH2)CHC4H93、VCl4
などを例示できる。 有機アルミニウム化合物(C)としては、少なくと
も分子内に1個のAl―炭素結合を有する化合物
が利用でき、例えば、(i)一般式R1 nAl(OR2o
HpXq(ここでR1およびR2は炭素原子通常1ない
し15個、好ましくは1ないし4個を含む炭化水素
基で互いに同一でも異なつていてもよい。Xはハ
ロゲン、mは0<m≦3、nは0≦n<3、pは
0≦p<3、qは0≦q<3の数であつて、しか
もm+n+p+q=3である)で表わされる有機
アルミニウム化合物、(ii)一般式M1AlR1 4(ここで
M1はLi、Na、Kであり、R1は前記と同じ)で表
わされる第1族金属とアルミニウムとの錯アルキ
ル化物などを挙げることができる。 前記の(i)に属する有機アルミニウム化合物とし
ては、次のものを例示できる。一般式R1mAL
(OR23-n(ここでR1およびR2は前記と同じ。m
は好ましくは1.5≦m<3の数である)。一般式
R1mAlX3-1(ここでR1は前記と同じ。Xはハロゲ
ン、mは好ましくは0<m<3である)、一般式
R1mAlH3-n(ここでR1は前記と同じ。mは好ま
しくは2≦m<3である)、一般式R1mAl(OR2
nXq(ここでR1およびR2は前と同じ。Xはハロゲ
ン、0<m≦3、0≦n<3、0≦q<3でm+
n+q=3である)で表わされるものなどを例示
できる。 (i)に属するアルミニウム化合物において、より
具体的にはトリエチルアルミニウム、トリブチル
アルミニウムなどのトリアルキルアルミニウム、
トリイソプレニルアルミニウムのようなトリアル
ケニルアルミニウム、ジエチルアルミニウムエト
キシド、ジブチルアルミニウムブトキシなどのジ
アルキルアルミニウムアルコキシド、エチルアル
ミニウムセスキエトキシド、ブチルアルミニウム
セスキブトキシドなどのアルキルアルミニウムセ
スキアルコキシドの他に、R1 2.5Al(OR20.5などで
表わされる平均組成を有する部分的にアルコキシ
化されたアルキルアルミニウム、ジエチルアルミ
ニウムクロリド、ジブチルアルミニウムクロリ
ド、ジエチルアルミニウムブロミドのようなジア
ルキルアルミニウムハロゲニド、エチルアルミニ
ウムセスキクロリド、ブチルアルミニウムセスキ
クロリド、エチルアルミニウムセスキブロミドの
ようなアルキルアルミニウムセスキハロゲニド、
エチルアルミニウムジクロリド、プロピルアルミ
ニウムジクロリド、ブチルアルミニウムジブロミ
ドなどのようなアルキルアルミニウムジハロゲニ
ドなどの部分的にハロゲン化されたアルキルアル
ミニウム、ジエチルアルミニウムヒドリド、ジブ
チルアルミニウムヒドリドなどのジアルキルアル
ミニウムヒドリド、エチルアルミニウムジヒドリ
ド、プロピルアルミニウムジヒドリドなどのアル
キルアルミニウムジヒドリドなどの部分的に水素
化されたアルキルアルミニウム、エチルアルミニ
ウムエトキシクロリド、ブチルアルミニウムブト
キシクロリド、エチルアルミニウムエトキシブロ
ミドなどの部分的にアルコキシ化およびハロゲン
化されたアルキルアルミニウムである。また(i)に
類似する化合物として、酸素原子や窒素原子を介
して2以上のアルミニウムが結合した有機アルミ
ニウム化合物であつてもよい。このような化合物
として例えば(C2H52AlOAl(C2H52などを例示できる。また、これら例示化合物を混
合して用いてもよい。前記(ii)に属する化合物とし
ては、LiAl(C2H54、LiAl(C7H154などを例示
できる。これらの中ではとくにトリアルキルアル
ミニウム、アルキルアルミニウムハライド、ある
いはこれらの混合物を用いるのが望ましい。 本発明においては、上記(A)(B)(C)成分を用いてオ
レフイン類の連続重合もしくは共重合が行われ
る。 重合に用いるオレフインとしては、エチレン、
プロピレン、1―ブテン、4―メチル―1―ペン
テン、1―オクテンなどであり、これらは単独重
合のみならずランダム共重合、ブロツク共重合を
行うことができる。共重合に際しては、共役ジエ
ンや非共役ジエンのような多不飽和化合物を共重
合成分に選ぶことができる。多不飽和化合物、例
えばブタジエン、イソプレン、1,4―ヘキサジ
エン、ジシクロペンタジエン、5―エチリデン―
2―ノルボルネン、1,7―オクタジエンなどを
共重合する場合は0.1ないし5モル%、好ましく
は0.2ないし3モル%程度の割合で共重合させて
おいてもよい。この場合、ヨウ素価として5ない
し30程度の共重合体となり、硫黄加硫可能であ
る。その加硫物性も優れており、強度の高い加硫
ゴムとして使用することが可能である。得られる
ポリオレフインは、樹脂状であつてもゴム状であ
つてもよい。 本発明によれば、分子量分布の狭い重合体を得
ることが可能である。しかしながら本発明の目的
は、これのみにとらわれるのではなく、例えばオ
レフインの加工性改良等を目的として、分子量調
節剤の使用あるいは条件の異なる2以上の重合条
件の組合せなどにより、分子量分布の広い重合体
を得ることもできる。 本発明によれば、2以上のオレフインの共重合
に適用した場合に組成分布が狭く透明性の良好な
共重合体を得ることが可能である。例えばエチレ
ンと他のα―オレフインとの共重合、プロピレン
と他のα―オレフインとの共重合などに利用して
透明性良好なオレフインを製造しうる。 本発明の重合は、炭化水素液媒中で行うのが好
ましい。炭化水素液媒としては、ペンタン、ヘキ
サン、ヘプタン、オクタン、デカン、ドデカン、
灯油のような脂肪族炭化水素およびそのハロゲン
誘導体;シクロヘキサン、メチルシクロペンタ
ン、メチルシクロヘキサンのような脂環族炭化水
素およびそのハロゲン誘導体;ベンゼン、トルエ
ン、キシレンのような芳香族炭化水素およびクロ
ルベンゼンの如きそのハロゲン誘導体;を例示す
ることができる。また重合に用いるオレフイン自
体を液媒として使用することもできる。 重合系における各触媒成分の使用比率は、遷移
金属化合物成分(B)/ハロゲン化マグネシウム成分
(A)(モル比)が遷移金属/マグネシウム換算で約
1/2以下、好ましくは約1/3ないし約1/200、とく
に好ましくは約1/5ないし約1/50、有機アルミニ
ウム化合物(C)は、(A)成分中などに含まれることの
ある電子供与体などによつて失活されない量が必
要であり、アルミニウム/遷移金属原子比が約5
ないし約2000、とくに約20ないし約500程度にす
るのが好ましい。また重合系の液相1に対し、
遷移金属介合物を遷移金属に換算して好ましくは
約0.0005ないし約1ミリモル、一層好ましくは約
0.001ないし約0.5ミリモルとされる。なお(B)成分
と(A)成分の比率を、前記範囲より多くすると、遷
移金属当りの触媒活性が低下するので好ましくな
い。 なお前記触媒成分を重合系に供給するに当つて
は、(A)(B)(C)を別々に供給する方法、(B)のみを別個
に供給し、(A)の少なくとも一部と(C)の少なくとも
一部を予備混合して供給する方法、(A)(B)(C)各成分
のそれぞれの少なくとも一部を予備混合し、該予
備混合は、(A)と(C)の混合物に(B)を供給するか、又
は(A)(B)(C)を同時に混合し重合反応帯域に供給する
方法などである。(A)と(B)を予備的に混合する態様
に関してはすでに本出願人によつて提案されてい
る。また(B)成分と(C)成分を予備的に接触させ、予
備的に固体状の遷移金属化合物を生成させておく
と、重合活性が低下するので好ましくない。 オレフインの重合もしくは共重合温度は、一般
には約20ないし約300℃、好ましくは約65ないし
約200℃である。とくに共重合体の製法において
透明性良好なポリオレフインを製造するために
は、不活性炭化水素媒体を用いた液相重合を行
い、ポリオレフインが溶解する温度を選択するの
が好ましい。例えばエチレンと少割合の他のα―
オレフインとの共重合によつて樹脂状共重合体を
製造する場合には、該共重合体の融点ないし約
200℃の温度とすることが好ましい。また重合圧
力は、大気圧ないし約100Kg/cm2―G、とくには
約2ないし約50Kg/cm2―Gとするのが好ましい。 本発明を実施するに当り、分子量調節、立体規
則性制御などの目的で、水素、周期律表第2族金
属の有機金属化合物、およびまたは各種電子供与
体、例えばアルコール、エーテル、エステル、ア
ミン、ケトン、カルボン酸、アミド、リン化合
物、硫黄化合物、酸無水物などを共存させてもよ
い。 次に実施例により、さらに詳細に説明する。以
下の実施例の重合には内容積200の連続重合反
応器を用いた。重合器へ各触媒成分を供給するラ
インは重合器に達するまでに、可変の部所で重合
溶媒を供給するメインのラインに合流させるよう
にした。また各ラインは保温装置を設け、各実験
で、各触媒成分の装入順序、温度、接触時間をそ
れぞれ変更できるようにして行つた。また、重合
体の分子量は供給する水素量を連続的に変更する
ことにより調節した。 実施例 1 市販の無水塩化マグネシウム1.0molを窒素中
で2の精灯油に懸濁させ、これに2―エチルヘ
キサノール3.0molを加え、撹拌しながら徐々に
昇温し、120℃で2時間反応させた。固体は完全
に消滅し、無色透明な液体が得られた。この溶液
を室温に冷却しても固体の析出はなく、無色透明
な溶液のままであつた。 つぎに、この溶液に3.0molの四塩化ケイ素を
加え、50℃で3時間反応させた。反応終了後、得
られた白色粉末を2の精灯油で洗浄した。この
固体の一部を乾燥して各種分析を行つたところ少
量の2―エチルヘキサノールを含む極度に低結晶
性の塩化マグネシウム類似の錯化合物であること
が確認された。 各触媒成分の供給ラインがほとんど同一個所で
メインの溶媒装入用ラインに合流するようにし、
その一つよりトリエチルアルミニウムとジエチル
アルミニウムモノクロリドの等モル混合物を
36mmol/hr、他の一つより、四塩化チタンの精
灯油溶液をチタン原子に換算して0.45mmol/hr、
他の一つより、上記で得たマグネシウム成分の精
灯油懸濁液をマグネシウム原子に換算して
4.5mmol/hr連続的に供給した。また重合器へは
同時にエチレン12.0Kg/hr、4―メチル―1―ペ
ンテン12.0/hr、水素60/hrの割合で連続的
に供給して、重合温度140℃、全圧28Kg/cm2、平
均滞留時間約1時間で連続重合を行つた。 このとき、溶媒ヘキサンに対する共重合体の濃
度は72.0g/であり、重合活性は16000g―共
重合体/mmol―Tiである。得られた共重合体の
密度は0.927g/cm3、MI=1.98、炭素原子1000個
あたりのイソブチル基は12.8個であつた。 この共重合体を市販の高圧法ポリエチレン用チ
ユーブラーフイルム成型機(モダンマシナリー
製)で厚み65μのフイルムに成型したところ、ヘ
イズは10.1%であつた。成型条件は樹脂温度170
℃、スクリユー回転数60回転、ダイ径100mmφ、
ダイスリツト幅1.0mmである。 実施例2,3、比較例1 実施例1の重合において、各触媒成分の供給方
法を変えた以外は実施例1と同様にして重合を行
つた。結果を表1に示した。
The present invention relates to a method for continuous polymerization of olefins using a highly active catalyst. Olefins are produced using a catalyst consisting of a catalyst component derived from a magnesium halide to which an electron donor has been added, a halogen compound of silicon or tin, and a transition metal compound, and an organometallic compound catalyst component of a metal from Group 1 to Group 3 of the Periodic Table. A method for polymerizing these compounds has already been proposed by the present applicant (for example, Japanese Patent Publication No. 1796/1983 and Japanese Patent Publication No. 25517/1989). In these proposals, a transition metal compound supported on a magnesium compound is prepared prior to polymerization, and by using this in combination with an organometallic compound of a metal from Groups 1 to 3 of the periodic table, highly active polymerization of olefins is possible. It was hot. The present inventors further investigated the catalyst system and found a method that allows highly active polymerization to be carried out without performing a preliminary supporting reaction in continuous polymerization. According to this new polymerization method, it is possible to produce a polymer (or copolymer) with a narrow molecular weight distribution, and it is also possible to produce a copolymer with a narrow composition distribution and excellent transparency. be. Accordingly, an object of the present invention is to provide a method for continuous polymerization or copolymerization of olefins, which omits the supporting reaction conventionally used in highly active catalysts using magnesium compounds. Another object of the present invention is to provide a method for highly active polymerization of olefins, which makes it possible to produce polyolefins with a narrow molecular weight distribution. Still another object of the present invention is to provide a method for producing a polyolefin, which, when applied to the copolymerization of olefins, can produce a copolymer with a narrow composition distribution and good transparency. The above objects and many other objects and advantages of the present invention will become more apparent from the following description. According to the present invention, (A) a solid component obtained by treating magnesium halide to which an active hydrogen-containing electron donor has been added with a halide of silicon, sulfur, or phosphorus; (B) in the component (A); For one atom of magnesium, 1/
Continuously polymerizing or copolymerizing olefins in the presence of a polymerization catalyst obtained by contacting a liquid Ti compound component corresponding to 2 or less titanium atoms and (C) an organoaluminum compound component. Component (B) is supplied to the polymerization system separately from other components (A) and (C), or at least a portion of component (A), at least a portion of component (B), and
At least a portion of component (C) is preliminarily mixed before being supplied to the polymerization system, and the preliminary mixing is performed with (A).
Provided is a method for continuous polymerization or copolymerization of olefins, which comprises mixing (B) with a mixture of (C) or simultaneously mixing components (A), (B), and (C). . The magnesium halide component of magnesium halide to which an active hydrogen-containing electron donor is added is
In addition to ingredients such as magnesium chloride, magnesium bromide, magnesium iodide, and magnesium fluoride,
It may be a halogenated magnesium component having a functional group such as an alkoxyl group or an allyloxyl group. Preferred are the above-mentioned magnesium dihalides, particularly preferred is the magnesium chloride component. Magnesium halide to which an active hydrogen-containing electron donor has been added can be produced by contacting the active hydrogen-containing electron donor with magnesium halide. As the magnesium halide, a commercially available product may be used as it is, or another magnesium compound or magnesium metal may be halogenated with a halogenating agent to be described later. As the active hydrogen-containing electron donor, oxygen-containing electron donors such as alcohols, phenols, carboxylic acids, and carboxylic acid amides, and nitrogen-containing electron donors such as ammonia, primary amines, and secondary amines may be used. Can be done. Typical examples of these include methanol, ethanol, n-propanol, iso-propanol, n-butanol, sec-
Butanol, tert-butanol, n-pentanol, n-hexanol, cyclohexanol, n
-Octanol, 2-ethyl-hexanol, decanol, dodecanol, tetradecanol, hexadecanol, octadecanol, oleyl alcohol, benzyl alcohol, cumyl alcohol, isopropylbenzyl alcohol, n-butyl cellosolve, 1-butoxy-2-propanol Alcohols with 1 to 20 carbon atoms such as phenol, cresol, xylenol, ethylphenol, isopropylphenol, octylphenol, nonylphenol, cumylphenol, naphthol, phenols with 6 to 15 carbon atoms such as methoxyphenol, acetic acid, pyrropion acids, carboxylic acids with 2 to 20 carbon atoms such as butyric acid, lauric acid, oleic acid, and stearic acid, acetate amide,
Carboxylic acid amides having 2 to 15 carbon atoms such as propionic acid amide and benzoic acid amide, methylamine, ethylamine, iso-propylamine, n-
Primary amines having 1 to 20 carbon atoms such as butylamine, n-hexylamine, n-octylamine, n-decylamine, n-octadecylamine, cyclohexylamine, aniline, dimethylamine, diethylamine, methylethylamine, di-n
-propylamine, methyl n-hexylamine,
Representative examples include secondary amines having 2 to 40 carbon atoms such as methyl n-decylamine and dibenzylamine. Two or more of these may be used in combination. To add an electron donor to magnesium halide, generally the magnesium halide and electron donor are brought into contact at a temperature of about 0 to 200°C for about 10 minutes to 48 hours in the presence or absence of an inert solvent. Just let it happen. The amount of the electron donor used is generally 0.1 to 30 mol, preferably 0.5 to 20 mol, particularly preferably 0.5 to 10 mol, per 1 mol of magnesium halide. When the reaction is carried out in the presence of an inert solvent, the electron donor is allowed to act while the magnesium halide is suspended in the inert solvent. Although it varies depending on the type and amount of electron donor, reaction temperature and time, type of inert solvent, etc., the adduct of magnesium halide and electron donor can be obtained in a suspended state in an inert solvent. In some cases, it can be obtained in a state dissolved in an inert solvent, and both can be used in the present invention. In particular, in the present invention, by using a compound dissolved in an inert solvent and reacted with a halogenating agent as described later, it is possible to obtain a polymer with a narrower molecular weight distribution and even narrower composition distribution in the case of a copolymer. Therefore, it is preferable. A method for producing an adduct of magnesium halide and an electron donor that is soluble in an inert solvent is described. For example, when alcohol is used as an electron donor, alcohol is preferably used in an amount of 2.8 or more, preferably about 3 to about 20 moles, particularly preferably about 3 to about 10 moles, per 1 mole of magnesium halide. It will be done. When using an aliphatic hydrocarbon and/or alicyclic hydrocarbon as the hydrocarbon, use alcohol in the above ratio,
Among them, if an alcohol having 6 or more carbon atoms is used, in particular, about 1 mol or more, preferably about 1.5 mol or more, per 1 mol of magnesium halide, it is possible to solubilize magnesium halide with a small total amount of alcohol used. Moreover, it is preferable because it becomes a highly active catalyst component. In this case, for example, if only an alcohol having 5 or less carbon atoms is used, approximately 15 mol or more of the alcohol is required per 1 mol of magnesium halide, and the catalytic activity is also inferior to that of the above system.
On the other hand, if an aromatic hydrocarbon is used as the hydrocarbon, magnesium halide can be solubilized with the amount of alcohol used as described above, regardless of the type of alcohol. Contacting the magnesium halide with the alcohol is preferably carried out in a hydrocarbon medium and is usually about
This is carried out by contacting at a temperature of 65° C. or higher, preferably about 80 to 300° C., more preferably about 100 to about 200° C., for about 15 minutes to about 5 hours, more preferably about 30 minutes to about 2 hours. As a method for synthesizing the adduct in the absence of an inert solvent, there is a method in which magnesium halide is suspended or dissolved in an electron donor and the reaction is carried out under the same conditions as in the presence of an inert solvent. can be mentioned. Another method is to bring the magnesium halide and the electron donor into contact under mechanical grinding conditions. When treating magnesium halide to which an active hydrogen-containing electron donor has been added with a halogenating agent described below, magnesium halide to which an electron donor not containing active hydrogen has been added may coexist; , an active hydrogen-free electron donor may also be present. Examples of such active hydrogen-free electron donors include oxygen-containing electron donors such as ketones, aldehydes, carboxylic acid esters, ethers, carboxylic acid halides, carboxylic acid N,N-dialkylamides, and phosphoric acid esters;
Examples include tertiary amines and nitrogen-containing electron donors such as nitriles. The halogenating agent used in the treatment of magnesium halide to which an active hydrogen-containing electron donor has been added is other than organometallic compounds and transition metal compounds of metals from Groups 1 to 3 of the Periodic Table, and is an active hydrogen-containing electron donor. It is a halogenating agent that can react with the body. Specifically, non-organic halogen compounds of Group 3a elements of the periodic table such as aluminum and gallium;
Periodic table 5a of halogen compounds of group 4a elements of the periodic table such as silicon, germanium, tin, lead, nitrogen, phosphorus, arsenic, antimony, bismuth, etc.
Examples include halogen compounds of group elements, halogen compounds of group 6a elements of the periodic table, such as sulfur and selenium, and halogens. More specifically, AlCl3 , AlBr3 , Al( OC2H5 ) Cl2 , Al
( OC3H7 ) Cl2 , Al ( OC4H9 ) Cl2 , Al( OCH3 ) 2Cl ,
Halogen compounds of Group 3a elements of the periodic table such as GaCl3, SiCl4 , CH3SiCl3 , ( CH3 ) 2SiCl2 , ( CH3O )
SiCl3 , ( C2H5O ) 2SiCl2 , ( C2H5O ) 3SiCl , halopolysiloxane , GeCl4 , (C2H5O)GeCl3 , SnCl4 ,
Halogen compounds of Group 4a elements of the periodic table such as PbCl4 , NOCl, PCl5 , PCl3 , POCl3 , SbCl5 , BiCl3
Halogen compounds of Group 5a elements of the periodic table, such as
Examples include halogen compounds of Group 6a elements of the periodic table such as SOCl 2 , SO 2 Cl 2 , and SeOCl 2 , and halogens such as chlorine, bromine, and iodine. In order to treat the magnesium halide to which an active hydrogen-containing electron donor has been added with the halogenating agent, a method is adopted in which the halogenating agent is added to and brought into contact with the magnesium halide dissolved or suspended in an inert solvent. is preferable. The amount of the halogenating agent to be used is calculated in terms of halogen atoms per mole of active hydrogen-containing electron donor (including those added to magnesium halide and those existing free, if any) present in the treatment system. , usually 1
It is preferable to set the ratio to be at least atomic, preferably 1.5 to 15 atoms. The treatment temperature varies depending on the type of halogenating agent, but is preferably 0 to 200°C, particularly preferably 20 to 120°C. Through this treatment, part or all of the active hydrogen-containing electron donor added to the magnesium halide is eliminated, resulting in highly amorphous magnesium halide or a complex compound of magnesium halide having a similar structure. It is obtained in solid form as . The solid component thus obtained is used as the catalyst component (A), and a particularly preferred one is a complex compound similar to magnesium chloride in which 0.2 to 1.0 mole of unreacted alcohol is added to magnesium, (110) The half width in surface X-ray diffraction is
It is in the range of 1.0 to 2.3. Normally, the treated solid component is isolated and washed with an inert solvent, but if desired, the treated mixture obtained as a suspension of the solid component can be directly subjected to the polymerization of olefin. You can also do it. As the liquid transition metal compound component (B), a titanium compound or a vanadium compound component is preferred, and a titanium compound is particularly preferred. For example Ti(OR)
o X 4-o (R is a hydrocarbon group, X is a halogen, 0≦n≦
4) A titanium compound represented by, for example, TiCl 4 ,
TiBr4 , TiI4 , Ti( OCH3 ) Cl3 , Ti( OC2H5 ) Cl3 ,
Ti(OC 6 H 5 ) Cl 3 , Ti(OC 2 H 5 ) 2 Cl 2 , Ti
(OC 3 H 7 ) 2 Cl 2 , Ti(OC 2 H 5 ) 3 Cl, Ti(OC 6 H 5 ) 3 Cl,
Ti(OC 2 H 5 ) 4 , Ti(OC 3 H 7 ) 4 , Ti(OC 4 H 9 ) 4 , Ti
(OC 6 H 13 ) 4 , Ti (OC 6 H 11 ) 4 , Ti (OC 8 H 17 ) 4 , Ti
[OCH 2 (C 2 H 5 ) CHC 4 H 9 ] 4 , Ti (OC 9 H 19 ) 4 , Ti
[OC 6 H 3 (CH 3 ) 2 ] 4 , Ti (OCH 3 ) 2 (OC 4 H 9 ) 2 , Ti
(OC 3 H 7 ) 3 (OC 4 H 9 ), Ti (OC 2 H 5 ) 2 (OC 4 H 9 ) 2 , Ti
Examples include (OC 2 H 4 Cl) 4 and Ti(OC 2 H 4 OCH 3 ) 4 . Other examples of titanium compounds are those with low valence, regardless of their crystal system. Specifically, titanium tetrachloride is reduced with titanium metal to form TiCl 3・T type, aluminum metal is used to reduce titanium 3・A type, hydrogen is used to reduce TiCl 3・H type, (C 2 H 5 ) 3 Al,
Titanium trihalides such as TiCl3 reduced with organoaluminium compounds such as ( C2H5 ) 2AlCl , ( C2H5 ) 1.5AlCl1.5 , Ti ( OCH3 ) 3 , Ti( OC 2 H 5 ) 3 , Ti
( OnC4H9 ) 3 , Ti( OCH3 ) Cl22CH3OH ,Ti
(OCH 3 ) 2 Alkoxytitanium () compounds such as Cl・CH 3 OH, obtained by hydrogen reduction of TiCl 3
Examples include TiCl 2 and the like. Normally solid transition metal compounds such as titanium trichloride and titanium dichloride are treated to become liquid before use. The treatment preferably involves contacting an electron donor such as an alcohol, ether, ester, amine, or ketone, preferably from about 1 to about 24 moles, more preferably from about 3 to about 15 moles, per mole of the transition metal compound. That's fine. In some cases, only a portion of the transition metal compound is dissolved, and in that case, it is preferable to separate and use only the solubilized portion. In addition, as a vanadium compound, VO(OR) n X 3-n (R and X have the same definition as before, 0≦
Compounds represented by m≦3) or VX 4 are common, such as VOCl 3 , VO(OC 2 H 5 )Cl 2 ,
VO(OC 2 H 5 ) 3 , VO(OC 2 H 5 ) 1.5 Cl 1.5 , VO
(OC 4 H 9 ) 3 , VO [OCH 2 (CH 2 )CHC 4 H 9 ] 3 , VCl 4
Examples include: As the organoaluminum compound (C), a compound having at least one Al-carbon bond in the molecule can be used, for example, (i) a compound having the general formula R 1 n Al (OR 2 ) o
HpXq (where R 1 and R 2 are hydrocarbon groups containing usually 1 to 15 carbon atoms, preferably 1 to 4 carbon atoms, and may be the same or different. X is halogen, m is 0<m≦ 3, n is a number of 0≦n<3, p is a number of 0≦p<3, q is a number of 0≦q<3, and m+n+p+q=3), (ii) general formula M 1 AlR 1 4 (where
M 1 is Li, Na, or K, and R 1 is the same as above), and complex alkylated products of Group 1 metals and aluminum can be mentioned. Examples of the organoaluminum compounds that belong to (i) above include the following. General formula R 1 mAL
(OR 2 ) 3-n (where R 1 and R 2 are the same as above. m
is preferably a number of 1.5≦m<3). general formula
R 1 mAlX 3-1 (where R 1 is the same as above, X is halogen, m is preferably 0<m<3), general formula
R 1 mAlH 3-n (where R 1 is the same as above, m is preferably 2≦m<3), general formula R 1 mAl(OR 2 )
nXq (where R 1 and R 2 are the same as before, X is halogen, 0<m≦3, 0≦n<3, 0≦q<3 and m
n+q=3). Among the aluminum compounds belonging to (i), more specifically, trialkyl aluminum such as triethyl aluminum and tributyl aluminum,
Besides trialkenylaluminum such as triisoprenylaluminum, dialkylaluminum alkoxide such as diethylaluminum ethoxide, dibutylaluminum butoxy, alkylaluminum sesquialkoxide such as ethylaluminum sesquiethoxide, butylaluminum sesquibutoxide, R 1 2.5 Al ( OR 2 ) Partially alkoxylated alkyl aluminum halogenides, such as diethylaluminum chloride, dibutyl aluminum chloride, diethylaluminium bromide, ethyl aluminum sesquichloride, butyl aluminum sesquichloride, with an average composition expressed as 0.5 , etc. , alkyl aluminum sesquihalogenides, such as ethyl aluminum sesquibromide,
Partially halogenated alkylaluminiums such as alkylaluminum dihalides such as ethylaluminum dichloride, propylaluminum dichloride, butylaluminum dibromide, etc., dialkylaluminum hydrides such as diethylaluminum hydride, dibutylaluminum hydride, ethylaluminum dihydride , partially hydrogenated alkyl aluminums such as alkyl aluminum dihydrides such as propyl aluminum dihydride, partially alkoxylated and halogenated alkyls such as ethyl aluminum ethoxy chloride, butyl aluminum butoxy chloride, ethyl aluminum ethoxy bromide It is aluminum. Further, as a compound similar to (i), it may be an organoaluminum compound in which two or more aluminum atoms are bonded via an oxygen atom or a nitrogen atom. Examples of such compounds include (C 2 H 5 ) 2 AlOAl(C 2 H 5 ) 2 , Examples include: Further, these exemplified compounds may be used in combination. Examples of compounds belonging to (ii) above include LiAl(C 2 H 5 ) 4 and LiAl(C 7 H 15 ) 4 . Among these, it is particularly desirable to use trialkyl aluminum, alkyl aluminum halide, or a mixture thereof. In the present invention, continuous polymerization or copolymerization of olefins is performed using the components (A), (B), and (C) described above. Olefins used for polymerization include ethylene,
These include propylene, 1-butene, 4-methyl-1-pentene, 1-octene, etc., and these can be used not only for homopolymerization but also for random copolymerization and block copolymerization. In copolymerization, polyunsaturated compounds such as conjugated dienes and non-conjugated dienes can be selected as copolymerization components. Polyunsaturated compounds such as butadiene, isoprene, 1,4-hexadiene, dicyclopentadiene, 5-ethylidene
When copolymerizing 2-norbornene, 1,7-octadiene, etc., it may be copolymerized in a proportion of about 0.1 to 5 mol%, preferably about 0.2 to 3 mol%. In this case, the resulting copolymer has an iodine value of about 5 to 30, and can be vulcanized with sulfur. Its vulcanized properties are also excellent, and it can be used as a vulcanized rubber with high strength. The resulting polyolefin may be resinous or rubbery. According to the present invention, it is possible to obtain a polymer with a narrow molecular weight distribution. However, the purpose of the present invention is not limited to this, for example, for the purpose of improving the processability of olefins, polymers with a wide molecular weight distribution are produced by using a molecular weight regulator or by combining two or more different polymerization conditions. You can also get combinations. According to the present invention, when applied to the copolymerization of two or more olefins, it is possible to obtain a copolymer with a narrow composition distribution and good transparency. For example, it can be used to copolymerize ethylene with other α-olefins, propylene with other α-olefins, etc. to produce olefins with good transparency. The polymerization according to the invention is preferably carried out in a hydrocarbon liquid medium. Hydrocarbon liquid media include pentane, hexane, heptane, octane, decane, dodecane,
Aliphatic hydrocarbons and their halogen derivatives such as kerosene; alicyclic hydrocarbons and their halogen derivatives such as cyclohexane, methylcyclopentane, and methylcyclohexane; aromatic hydrocarbons and chlorobenzene such as benzene, toluene, and xylene. Examples include halogen derivatives thereof such as. Moreover, the olefin itself used for polymerization can also be used as a liquid medium. The usage ratio of each catalyst component in the polymerization system is transition metal compound component (B)/magnesium halide component.
(A) (molar ratio) in terms of transition metal/magnesium is about 1/2 or less, preferably about 1/3 to about 1/200, particularly preferably about 1/5 to about 1/50, and organoaluminum compound (C ) must be in an amount that will not be deactivated by electron donors that may be contained in component (A), and the aluminum/transition metal atomic ratio is approximately 5.
It is preferable to set the number to about 2000 to about 2000, particularly about 20 to about 500. In addition, for the liquid phase 1 of the polymerization system,
The transition metal inclusion is preferably about 0.0005 to about 1 mmol, more preferably about 1 mmol in terms of transition metal.
It is said to be 0.001 to about 0.5 mmol. It should be noted that if the ratio of component (B) to component (A) exceeds the above range, the catalytic activity per transition metal will decrease, which is not preferable. When supplying the catalyst components to the polymerization system, there are two methods: (A), (B), and (C) are supplied separately; only (B) is supplied separately, and at least a portion of (A) and ( C) A method of premixing and supplying at least a portion of (A), (B), and (C), wherein at least a portion of each of (A), (B, and C) is premixed; Methods include supplying (B) to the mixture, or mixing (A), (B), and (C) simultaneously and supplying the mixture to the polymerization reaction zone. An embodiment in which (A) and (B) are preliminarily mixed has already been proposed by the present applicant. Further, it is not preferable to bring the components (B) and (C) into contact with each other to preliminarily generate a solid transition metal compound, since this will reduce the polymerization activity. The polymerization or copolymerization temperature of the olefin is generally about 20 to about 300°C, preferably about 65 to about 200°C. In particular, in order to produce a polyolefin with good transparency in the copolymer production method, it is preferable to carry out liquid phase polymerization using an inert hydrocarbon medium and select a temperature at which the polyolefin dissolves. For example, ethylene and a small proportion of other α-
When a resinous copolymer is produced by copolymerization with olefin, the melting point of the copolymer
Preferably, the temperature is 200°C. The polymerization pressure is preferably from atmospheric pressure to about 100 kg/cm 2 -G, particularly from about 2 to about 50 kg/cm 2 -G. In carrying out the present invention, hydrogen, organometallic compounds of Group 2 metals of the periodic table, and/or various electron donors such as alcohols, ethers, esters, amines, Ketones, carboxylic acids, amides, phosphorus compounds, sulfur compounds, acid anhydrides, etc. may also be present. Next, a more detailed explanation will be given with reference to Examples. A continuous polymerization reactor with an internal volume of 200 was used for the polymerization in the following examples. The lines for supplying each catalyst component to the polymerization vessel were arranged to merge with the main line for supplying the polymerization solvent at variable points before reaching the polymerization vessel. Furthermore, each line was equipped with a heat insulating device, so that the charging order, temperature, and contact time of each catalyst component could be changed in each experiment. Furthermore, the molecular weight of the polymer was adjusted by continuously changing the amount of hydrogen supplied. Example 1 1.0 mol of commercially available anhydrous magnesium chloride was suspended in refined kerosene (2) under nitrogen, 3.0 mol of 2-ethylhexanol was added thereto, the temperature was gradually raised while stirring, and the mixture was reacted at 120°C for 2 hours. Ta. The solid disappeared completely and a colorless and transparent liquid was obtained. Even when this solution was cooled to room temperature, no solid precipitated and it remained a colorless and transparent solution. Next, 3.0 mol of silicon tetrachloride was added to this solution, and the mixture was reacted at 50°C for 3 hours. After the reaction was completed, the obtained white powder was washed with refined kerosene from Step 2. When a portion of this solid was dried and subjected to various analyses, it was confirmed that it was a complex compound similar to magnesium chloride with extremely low crystallinity and containing a small amount of 2-ethylhexanol. Ensure that the supply lines for each catalyst component join the main solvent charging line at almost the same point;
From one of them, an equimolar mixture of triethylaluminum and diethylaluminium monochloride was prepared.
36 mmol/hr, and from the other one, the refined kerosene solution of titanium tetrachloride is converted to titanium atoms, 0.45 mmol/hr,
From the other one, the refined kerosene suspension of magnesium component obtained above is converted into magnesium atoms.
4.5 mmol/hr was continuously supplied. At the same time, ethylene was continuously supplied to the polymerization vessel at a rate of 12.0 kg/hr, 4-methyl-1-pentene 12.0/hr, and hydrogen 60/ hr . Continuous polymerization was carried out with a residence time of about 1 hour. At this time, the concentration of the copolymer with respect to the solvent hexane was 72.0 g/m, and the polymerization activity was 16000 g-copolymer/mmol-Ti. The density of the obtained copolymer was 0.927 g/cm 3 , MI = 1.98, and the number of isobutyl groups per 1000 carbon atoms was 12.8. When this copolymer was molded into a film with a thickness of 65 μm using a commercially available tubular film molding machine for high-pressure polyethylene (manufactured by Modern Machinery), the haze was 10.1%. Molding conditions are resin temperature 170
℃, screw rotation speed 60 rotations, die diameter 100mmφ,
The die slit width is 1.0 mm. Examples 2 and 3, Comparative Example 1 Polymerization was carried out in the same manner as in Example 1, except that the method of supplying each catalyst component was changed. The results are shown in Table 1.

【表】 比較例 2 実施例1において、マグネシウム成分をマグネ
シウム原子に換算して4.5mmol/hrで供給した代
りに、0.675mmol/hrで供給(このとき、触媒の
Mg/Tiモル比は1.5となる)した以外は実施例1
と同様にして重合を行つた。 重合器中の共重合体濃度は14.4g/であり、
重合活性は3200g―共重合体/mmol―Tiであつ
た。MIは0.82、密度は0.942g/cm3であり、実施
例1と同様にフイルムに成型しようとしたとこ
ろ、発泡が起こり、フイルムにはならなかつた。 実施例4〜8、比較例3 実施例1において、遷移金属化合物(B)、有機ア
ルミニウム化合物成分(C)をそれぞれ変えた以外は
実施例1と同様に重合を行つた。 結果を表2に示した。
[Table] Comparative Example 2 In Example 1, instead of feeding the magnesium component at 4.5 mmol/hr in terms of magnesium atoms, it was fed at 0.675 mmol/hr (at this time, the amount of the catalyst was
Example 1 except that the Mg/Ti molar ratio was 1.5)
Polymerization was carried out in the same manner. The copolymer concentration in the polymerization vessel was 14.4 g/
The polymerization activity was 3200 g-copolymer/mmol-Ti. The MI was 0.82 and the density was 0.942 g/cm 3 . When trying to mold it into a film in the same manner as in Example 1, foaming occurred and the film could not be formed. Examples 4 to 8, Comparative Example 3 Polymerization was carried out in the same manner as in Example 1, except that the transition metal compound (B) and the organoaluminum compound component (C) were changed. The results are shown in Table 2.

【表】 実施例 9 無水MgCl20.5molの精油油懸濁液(0.5mol/
)に1.5molの2―エチルヘキサノールを加え、
120℃で2時間反応させ、無色透明の溶液とした
後、50℃まで冷却し、1.0molのSiCl4を加え、50
℃で4時間反応させた。反応終了後、系は白色粉
末の懸濁液となつた。 3本の各触媒供給ラインがほとんど同一個所で
メインの溶媒装入ラインに合流するようにし、そ
れぞれからトリエチルアルミニウム27mmol/
hr、四塩化チタンを0.27mmol/hr、上記で得た
マグネシウム成分をマグネシウム原子に換算して
2.7mmol/hrを連続的に供給した。 同時に重合器へはエチレン8Kg/hr、水素100
/hr、で連続的に供給し、全圧を30Kg/cm2、温
度を140℃に保つて重合を行つた。得られた重合
体の濃度は60g/であり、重合活性は22.000
g・PE/mmol・Tiであつた。MIは7.2.密度は
0.967であつた。 実施例 10〜12 実施例1でMgCl2―2―エチルヘキサノール錯
体の精灯油液を四塩化ケイ素で処理した代りにそ
れぞれジメチルジクロロシラン、チオニルクロラ
イド、三塩化リンを用い、それぞれの条件で処理
して白色のマグネシウム成分を得、これを用いて
実施例9と同様にして重合を行つた。 結果を表3に示した。
[Table] Example 9 Anhydrous MgCl 2 0.5 mol essential oil suspension (0.5 mol/
), add 1.5 mol of 2-ethylhexanol,
After reacting at 120℃ for 2 hours to form a colorless and transparent solution, it was cooled to 50℃, 1.0mol of SiCl 4 was added, and 50
The reaction was carried out at ℃ for 4 hours. After the reaction was completed, the system became a suspension of white powder. Each of the three catalyst supply lines joins the main solvent charge line at almost the same point, and 27 mmol/triethylaluminum is supplied from each of the three catalyst supply lines.
hr, titanium tetrachloride is 0.27 mmol/hr, and the magnesium component obtained above is converted to magnesium atoms.
2.7 mmol/hr was continuously supplied. At the same time, 8 kg/hr of ethylene and 100 kg of hydrogen are supplied to the polymerization vessel.
Polymerization was carried out by continuously supplying the solution at a rate of 30 Kg/cm 2 and maintaining the temperature at 140°C. The concentration of the obtained polymer was 60g/, and the polymerization activity was 22.000
g・PE/mmol・Ti. MI is 7.2. Density is
It was 0.967. Examples 10 to 12 Instead of treating the refined kerosene liquid of MgCl 2 -2-ethylhexanol complex with silicon tetrachloride in Example 1, dimethyldichlorosilane, thionyl chloride, and phosphorus trichloride were used, and the treatment was carried out under the respective conditions. A white magnesium component was obtained, and polymerization was carried out in the same manner as in Example 9 using this. The results are shown in Table 3.

【表】 実施例 13 無水塩化マグネシウム0.5molの精灯油懸濁液
(Mg0.5mol/)に2.0molのn―ブタノールを
30℃で30分にわたつて滴下し、30℃で2時間反応
させた。つぎに、6.0molの四塩化ケイ素を加え、
50℃で4時間反応させた。反応終了後の系は白色
粉末の懸濁液であつた。固液を分離した後、固体
部を3の精灯油で洗浄し、さらに2の精灯油
を加え懸濁液とした。 実施例9の方法に従つてエチレンの連続重合を
行つた。得られた重合体の濃度は63g/であ
り、重合活性は23100g―PE/mmol―Tiに相当
した。MIは5.6、密度は0.966であつた。 実施例 14 内容積2のガラス製常圧連続重合容器(オー
バーフロータイプ)を用いて、脱水精製した灯油
を0.4/hr、トリイソブチルアルミニウムを
0.7mmol/hr、ジエチルアルミニウムモノクロリ
ドを2.3mmol/hr、2―エチルヘキサノールを
1.28mmol/hr、実施例1で得たマグネシウム成
分をマグネシウム原子に換算して0.3mmol/hr、
Ti(OC8H174灯油溶液をチタン原子に換算して
0.03mmol/hrを重合器へ連続的に別々に供給し
(このとき、各成分を希釈した溶媒の総量が0.6
/hrとなるように設定した)、同時に重合器内
にエチレン―プロピレン混合ガス(エチレン/プ
ロピレンモル比=40/60に設定)を200/hrの
流速で供給し、90℃で重合を行つた。 連続重合中、重合溶液はゲル生成のない均一透
明溶液であつた。 得られる共重合体を大量のメタノールで析出さ
せたところ、エチレン―プロピレン共重合体を28
g/hrで得ることができた。このときの重合活性
は930g−共重合体/mmol・Tiに相当する。こ
の共重合体のMIは2.8、エチレン含量は75.0mol
%であつた。また、共重合体の沸騰酢酸メチル可
溶分は0.9%であり、ベたつきはほとんどなかつ
た。また、この共重合体の厚さ1mmのシートのヘ
イズは18%であつた。
[Table] Example 13 Adding 2.0 mol of n-butanol to a suspension of 0.5 mol of anhydrous magnesium chloride in refined kerosene (Mg0.5 mol/)
The mixture was added dropwise at 30°C over 30 minutes and reacted at 30°C for 2 hours. Next, add 6.0 mol of silicon tetrachloride,
The reaction was carried out at 50°C for 4 hours. After the reaction was completed, the system was a suspension of white powder. After separating the solid and liquid, the solid portion was washed with the refined kerosene from Step 3, and further refined kerosene from Step 2 was added to form a suspension. Continuous polymerization of ethylene was carried out according to the method of Example 9. The concentration of the obtained polymer was 63 g/m, and the polymerization activity corresponded to 23100 g-PE/mmol-Ti. The MI was 5.6 and the density was 0.966. Example 14 Using a glass normal pressure continuous polymerization vessel (overflow type) with an internal volume of 2, dehydrated and purified kerosene was added at 0.4/hr and triisobutylaluminum was added at 0.4/hr.
0.7 mmol/hr, diethylaluminum monochloride 2.3 mmol/hr, 2-ethylhexanol
1.28 mmol/hr, 0.3 mmol/hr when the magnesium component obtained in Example 1 is converted to magnesium atoms,
Ti(OC 8 H 17 ) 4 kerosene solution converted to titanium atoms
0.03 mmol/hr was continuously and separately supplied to the polymerization vessel (at this time, the total amount of solvent used to dilute each component was 0.6 mmol/hr).
At the same time, ethylene-propylene mixed gas (ethylene/propylene molar ratio set to 40/60) was supplied into the polymerization vessel at a flow rate of 200/hr, and polymerization was carried out at 90°C. . During continuous polymerization, the polymerization solution was a homogeneous and transparent solution without gel formation. When the resulting copolymer was precipitated with a large amount of methanol, the ethylene-propylene copolymer was
g/hr. The polymerization activity at this time corresponds to 930 g-copolymer/mmol·Ti. The MI of this copolymer is 2.8 and the ethylene content is 75.0mol
It was %. Further, the boiling methyl acetate soluble content of the copolymer was 0.9%, and there was almost no stickiness. Further, the haze of a 1 mm thick sheet of this copolymer was 18%.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の共重合方法において使用す
る触媒の調製を例示するフローチヤート図であ
る。
FIG. 1 is a flowchart illustrating the preparation of a catalyst used in the copolymerization method of the present invention.

Claims (1)

【特許請求の範囲】 1 (A) 活性水素含有電子供与体の付加したハロ
ゲン化マグネシウムをケイ素、いおう、リンの
ハロゲン化物で処理することにより得られる固
体状成分、 (B) 該(A)成分中のマグネシウム1原子に対し、1/
2原子以下のチタン原子に相当する液状のTi化
合物成分、 及び (C) 有機アルミニウム化合物成分 を接触せしめることによつて得られる重合用触媒
の存在下にオレフイン類を連続的に重合もしくは
共重合することからなり、(B)成分は他の成分(A)及
び(C)とは別個に重合系に供給するか、又は(A)成分
の少なくとも一部、(B)成分の少なくとも一部及び
(C)成分の少なくとも一部は重合系に供給する前に
予備的に混合しておき、該予備的な混合は、(A)と
(C)の混合物に(B)を混合するか又は(A)、(B)及び(C)成
分を同時的に混合することを特徴とするオレフイ
ン類の連続重合もしくは共重合方法。
[Scope of Claims] 1 (A) a solid component obtained by treating magnesium halide to which an active hydrogen-containing electron donor has been added with a halide of silicon, sulfur, or phosphorus; (B) component (A); For one atom of magnesium in
Continuously polymerizing or copolymerizing olefins in the presence of a polymerization catalyst obtained by contacting a liquid Ti compound component corresponding to two or less titanium atoms and (C) an organoaluminum compound component. Therefore, component (B) is supplied to the polymerization system separately from other components (A) and (C), or at least a portion of component (A), at least a portion of component (B), and
At least a portion of component (C) is preliminarily mixed before being supplied to the polymerization system, and the preliminary mixing is performed with (A).
A method for continuous polymerization or copolymerization of olefins, characterized by mixing (B) into a mixture of (C), or simultaneously mixing components (A), (B), and (C).
JP13064680A 1980-09-22 1980-09-22 Polymerization of olefin Granted JPS5755903A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13064680A JPS5755903A (en) 1980-09-22 1980-09-22 Polymerization of olefin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13064680A JPS5755903A (en) 1980-09-22 1980-09-22 Polymerization of olefin

Publications (2)

Publication Number Publication Date
JPS5755903A JPS5755903A (en) 1982-04-03
JPS6349686B2 true JPS6349686B2 (en) 1988-10-05

Family

ID=15039226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13064680A Granted JPS5755903A (en) 1980-09-22 1980-09-22 Polymerization of olefin

Country Status (1)

Country Link
JP (1) JPS5755903A (en)

Also Published As

Publication number Publication date
JPS5755903A (en) 1982-04-03

Similar Documents

Publication Publication Date Title
US4328328A (en) Continuous process for production of olefin polymers or copolymers
US4916099A (en) Solid catalyst component for olefin copolymerization and process for olefin copolymerization using said solid catalyst component
JPH04293912A (en) Production of stereoregular polyolefin
US4471066A (en) Polymerization of olefins
US5091353A (en) Process for producing ethylene copolymer
JPS62167303A (en) Production of polyolefin
JPS5910683B2 (en) Polymerization method of olefins
EP0058549B1 (en) Catalyst for polymerization of olefins
JPS6349686B2 (en)
JPH02173103A (en) Production of polyolefin
EP0052464B1 (en) A process for preparing ethylene copolymers
JP3319051B2 (en) Method for producing polyolefin
JP3413917B2 (en) Solid catalyst component for olefin (co) polymerization, catalyst comprising the catalyst component, and process for producing olefin (co) polymer using the catalyst
JPS6343408B2 (en)
JP3531304B2 (en) Olefin (co) polymerization catalyst and method for producing olefin (co) polymer
JPH0421685B2 (en)
JPH0118926B2 (en)
JPS64409B2 (en)
JP3248385B2 (en) Olefin (co) polymerization catalyst and method for producing olefin (co) polymer
KR830001192B1 (en) Continuous production method of olefin polymer or copolymer
US4243785A (en) High efficiency catalyst for polymerizing olefins
JPH0363961B2 (en)
JPH0455205B2 (en)
JPS61176612A (en) Method for polymerizing ethylene
JPS6072908A (en) Production of ethylene copolymer